Modeling Variability in Software Process with EPF Composer and

Keywords:

Abstract:

SMartySPEM: An Empirical Qualitative Study

Jaime W. Dias and Edson OliveiraJr
Informatics Department, State University of Maringd, Maringd-PR, Brazil

Annotative Approach, Compositional Approach, Eclipse Process Framework, Empirical Qualitative Study,
SMartySPEM, Variability.

Nowadays, organizations are increasingly seeking to customize their software processes according to the mar-
ket needs and projects experiences. Therefore, a systematic way to achieve such an objective is the Software
Process Line (SPrL) technique, in which each member is a customized software process derived from a set
of similarities and variabilities of process elements. Compositional and annotative approaches are most refer-
enced for variability management. In this sense, the objective of this paper is to present a comparison between
compositional and annotative approaches targeting variability representation capabilities from the point of
view of practitioners and academic experts. The Eclipse Process Framework by means of the EPF Composer
tool represents compositional approach, whereas SMartySPEM represents the annotative approach. The ob-
tained results provided initial evidence that the annotative approach (SMartySPEM) takes advantage over the

compositional approach (EPF).

1 INTRODUCTION

Software development companies need to quickly de-
velop software with quality, which makes them adopt
software reuse techniques (Aleixo et al., 2013). Such
a reuse aims at improving productivity, reducing cod-
ing effort and increasing quality as the software has
been already verified and validated.

The current scenario of competitiveness has led
software companies to seek solutions beyond soft-
ware reuse in order to reduce time-to-market and in-
crease return on investment (ROI). Thus, software de-
velopment projects need to be tailored according to
the needs of a company and its development domain
(Garcia-Borgonon et al., 2014). Therefore, the Soft-
ware Process Line (SPrL) technique (Rombach, 2005)
is an alternative for process customization based on
similar and variable process elements. Such ele-
ments can be defined based on the concept of variabil-
ity, from the Software Product Line (SPL) technique
(Linden et al., 2007).

Currently, there are several tools and languages
for software process modeling (Garcia-Borgonon
et al., 2014), as well as approaches that guide such
modeling, as for instance, compositional, annotative,
transformational and model-driven (Kistner, 2010;
Kistner et al., 2008; Késtner and Apel, 2008). Each

Dias, J. and OliveiraJr, E.

approach is used in specific ways to represent vari-
ability among process elements (Aleixo et al., 2013).
Therefore, this work presents a qualitative empiri-
cal study comparing the compositional approach, rep-
resented by the Eclipse Process Framework (EPF)
and its Composer tool, and the annotative approach,
represented by the SMartySPEM (Oliveiralr et al.,
2013) approach for variability representation in soft-
ware process elements.

2 BACKGROUND

This section presents essential concepts of soft-
ware process lines, variability and the OpenUP-based
SPrL, used in our qualitative study.

2.1 Software Processes and Process
Lines

A software process can be defined as a set of tech-
niques and technologies to support, evaluate and im-
prove software development activities. The need to
specifying software processes arises from the fact that
the products quality can be directly influenced by the
process adopted for their productions (Chemuturi and

283

Modeling Variability in Software Process with EPF Composer and SMartySPEM: An Empirical Qualitative Study.
In Proceedings of the 18th International Conference on Enterprise Information Systems (ICEIS 2016) - Volume 1, pages 283-293

ISBN: 978-989-758-187-8

Copyright (© 2016 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

Cagley, 2010). The ISO/IEC 15504 standard (ISO,
2012) defines a process as a set of activities that are
interrelated or interacting to transforming inputs into
outputs. This set of activities serves as a guide for
those who will be responsible for the process execu-
tion and monitoring.

A software development process has four basic
steps (Sommerville, 2015): specification of the soft-
ware features and premises for its development; de-
sign for constructing the software according to its
specifications; validation to ensure that the software
meets the users needs; and evolution in order to ac-
commodate prospective necessary modifications.

Modeling of such steps are essential for a com-
plete understanding of the process (Garcia-Borgonon
et al., 2014). Basic elements and concepts are essen-
tial for software process modeling: Role, which de-
scribes how people act in the process and their respon-
sibilities; Task, which is an action performed by a role
for executing or monitoring a project; Activity, which
is a set of tasks that lead to produce/consume one or
more controlled quality artifacts; Artifact, which rep-
resents the result of a task; and Process, which is an
organized collection of activities.

Basic elements of a software process are essen-
tial to enable process tailoring and customization,
which is currently an important research topic from
the academic and industrial point of view (Martinez-
Ruiz et al., 2012; Kalus and Kuhrmann, 2013; Car-
valho et al., 2014). Therefore, the term Software Pro-
cess Line (SPrL), proposed by Rombach (Rombach,
2005), has been considered in the last years, sug-
gesting the adoption of important concepts from soft-
ware product lines, such as similarities and variabil-
ities. An SPrL provides techniques and mechanisms
for modeling existing similarities and variabilities in a
family of software processes, as well as the derivation
of customized software processes that meet the spe-
cific needs of a given software development project
(Rombach, 2005; Aleixo et al., 2011).

SPrLs may contain variation points, which are
process elements that can be instantiated in differ-
ent ways. For each variation point there are vari-
ant elements, which can be selected to resolve a spe-
cific variation point (Oliveiralr et al., 2013). Fig-
ure 1 illustrates an excerpt of an SPrL, in which
the similar (mandatory) part is composed of the role
Developer and two tasks: Design the solution
and Implement solution. Such a figure also il-
lustrates two variabilities: (i) the inclusion of devel-
oper tests practices (Implement developer tests
and Run developer tests), and (ii) the inclusion of
integration and creating of a build (Integrate and
create build). This excerpt can generate four dis-

284

tinct process instances: (i) with common elements
only by discarding the variabilities, keeping manda-
tory process elements, (ii) only resolving the variabil-
ity concerned with Developer test, (iii) only re-
solving the variability concerned with Integration
continues, and (iv) resolving both variabilities con-
sidering all the elements.

2.2 The OpenUP-based SPrL

The OpenUP process complies with the principles of
the Agile Software Development Manifest, thus it can
be taken as an agile version of the Unified Process
(UP), meeting UP good practices. OpenUP is an itera-
tive and incremental approach, with no specific tools.

Several activities of the OpenUP are optional,
however, it does not define which elements of the pro-
cesses vary from the SPrL point of view. Thus, in the
work of (Aleixo et al., 2011), Aleixo et al. presents
excerpts of the OpenUP modeled as an SPrL, defining
similar features and variabilities. To do so, three real
research and development projects based on OpenUP
in addition to experienced practitioners were involved
in the definition of such an SPrL. The first project
dealt with the development of a software system to
audit telephone networks, the second project involved
the development of a module of a distributed system
and the third project involved the implementation of
an integrated academic and administrative manage-
ment. As a result of this analysis it was identified 586
features, from which: 273 mandatory features, 239
optional features and 74 alternative features.

3 VARIABILITY MODELING IN
SPRL WITH COMPOSITIONAL
AND ANNOTATIVE
APPROACHES

The success of an SPrLL depends on the accuracy of
its variability management activity (Rombach, 2005).
Thus, such a management is a key requirement in the
development of SPrLs to provide support to specifica-
tion, implementation, variability resolution and cus-
tomized processes generation. Variability manage-
ment defines how common and variable artifacts are
represented and treated in order to generate process
instances from an SPrL.

There are different approaches and techniques for
variability management in the literature. They can
be classified as (Galster et al., 2013): compositional,
annotative, transformational, and model-driven. This
study concerns on compositional and annotative ap-

Modeling Variability in Software Process with EPF Composer and SMartySPEM: An Empirical Qualitative Study

®, A
LT ’/
~ 4

Tester

ﬁ Definition of
Developer common
e elements
e
@o— — —@®
Design the | Implement L
solution | __ solution {
= —_—
P B wia Seeg | Definition of
- I | variable
Implement Run Integrate and | |1 elements
developer tests developer tests|; create build |

* Feature: Integration continues
> Feature: Developer test

Figure 1: Excerpt of an SPrL (Aleixo et al., 2013).

proaches as they are highly referenced in the litera-
ture.

3.1 Compositional Approach

The compositional approach supports modularity of
physical features, thus generation of products occurs
by means of selecting and composing modules that
implement features of desired products (Galster et al.,
2013). Therefore, development techniques are high-
lighted: Feature-Oriented Programming (FOP) (Lee
and Kang, 2013) and Aspect-Oriented Programming
(AOP) (Kiczales et al., 1997). FOP provides support
to the similarities and variabilities be modularized and
each feature implemented in a distinct module. Such
a module is an increment in the functionality of a base
system (step-wise refinement).

An example of software process modeling using
the compositional approach is the Eclipse Process
Framework (EPF), which allows editing, configuring
and publishing of software processes. EPF persists
process information according to the Unified Method
Architecture (UMA) meta-model, developed based on
the SPEM 1.0. Subsequently, UMA inspired the cre-
ation of the SPEM 2.0.

Figure 2 presents the EPF framework main parts
using the EPF Composer, a process modeling tool
based on the EPF framework, as follows:

e Method Content: standardizes representation and
manages reusable component libraries. It defines
roles, tasks, work products and their relationships;

e Process: determines the sequence of phases, iter-
ations and activities, and defines when tasks are
performed;

B, Library &3

‘ <) base_concepts
= dsdm_openup
= openup
=\, Method Content
‘ - lgg, Content Packages
‘ . L= Standard Categories
L= Custom Categories

&
a P
4

4 | Processes
ko, Capability Patterns
4. Delivery Processes
4 L[Configurations
5-| OpenUP
| &-| OpenUPDSDM

Figure 2: EPF Excerpt [llustrating Method Content, Pro-
cess, Plug-ins and Configurations using the EPF Composer
Tool.

e Plug-ins: represent a set of Method Content and
process packages, allowing process customiza-
tion;

e Configurations: selects a subset of Method Con-

tents to form a specific process by publishing it in
HTML or exporting it to MS Project or XML.

The EPF framework allows representing artifacts
variability in order to control the evolution and reuse
of software processes. There are four possible types
of variability in EPF, which are:

e Contributes - contributing (variability) element
adds to a base element;

e Replaces - replacing (variability) element replaces
parts of the base element;

285

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

e Extends - extending (variability) element inherits
characteristics of the base element. The base ele-
ment is unchanged; and

e Extends-Replaces - combines the effects of ex-
tends and replaces variability, allowing one to se-
lectively replace specific attributes and relation-
ships of the base element. Extending-replacing
(variability) element replaces values in the base
element that have been redefined in the extending-
replacing element.

3.2 Annotative Approach

The annotative approach provides the use of prepro-
cessor directives to annotate code snippets associated
with a particular feature (Késtner et al., 2008). The C
and C++ languages already support preprocessor di-
rectives. Products generation occurs by defining the
value of the symbolic constant of pre-processing di-
rectives associated with selected features, before pre-
building, in order to define the presence of the features
snippets selected in the generated product. Just as in
Java annotations, which provide the option of using
metadata over code that can be later interpreted by
a compiler or pre-compiler that performs predefined
tasks. Another way of annotation is the UML stereo-
types that add semantics to existing elements with no
changes in their meta-model.

Stereotype-based Management of Variability for
the SPEM meta-model (SMartySPEM) (Oliveiralr
et al., 2013) is an approach that provides the separa-
tion of elements and their management by using a vi-
sual annotation that associates notes and stereotypes
to each type of process elements variability.

The SMartySPEM approach aims at supporting
the identification and representation of variability
in processes elements modeled with SPEM. To do
so, SMartySPEM introduces the profiling mecha-
nism based on the SMarty approach (Oliveiralr et al.,
2010) for representing variability in SPEM modeled
elements with specific stereotypes. SMartySPEM
is composed of a UML 2.0 compliant profile, the
SMartySPEMProfile, with the following stereotypes
(Oliveiralr et al., 2013):

e <variability>> - represents the concept of vari-
ability (UML note);

e <variationPoint>> - represents the concept of
variation point (VP icon), in which a variable pro-
cess element provides a set of choices for cus-
tomizing a software process;

e <mandatory> - represents compulsory pro-
cess elements (MDT icon), present in every cus-
tomized software process;

286

e <optional>> - represents an optional variant;

e <alternative_ OR>> - represents inclusive vari-
ants (OR icon) to resolve a variation point;

e <alternative XOR>> - represents mutually ex-
clusive variants (XOR icon) to resolve a variation
point;

e <mutex>> - represents mutual exclusion con-
straint (dependency relationship) among variants;
and

e <requires>> - represents that a given variant re-
quires the presence of another variant (depen-
dency relationship).

Figure 3 presents an excerpt of an
Architectural Analysis activity modeled
according to SMartySPEM. It contains the vari-
ation point Analysis Class with three related
inclusive variants: Control Class, Entity
Class and Boundary Class. Another variation
point is Architectural Analysis with three
variants: Identifying Common and Special
Requirements, Identifying Obvious Entity
Classes and Develop Business Type Model.
Architect is a mandatory element for performing
the Architectural Analysis activity. There are
optional variants, such as, Use-Case Model and
Architecture Description, which may or may
not be present in derived processes (Oliveiralr et al.,
2013).

4 EPF COMPOSER VS.
SMartySPEM: A QUALITATIVE
STUDY

This study aims at comparing compositional and
annotative approaches represented, respectively, by
EPF Composer and SMartySPEM. The comparison
criteria to be adopted were proposed in the works
(Kistner, 2010; Kistner et al., 2008; Kistner and
Apel, 2008), namely: modularity, traceability, error
detection, granularity, adoption and systematic vari-
ability management. These criteria were also used in
the qualitative study of Aleixo et al. (Aleixo et al.,
2012).

The criterion of modularity aims at analyzing
the modularization degree of processes elements as-
sociated with specific features, enabling a better un-
derstanding and facilitating the maintenance and evo-
lution of SPrLs. Traceability allows one to analyze
how difficult is viewing and mapping of all process
elements along with their associated features. The
error detection criterion analyzes how efficient is

Modeling Variability in Software Process with EPF Composer and SMartySPEM: An Empirical Qualitative Study

wvariability»
name = "Suplementary
Requirements Product”
minSelection =0
maxSelection = 1
bindingTime = DESIGN_TIME
allowsAddingVar = true
variants = {Suplementary

wvariabilitys
name = "Use-Case Model Product”
minSelection = 0

maxSelection =

bindingTime = DESIGN_TIME
allowsAddingVar = true

varnants = {Use-Case Model}

«variabilitys
name = "Architecture Description
Produd”
minSelection = 0
maxSelection = 1
bindingTime = DESIGN_TIME
allowsAddingVar = true
vanants = {Architecture Description,

Requirements

Business Suplementary Use-Case

@ Model ;, Requirelmems Model
b ;

Architect S

«variabiltys ~
name = "Architectural AnalyssTasx" ~
minSelection = 0
maxSelection = 3
bindingTime = DESIGN_TIME
allowsAddingVar = true
vanants= {identifying ObviousE ntity
Classes, |dentifying Common Special

Architectural

Analysis
Eackagos Identifying Identifying
Obvious Common
Entity Special
Classes

Requirements

¥ 3
¥
4 s
7 4Descr|pt|0n

i

wvariabilitys
name = "Analysis Class Product”
e minSelection = 1

maxSelection = 3

bindingTime = DESIGN_TIME
allowsAddingVar = true
vanants= {Boundary Class Entity
Class Control Class

Architecture

/77 Analysis \/\

Boundary
Class

P Entlty Class 4
~

Control
Class -~
-

= - R / i
arequiress | ~ < arequires»

TS wvariabilitys N

maxSelection = 1

Analysi — name = "AnalyssPackage Produd”

Requirements, Develop Business ' ‘ minSelection =0
Type Model} 7 | R) i

f . r 48 Analysis | pindingTime = DESIGN_TIME

/ \\\ Package | ga|lowsAddingVar= true

¥ e variants = {AnalyssPackage}
" 3
Develop

Business Business h X «variabilitys
Type Type Model “. |name = “BusnessType Model
Model *| Product”

minSelection =0

maxSelection = 1

bindingTime = DESIGN_TIME
allowsAddingVar = true
variants = {BusinessT ype Model}

Figure 3: An Excerpt of Architectural Analysis Modeled with SMartySPEM (Oliveiralr et al., 2013).

an approach for identifying cohesion errors in the def-
inition of an SPrL and its elements, as well as its
derived processes. Granularity evaluates the ap-
proach support for representing variability in coarse
and fine granularity, considering the division of the
process in small or large parties. The adoption crite-
rion discusses the difficulty of adopting an approach,
analyzing necessary pre-knowledge to be taken to ap-
plying such an approach. Systematic variability
management analyzes the mechanisms provided by an
approach for specifying variability.

4.1 Objective

The aim of this study is to obtain experts’ feedback
with regard to the criteria for each approach. Then,
compare such approaches in order to be able to draw

initial evidence based on each criterion.
4.2 Planning

As study object we used the OpenUP-based SPrL
from Section 2.2. As such an SPrL is too large
with hundreds of features, we chose only the
Requirements Specification feature.
Participants were given eight documents: a study
consent stating the confidentiality of the responses;
a characterization questionnaire to measure the par-
ticipant’s experience; a document with main con-
cepts of SPrL; a document about the compositional
approach using the EPF framework; a document
about the annotative approach using SMartySPEM; a
document with the modeling of the Requirements
Specification feature in EPF (Figure 4); and a

287

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

document with the modeling of the Requirements
Specification feature in SMartySPEM (Figure 5).
After the trainning session, each participant was given
two questionnaires containing six questions. Each
question with regard to each criterion for each ap-
proach. Then, participants should answer the follow-
ing questions, replacing TYPE_OF_APPROACH with
“Compositional” or “Annotative”:

1. The modularity criterion measures the quan-
tity of modules (groups of process elements)
necessary for representing an SPrL, thus is
it possible to measure the modularity of the
TYPE_OF_APPROACH approach?

2. The traceability criterion allows analyzing the
visualization and mapping difficulty of all pro-
cess elements along with their features, thus is
it possible to visualize the traceability of the
TYPE_OF_APPROACH approach?

3. Theerror detection criterion analyzes how ef-
ficient is an approach to identify cohesion errors
in the definition of an SPrL and its elements,
as well as the derived processes from the SPrL.
Is it possible to detect cohesion errors in the
TYPE_OF_APPROACH approach?

4. The granularity criterion aims at evaluating the
approach support for representing variability in
coarse and fine granularities (level of abstraction),
thus considering the process division in small or
large parts, is it possible to evaluate the granular-
ity at the TYPE_OF_APPROACH approach?

5. The adoption criterion discusses the difficulty
of adopting an approach, analyzing the amount
of previous knowledge for applying an approach,
thus have you experienced any difficulties for
understanding the TYPE_OF_APPROACH ap-
proach?

6. The systematic variability management
analyzes the provided mechanisms of an ap-
proach for specifying variability. Do you consider
sufficient the variability mechanisms of the
TYPE_OF_APPROACH approach?

Participants of this study were carefully selected
based on their experience with software process. In
average, each participant had ten years of experience
working with software processes. Thus, twelve par-
ticipants were invited for this study, from which one
participant was invited for a pilot study for evaluat-
ing our instrumentation, thus his/her results were dis-
carded. Amongst the participants are researchers and
practitioners from the State University of Maringa
(UEM), Federal University of Sdo Carlos (UFSCar),
Federal Technological University of Parana (UTFPR)

288

= Library &3 £|ﬁ & ¥ =d
4 =), Method Content
a g Content Packages
. B8 core
a B variable_content

- B alternative_architecture-design
4 B, alternative_requirements-specification
4 B, alternativel_use-cases
- =i architecture_uc_modeling
- B, collaboration_uc_modeling
> B, requirements_uc_modeling
4 5 Roles
Lr} analyst_use_case
a [Tasks
[create_test_cases_use_case
[design_solution_use_case
[detail_requirements_use_cases
[find_and_outline_requirements_use_cases
= implement_solution_use_case
4 (5 Work Products
|| use_case_uc
.
&= actor
& Use_case
7 actor
W use_case
,:g detail_ucs_and_scenarios
,}3 find_and_outline_actors_and_ucs
,E uc_realizations
,:E use_case_formats
» uc_model_evolve
» USE_case_spec
|| uc_specification
A= actor
A use_case

4= yse_case_model

A= use case scenario

> B, alternativel_user-stories

> =i, alternative3_product-backlog
5 Roles

57 Tasks

Figure 4: The OpenUP-based SPrL. Requirements Specifi-
cation Using the EPF Composer.

and University of York, all of them with masters or
Ph.D.

The realization of a pilot study led us to changes in
the study planning as, for instance, in the study dura-
tion time. At first, we distributed all the materials and
asked the pilot study participant to answer the two sets
of six questions. This whole process took about two
hours and forty minutes, making the participant tired
and bored. Thus, we decided two divide it into two
parts, each part in different days: the first one involv-
ing only one of the approaches and the second one the
other approach. Therefore, each part of the study took
no longer than 50 minutes.

Another necessary change based on the pilot
project results was removing the uniformity criterion
that aimed at assessing the technology or indepen-
dent meta-model. As the two approaches depend on
specific tools (EPF Composer and a UML Tool), we
understand that such a criterion could be a potential
threat to our study as the participants do not have
enough experience with these tools, especially EPF
Composer.

Modeling Variability in Software Process with EPF Composer and SMartySPEM: An Empirical Qualitative Study

wvariabilitys
name = “Create Test
Cases Use Case™
minSelection = 0
maxSelection = 1
bindingTime =
DESIGN_TIME
sllowAddingVar = false
variants = (Create Test
Cases Use Case)
reslizes = {}

i Y il / \

! , %
: ik Y

@! @!
Create Test Cases Use Case Find and Outline Requirements
. Use Cages
AN K i
@ % 7/

wvaniabilitys
name = “Find and
Outiine Requirements
Use Cases”
minSelection = 0
maxSelection = 1

bindingTime =
DESIGN_TIME
allowAddingVar = false
variants = {Find and
Outiine Requirements
Use Cases)

reslizes = {}

Use Case

Figure 5: The OpenUP-based SPrLL Requirements Specification According to SMartySPEM.

For reducing the threats to validity of the study, for
each participant we changed the order of the evaluated
approach. Then, five participants firstly received the
annotative approach (SMartySPEM), whereas six par-
ticipants firstly received the compositional approach
(EPF Composer).

Responses from the experts were qualitatively
analyzed using Grounded Theory (GT) procedures
(Corbin and Strauss, 2008). The GT approach is
based on coding concepts. Coding allows one to as-
sign codes or labels for text snippets (Open Coding),
which can be grouped and classified (Axial Coding)
according to an idea expressed in order to elucidate
a given phenomenon (Corbin and Strauss, 2008). As
a result, such codings enabled the creation of a con-
ceptual model. During the encoding process two cat-
egories were created “Feasible Criteria” and “Non-
Feasible Criteria”, thus grouping answers with re-
spect to each criterion. An assistance tool for qual-
itative analysis was used, named Dedoose. Such a
tool allows one to import a spreadsheet with results,
then creating codings in specific excerpts of the an-
swers. The created codings can relate to one another
in a significant level. Then, after creating all codings
one can produce graphical representations, such as,
charts with different results visualizations.

4.3 Results

Figure 6 presents the results of this study as a com-

~ | Solution Use Case)

«variabilitys
name = "Design
Solution Use Case”
minSelection = 0
maxSelection = 1
bindingTime =
DESIGN_TIME
allowAddingVar = false
variants = {Design

(W ,o° | reatizes = §

-~ Detail Requirements Use Cases = Implement Solution Use Case

parison of the answers for each criterion of EPF
Composer and SMatySPEM. The more centralized
the line is (red or blue) in the chart the worse is
the evaluation of a given criterion. As a result, the
compositional approach was better evaluated for cri-
teria Modularity and Error Detection, whereas
the annotative approach was better evaluated for cri-
teria Traceability, Granularity, Adoption and
Systematic Variability Management.

Modularity in the annotative approach obtained
nine positive evaluations, for example, expert #3 an-
swered that “...it is possible to measure such a modu-
larity, as well as presenting the relationship between
process elements in a module. Such a view contributes
to the comprehension of what happens in each process
module and, consequently, enables better understand-
ing the tasks of a given derived process...”. However,
it took two negative answers. Expert #5 stated that
“...SMartySPEM does not appear to enable an effec-
tive organization of the process elements of an SPrL.
It is possible to establish the relations, but not dis-
tribute them so efficiently...”. Expert #4 answered that
“...as the process model grows, measuring modular-
ity becomes more complex as it depends on the vi-
sualization (annotations) of all process elements in a
diagram...”. In fact, for large SPrLs, visualization of
the modules is jeopardized due to the amount of el-
ements and annotations in a same diagram. On the
other hand, the compositional approach took 100% of
positive answers as it allows grouping the SPrL. com-

289

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

e Annotative Approach

Systematic Variability
Management

Adoption

e o o Compositional Approach

Modularity

Traceability

Error Detection

Granularity

Figure 6: Spider Chart for Evaluating Compositional and Annotative Approaches based on the Defined Criteria.

ponents in hierarchical packages, with a better visu-
alization of the modules as, for instance, reported by
the expert #5 “...EPF Composer is able to encapsu-
late the compositional elements in a satisfactory way.
The use of plugins, method contents and configura-
tions enables reusing such modules in an agile and
intuitive way...”.

The error detection criterion was not satisfactory
for both compositional and annotative approaches, as
none of them provides verification activities. How-
ever, the compositional approach took a subtle ad-
vantage as the EPF Composer checks models at spe-
cific process publication (derivation) time as stated
by expert #11 “...it has some kind of support mech-
anisms for error detection. Some filters, as in the
association with variabilities avoid wrong contri-
butions/replacements/extensions of incompatible pro-
cess elements...”. On the other hand, in the annota-
tive approach, as it is an UML extension and it allows
the relationship among several different elements, it
is difficult to detect errors, as said by expert #8 ... Be-
cause there is no automation of the approach, the
only way to detect errors would be based on reviews
and in-depth analysis comparing the process model-

290

ing with the description of the SPrLs elements...”.

Traceability obtained all the positive ratings for
the annotative approach as it has a very visual ap-
peal, facilitating the identification and traceability
among process elements, as well as the realizes
meta-attribute of the stereotypes < variability>> and
< variationPoint>>, which represents a collection of
low-level models that realizes a given variability. An
example is the statement from expert #8 ”...traceabil-
ity is perceived by means of dependencies among
process elements, as well as the realizes meta-
attribute from variabilities or optional and variation
point elements...”. For the compositional approach
eight positive answers were given as such an approach
allows relationships among process elements. How-
ever, various negative aspects were pointed out as the
difficulty of graphically visualization of the relations
between elements, and hiding of variability elements
as stated by the expert #5 ”...The user accessing the
published process, in html format, generated by the
EPF Composer can not visualize inherited packages
and configurations of a given element, when its vari-
ability allows such a visualization...”.

The granularity criterion had much more positive

Modeling Variability in Software Process with EPF Composer and SMartySPEM: An Empirical Qualitative Study

evaluations for the annotative approach than the com-
positional due to the possibility of modeling differ-
ent types of diagrams representing different abstrac-
tion levels of SPrLs. For instance, flow of activities
with Activity elements for coarse-grained granularity
and diagram description of a process with activities
as fine-grained granularity. We can observe these ex-
amples from the expert #2 answer excerpt as follows:
“...the annotative approach clearly presents two lev-
els of abstraction encompassing both fine and coarse-
grained granularity, as the Activity process element
provides such an abstraction. Abstraction levels al-
low and facilitate the visualization of the whole pro-
cess, as well as make it easier identifying the vari-
ation of each of the process elements in lower-level
abstraction levels...”. In the compositional approach
this criterion obtained seven negative evaluations, be-
cause of the approach consider only one low abstrac-
tion level, not allowing a wide view of the SPrL. Ex-
amples of this characteristic are the expert #5 answer
“...the compositional approach has fine-grained gran-
ularity as the EPF Composer is aimed at configuring
all aspects of the process by structuring it in detail...”
and the expert #1 answer “...There is no higher ab-
straction level in order to compare variabilities of an
SPrL...”.

The adoption criterion obtained nine positive eval-
uations for the annotative approach against seven for
the compositional approach. We understand that this
is straightforwardly related to the influence that the
annotative approach because of the UML standard no-
tation as we can see in the statements of expert #4
“...the level of difficulty on applying the approach
is low...”, expert #10 “...I had no difficulty at under-
standing the approach as the number of elements to be
learned for adopting the approach is not very large. 1
would adopt the approach without much effort...” and
expert #11 “...I believe that the difficulty of adopting
this approach is low, as its stereotypes, comments and
elements are quite similar to UML representations...”.
On the other hand, in the compositional approach, be-
havior complexity and use of variability types influ-
ences the adoption of such an approach, as well as
difficulties in using the EPF Composer tool to manip-
ulate the SPrL elements, as reported by the expert #2
“...I had difficulties mainly in the elements that define
variability. Also, such a tool needs extra effort on cre-
ating and maintaining process elements...”.

For systematic variability management the
compositional approach was highly unsatisfactory,
according to the experts evaluation, because of its
variability mechanisms, because of the visualization
of the applied variabilities to process elements. In
addition, the experts judged that the four variabil-

ity types are not enough. It can be noted in the
expert #10 statement “...as I have knowledge of other
approaches for variability representation in software
product lines, I understand that different variabil-
ity mechanisms could be added to the EPF Com-
poser. Thus, I judge such a set of mechanisms insuffi-
cient...”, and in the statement of the expert #9 “...some
new mechanisms of variability types are necessary
as, once there is the extend mechanism, it must ex-
ist include, mandatory and optional mechanisms...”.
In the annotative approach variability mechanisms
had more positive evaluations as such an approach
has specific stereotypes for representing variability
of each process element type. Exemplary statements
excerpts from experts are: expert #1 stated that “...J
believe the variability mechanisms are sufficient as
stereotypes allow the specification of different vari-
ability types...”; expert #3 said “...I understand the
SMartySPEM variability mechanisms are sufficient
to significantly demonstrate the types of relation-
ships between a variation point and variants...”; and
expert #10 said “...I consider the variability mecha-
nisms adequate for representing mandatory, alterna-
tive and optional elements. Furthermore, the mech-
anisms allow clearly visualize where variation points
and variants take place in a non-ambiguous basis for
those who use process models...” .

4.4 Validity Evaluation

Results validity evaluation is an essential issue of em-
pirical studies (Wohlin et al., 2000). We discuss the
main threats relevant to our study, as follows:

Internal Validity. Tasks performed by experts
were conducted in a similar manner except the order
of the application of the study objects and question-
naires, which were random. Experts were trained on
the basics of SPrLS and variability in compositional
and annotative approaches using EPF Composer and
SMartySPEM. We reduced the fatigue effects allow-
ing the experts to answer the questionnaires in at most
fifteen days;

External Validity. Features related to Require-
ment Specification of the OpenUP-based SPrLL were
used during both the training sessions and the empiri-
cal study. This could jeopardize the external validity,
thus we tried to use original and technical documents
of the OpenUP;

Conclusion Validity. The major threat to con-
clusion is related to the sample size, eleven experts.
However, prior knowledge of such experts is signifi-
cant. Therefore, we understand that for a qualitative
study in which grounded theory procedures, such as
Coding, were established eleven experts is a satisfac-

291

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

tory number;

Contruct Validity. This study was planned based
on a pilot project carried out for evaluating the instru-
mentation and its duration time for the application of
questionnaire. Although the knowledge level required
on software process and variability is essential, partic-
ipants presented a high level of expertise.

S RELATED WORK

Compositional and annotative integration and/or com-
parative studies have been carried out in the litera-
ture for several different domains, such as embed-
ded systems and software product lines (Késtner and
Apel, 2008; Ferreira Filho et al., 2013; Behringer,
2014). For software process lines or process tailor-
ing/customization there is a lack of such a study type.

The study of Aleixo et al. (Aleixo et al., 012a) is
the most direct related work to ours in the literature,
in which they empirically compare variability capa-
bilities in compositional and annotative approaches
for SPrLL based on EPF Composer and GenArch-P.
GenArch-P is a model-driven approach to managing
and customizing software process variabilities pro-
posed in (Aleixo et al., 2010). The comparison is
based on the same criteria adopted in our study, ex-
cept that we discarded the uniformity criterion. As in
our study, Aleixo et al. come up with better results for
the annotative approach.

6 CONCLUSION

This paper presented an empirical qualitative study
comparing the representation of variability in com-
positional and annotative approaches. Such a study
provided, although initial, evidence that the anno-
tative approach, in this study represented by SMar-
tySPEM, has more advantages over the compositional
approach, represented by EPF Composer. Although
the criteria of modularity and detection errors had
lower results in the annotative approach, they might
be improved by using UML packages for modularity
and applying inspection activities for error detection
such as in (Geraldi et al., 2015).

As future work, we intend to plan and conduct
empirical quantitative studies in order to compare our
annotative approach, the SMartySPEM, to other com-
positional and annotative approaches. In addition, we
are working on the establishment of a Scrum-based
SPrL by taking real projects experience from indus-
try as well as practitioners as Scrum Masters exper-
tise as there is no real SPrL available in the literature

292

for carrying out empirical studies and evaluating our
SPrL-related theories and tools.

As a potential future work, we are considering
studying the granularity criterion on the specification
of lower-level software process activities, such as, in
business process models, allowing one to customize
the steps of the activities as, for instance, in multite-
nancy architectures of Software as a System (SaaS).

ACKNOWLEDGEMENTS

The authors would like to thank Masters and Ph.D.
lecturers an practitioners experts for attending this
study and for their valuable contribution on assessing
the compositional and annotative approaches.

REFERENCES

Aleixo, E., Freire, M., Santos, W., and Kulesza, U. (2010).
A Model-driven Approach to Managing and Cus-
tomizing Software Process Variabilities. In Interna-
tional Conference on Enterprise Information Systems,
pages 92—-100. SCITEPRESS.

Aleixo, F. A., Freire, M., Alencar, D., Campos, E., and
Kulesza, U. (2012a). A Comparative Study of Com-
positional and Annotative Modelling Approaches for
Software Process Lines. In Brazilian Symposium on
Software Engineering, pages 51-60.

Aleixo, E. A., Freire, M. A., Santos, W. C., and Kulesza,
U. (2011). Automating the Variability Manage-
ment, Customization and Deployment of Software
Processes: a Model-Driven Approach. In Filipe, J. and
Cordeiro, J., editors, Enterprise Information Systems,
volume 73 of Lecture Notes in Business Information
Processing, pages 372-387. Springer Berlin Heidel-
berg.

Aleixo, F. A., Kulesza, U., Freire, M. A., da Costa, D. A.,
and Neto, E. C. (2012). Modularizing software pro-
cess lines using model-driven approaches - a compar-
ative study. In International Conference on Enterprise
Information Systems, pages 120-125. SCITEPRESS.

Aleixo, F. A., Kulesza, U., and Oliveiralr, E. (2013). Mod-
eling Variabilities from Software Process Lines with
Compositional and Annotative Techniques: a Quanti-
tative Study. In International Conference on Product-
Focused Software Development and Process Improve-
ment, pages 153-168.

Behringer, B. (2014). Integrating Approaches for Fea-
ture Implementation. In ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
pages 775-778, New York, NY, USA. ACM.

Carvalho, D. D., Chagas, L. F.,, Lima, A. M., and Reis, C. A.
(2014). Software Process Lines: A Systematic Lit-
erature Review. In Mitasiunas, A., Rout, T., OCon-
nor, R., and Dorling, A., editors, Software Process
Improvement and Capability Determination, volume

Modeling Variability in Software Process with EPF Composer and SMartySPEM: An Empirical Qualitative Study

477 of Communications in Computer and Information
Science, pages 118—130. Springer International Pub-
lishing.

Chemuturi, M. K. and Cagley, T. M. (2010). Mastering
Software Project Management: Best Practices, Tools
and Techniques. J. Ross Publishing, Inc.

Corbin, J. M. and Strauss, A. L. (2008). Basics of Qualita-
tive Research: Techniques and Procedures for Devel-
oping Grounded Theory. Sage Publications, Inc.

Ferreira Filho, J. a. B., Barais, O., Acher, M., Baudry, B.,
and Le Noir, J. (2013). Generating Counterexam-
ples of Model-based Software Product Lines: An Ex-
ploratory Study. In International Software Product
Line Conference, pages 72-81, New York, NY, USA.
ACM.

Galster, M., Weyns, D., Tofan, D., Michalik, B., and Avge-
riou, P. (2013). Variability in Software Systems A
Systematic Literature Review,. IEEE Transactions on
Software Engineering, pages 81-90.

Garcia-Borgonon, L., Barcelona, M. A., Garcia-Garcia,
J. A., Alba, M., and Escalona, M. J. (2014). Soft-
ware Process Modeling Languages: a Systematic Lit-
erature Review. Information and Software Technol-
0gy, 56(2):103-116.

Geraldi, R. T., Oliveiralr, E., Conte, T. U., and Steinmacher,
I. E. (2015). Checklist-based Inspection of SMarty
Variability Models: Proposal and Empirical Feasibil-
ity Study. In International Conference on Enterprise
Information Systems, pages 268-275. SCITEPRESS.

ISO (2012). ISO/IEC 15504-5:2012 Information technol-
ogy — Process Assessment — Part 5: An Exemplar
Software Life Cycle Process.

Kalus, G. and Kuhrmann, M. (2013). Criteria for Software
Process Tailoring: A Systematic Review. In Interna-
tional Conference on Software and System Process,
pages 171-180, New York, NY, USA. ACM.

Kistner, C. (2010). Virtual Separation of Concerns: To-
ward Preprocessors 2.0. PhD thesis, Otto von Guer-
icke University Magdeburg.

Kistner, C. and Apel, S. (2008). Integrating Compositional
and Annotative Approaches for Product Line Engi-
neering. In Workshop on Modularization, Composi-
tion and Generative Techniques for Product Line En-
gineering, pages 35-40.

Kistner, C., Apel, S., and Kuhlemann, M. (2008). Gran-
ularity in Software Product Lines. In International
Conference on Software Engineering, pages 311-320.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J.-M., and Irwin, J. (1997).
Aspect-Oriented Programming. In European Confer-
ence on Object-Oriented Programming, pages 220—
242. Springer Berlin Heidelberg.

Lee, H. and Kang, K. C. (2013). A Design Feature-based
Approach to Deriving Program Code from Features:
A Step Towards Feature-oriented Software Develop-
ment. In International Workshop on Variability Mod-
elling of Software-intensive Systems, pages 1-6, New
York, NY, USA. ACM.

Linden, F. J. v. d., Schmid, K., and Rommes, E. (2007).
Software Product Lines in Action: The Best Indus-

trial Practice in Product Line Engineering. Springer-
Verlag New York, Inc., Secaucus, NJ, USA.

Martinez-Ruiz, T., Miinch, J., Garcia, F., and Piattini, M.
(2012). Requirements and Constructors for Tailoring
Software Processes: a Systematic Literature Review.
Software Quality Control, 20(1):229-260.

Oliveiralr, E., Gimenes, I. M. S., and Maldonado, J. C.
(2010). Systematic Management of Variability in
UML-based Software Product Lines. Journal of Uni-
versal Computer Science, 16:2374-2393.

Oliveiralr, E., Pazin, M. G., Gimenes, I. M. S., Kulesza,
U., and Aleixo, F. A. (2013). SMartySPEM: a SPEM-
based Approach for Variability Management in Soft-
ware Process Lines. In International Conference on
Product-Focused Software Development and Process
Improvement, pages 169-183. Springer Berlin Heidel-
berg.

Rombach, D. (2005). Integrated Software Process and
Product Lines. In International Conference on Uni-
fying the Software Process Spectrum, pages 83-90.
Springer-Verlag Berlin.

Sommerville, I. (2015). Software Engineering. Pearson, 10
edition.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Reg-
nell, B., and Wesslén, A. (2000). Experimentation in
Software Engineering: an Introduction. Kluwer Aca-
demic Publishers, Norwell, MA, USA.

293

