
Mixins and Extenders for Modular Metamodel Customisation

Srd̄an Živković and Dimitris Karagiannis
Faculty of Computer Science, University of Vienna, Vienna, Austria

Keywords: Metamodelling, Metamodel Composition, Metamodel Customisation, Metamodelling Tools.

Abstract: Metamodelling is a practical yet rigorous formalism for modelling language definition with a metamodel being
its pivotal engineering artifact. A multitude of domain-specific modelling languages (DSML) are engineered
to cover various modelling domains. Metamodels of such languages evolve over time by introducing changes
and extensions and are further customised to suite project-specific needs. While majority of DSML develop-
ment techniques provide concepts for creating metamodels from scratch, composition concepts for metamodel
customisation beyond class inheritance are sought towards more flexibility and reuse. In this paper, we in-
troduce a modular approach for metamodel customisation based on the idea of mixins and extenders. While
mixins allow for defining self-contained metamodel modules for reuse, extenders enable non-intrusive compo-
sition of such reusable modules on top of existing metamodels. We show how this approach can be applied in a
metamodelling tool such as ADOxx and demonstrate its usefulness by customising the BPMN language. The
benefit of the modular metamodel customisation is twofold. On the language engineering level, our approach
significantly promotes reuse, flexibility and overall efficiency in language definition and customisation. On
the modelling level, the approach leverages engineering flexibility to provide custom modelling languages that
better suits enterprise modelling needs.

1 INTRODUCTION

Model-based engineering approaches encourage the
usage of modelling languages to analyse, design and
develop increasingly complex systems and software.
A multitude of standard and domain-specific lan-
guages are being engineered to cover various mod-
elling domains. Independently of an application do-
main, modelling languages, like other software deliv-
erables, evolve over time. New versions are released
that introduce various changes and extensions (com-
pare UML versions from 1.0 to 2.4.1 or BPMN ver-
sions from 1.0 to 2.0.2). Furthermore, released lan-
guage versions are further adapted and customised
to suite problem and project-specific needs. For ex-
ample, a company may adopt BPMN 2.0 (OMG,
2013) as a standard for business process modelling,
but it further requires company-specific extensions for
process-based risk management. Such customisation
may involve introduction of additional risk-related
properties to existing language entities, creation of
new entities or even integration with proprietary lan-
guages to build a custom hybrid solution. Ideally,
such custom extensions should be portable to the up-
coming version of the base language. The evolv-
ing nature of languages, the need for customised lan-

guages and the complexity that arises when combin-
ing evolution and customisation phenomena together,
call for systematic, flexible and modular approaches
for language design and customisation.

Metamodelling has been recognised as a practi-
cal yet rigorous formalism for modelling language de-
velopment. In metamodel-based approaches, a meta-
model is used to define the abstract syntax of the
language. As a pivotal element in language defini-
tion, metamodel defines language concepts for which
precise semantics and one or more concrete syntaxes
may be defined (Selic, 2011). Nowadays, a multi-
tude of mature metamodelling languages exist such
as the standard MOF (OMG, 2014), or tool-specific
meta-languages such as Eclipse EMF Ecore (Stein-
berg et al., 2008), MetaEdit+ GOPPRR (Kelly et al.,
1996), ADOxx Meta2-Model (Junginger et al., 2000;
Kühn, 2010), or GME MetaGME (Ledeczi et al.,
2001). In metamodelling languages, we may dis-
tinguish between core and supporting metamodelling
capabilities. Core constructs are used to define fun-
damental elements of a metamodel. Constructs such
as class, property or reference are examples of core
constructs as they contribute to the core expressive
power of a metamodelling language. Complemen-
tary, supporting constructs contribute to the efficiency

Živković, S. and Karagiannis, D.
Mixins and Extenders for Modular Metamodel Customisation.
In Proceedings of the 18th International Conference on Enterprise Information Systems (ICEIS 2016) - Volume 1, pages 259-270
ISBN: 978-989-758-187-8
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

259



Table 1: Overview of core and supporting capabilities of selected metamodelling languages.

Capability ADOxx Meta2-
Model

EMF Ecore GME MetaGME MetaEdit+ GOP-
PRR

MOF 2.0

Core capabilities
Class Class EClass Atom Object Type Class
Attribute Attribute EProperty Attribute Property Property
Relation Relation Class EReference Connection Relationship Association
Relation End Endpoint - Connection Role Role, Port Property
Model Type Model Type,

Mode
EPackage Model, Aspect,

Role
Graph Type Package

Supporting capabilities
Modularisation Library, Frag-

ment
Package Project Graph Type Package, Profile

Extensional
Composition

Single In-
heritance,
Aggregation

Multiple Inheri-
tance

Multiple Imple-
mentation Inher-
itance, Interface
Inheritance

Single Inheri-
tance, Inclusion

Multiple Inher-
itance, Package
Merge, Stereo-
type, Extension,
Tag

of metamodelling. They provide support for better
structuring of metamodel artefacts and promote reuse
of core metamodel artefacts. Modularisation con-
structs such as packages that are used to encapsulate
metamodel elements, or composition constructs such
as class inheritance which enables reuse of structural
features of classes, are examples of such constructs.

While comprehensive support for the core meta-
modelling concepts is common to all metamodelling
languages, the opposite is true for the supporting
metamodelling constructs (see Table 1). Here, a
positive exception, however, is the metamodelling
standard MOF. Through the common UML2 infras-
tructure, MOF provides a set of mature mechanisms
for metamodel customisation and incremental meta-
model refinement such as the Profile mechanism and
the packageMerge. Nevertheless, profiles have been,
until now, exclusively used to refine only metamod-
els based on UML. In (Langer et al., 2012) the idea
of UML profiles has been applied to Ecore, in or-
der to enable profiles more broadly for DSMLs. Fur-
thermore, while the package merge supports modu-
lar and incremental metamodel customisation, it op-
erates on the level of packages and relies on the name-
based element matching to apply merge, which is not
always a desired approach for metamodel composi-
tion and customisation. Finally, the inheritance, in
some of its forms as a single, multiple, interface or
implementation-like, is supported by all metamod-
elling languages. Inheritance is most widely used
technique for metamodel composition and customisa-
tion. However, while reusability of structural features
by subclassing is one of the main advantages of in-
heritance, it may, at the same time, be its major draw-
back. Sublcassing as a way to extend a parent class
with additional structural features may often end in
complex class hierarchies and over-engineered meta-

models. Furthermore, extending a class by subclass-
ing may in some cases not be possible (single inheri-
tance restriction, “sealed” base classes) or not desired
(the base class is already in use, i.e. instances exist
that would require tool recompilation and model mi-
gration).

Modular, incremental development has been one
of the major drivers for the shaping of object-orient
programming languages (OOPL). Single and multi-
ple inheritance, mixins, traits, extension methods and
templates in OOPLs are some of the key mechanisms
that boost efficiency and flexibility in programming.

In this paper, inspired by some of the known
extensibility concepts from OOPLs, we introduce a
modular approach for metamodel customisation. In
particular, the approach introduces the notions of mix-
ins and extenders with appropriate composition oper-
ators that complement existing techniques for meta-
model composition and customisation. Mixins allow
for defining reusable self-contained metamodel exten-
sions that can be combined by arbitrary modules with-
out the creation of multiple class hierarchies. On the
other hand, extensions allow for non-intrusive injec-
tion of custom metamodel extensions on top of ex-
isting metamodels eliminating the need for creating
derived types. This way, with mixins we increase
the overall potential for reuse in metamodelling be-
yond inheritance, whereas with extensions, we con-
tribute to greater flexibility when extending metamod-
els. The paper is structured as follows. In Section 2,
we introduce a running example related to the cus-
tomisation of the BPMN metamodel. In Section 3,
after we’ve revisited the limitations of inheritance, we
introduce Mixins and Extenders and two new meta-
model composition operators, Mixin Inclusion and
Extension. Section 4 elaborates on the application
of the approach based on the ADOxx metamodelling

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

260



Figure 1: Customisation of the BPMN metamodel using reusable RM and DM modules.

language. In Section 5 we discuss the related work.
Finally, Section 6 concludes the paper.

2 RUNNING EXAMPLE:
CUSTOMISATION OF BPMN

Let us consider the previously mentioned example
of metamodel customisation, in which, the industry
standard business process modelling language BPMN
2.0 is extended by a business-oriented extension for
process-based risk management (RM) and by a pro-
cess simulation extension (PS) for business process
simulation (Herbst et al., 1997). The necessity of ex-
tending the BPMN with further business aspects for
enterprise modelling and analysis has been discussed
in (Rausch et al., 2011).

Let us suppose we follow a modular approach to
metamodel development, where metamodels are en-
capsulated into reusable, stand-alone modules, focus-
ing on single aspects and concerns. In that case, we
will have three metamodel modules, BPMN, RM and
PS as depicted in Figure 1. In module BPMN, the
class Task is the central entity for modelling busi-
ness process flows, which we aim at extending with
other related concepts. In module RM, the class Risk
is used to model company risks. A risk may be as-
signed to various business entities, which is repre-
sented by the abstract class RiskHolder. In the PS
module, the abstract class SimulationActivity repre-
sents an abstract activity containing attributes Time
and Costs necessary to run the process simulation al-
gorithm. Note that this is a very simplified view of

the simulation aspect. Such activity may have an as-
signed performer (Performer) that executes the activ-
ity during the simulation. Our goal is to customise
BPMN in a way that the task becomes connectable to
risks, and that it contains simulation features. In other
words, we want from class Task to have characteris-
tics of both classes, RiskHolder and SimulationActiv-
ity. Furthermore, metamodel composition should be
non-intrusive, i.e. both BPMN as well as RM and
PS modules must not be modified. In addition, no
new derived entities should be defined, in order to re-
tain the compatibility with existing mechanisms and
model bases.

3 METAMODEL COMPOSITION
BASED ON MIXINS AND
EXTENDERS

In this section, we first discuss current limitations of
the inheritance in metamodelling languages based on
the running example, since inheritance, in some of its
variants, is commonly supported composition mech-
anism by all metamodelling languages (see Table 1).
Afterwards, we introduce the concepts of Mixin and
Extension, two new metamodel composition opera-
tors for flexible, modular metamodel customisation.

3.1 Inheritance is Not Enough

In a nutshell, the intention of inheritance is to reuse
structural features of classes such as properties and
references by creating parent-child class hierarchies.

Mixins and Extenders for Modular Metamodel Customisation

261



A subclass inherits all features of either one super
class (single inheritance) or of more than one super
class (multiple inheritance). While metamodelling
languages such as Ecore, MetaGME and MOF sup-
port multiple inheritance, languages such as ADOxx
and GOPPRR are restricted to single inheritance.
Multiple inheritance has been discussed controver-
sially since its introduction in programming lan-
guages (Bracha, 1992), as well as, more recently, in
metamodelling (Selic, 2011). Multiple inheritance
is criticised for an increased unanticipated complex-
ity and ambiguity in class design, allowing for anti-
patterns such as “diamond inheritance problem” and
over-generalisation.

Figure 1 illustrates how both single and multiple
inheritance can be applied to extend the BPMN mod-
ule with RM and DM modules. We summarise ma-
jor deficiencies in the context of customisation in two
categories, singleness and subclass imperative.

Singleness. Given the single inheritance restric-
tion by a metamodelling language, we introduce new
extension module extBPMNa which contains one de-
rived class DerivedTask as a subclass of Task from
module BPMN. Since multiple inheritance is not al-
lowed, we cannot inherit additionally from classes
RiskHolder and SimulationActivity, but need to de-
fine two new references assignedRisks’ and assigned-
Performer’ to classes Risk and Performer and to re-
model properties from the class SimulationActivity
such that the class DerivedTask includes the seman-
tics of classes Risk and Performer. Obviously, this
approach is not flexible enough as it doesn’t allow
for reuse of additional structural features other than
those that are inherited from the single super class. If
a metamodelling language allows for multiple inher-
itance, the class DerivedTask in module extBPMNb
may specialise the class Task and also inherit from
the abstract classes RiskHolder and SimulationActiv-
ity to accompany all required features. This solution
appears to be more elegant, as it allows for reuse by
inheritance from multiple superclasses.

Subclass imperative. Although multiple inheri-
tance overcomes the problems of singleness, in both
inheritance-based solutions, however, we are forced
to introduce an explicit derived type in order to extend
a class without directly modifying it. In our case, the
class DerivedTask inherits in both cases from the class
Task and must be used if extended process modelling
with risks and simulation is desired. This kind of cus-
tomising by subclassing may be an undesirable when
applying metamodel customisation. It forces the in-
troduction of a new modelling class in the language,
even though, conceptually, only an adaptation of an
existing class was required. Furthermore, as an effect

of a new derived type, both functionality and models
conforming to the base BPMN metamodel have to be
upgraded to the new metamodel version, i.e. the in-
stances of class Task need to be converted to the sub-
class DerivedTask, in order to apply the extension. We
call this problem the subclass imperative deficiency.

3.2 Mixin-based Metamodel
Composition

In order to mitigate the singleness problem of inher-
itance and complex and potentially ambiguous mul-
tiple inheritance hierarchies, while increasing the po-
tential of reuse, we propose the usage of mixins in
metamodelling. Adopting the general idea of mixin-
based inheritance (Bracha and Cook, 1990) in meta-
model composition, mixins are said to allow for the
definition of independent metamodel element parts
(Mixins) that may be reused, i.e. mixed, by other el-
ements. Mixins usually bundle some common set of
features that may be shared among other metamodel
elements. To allow for the mixin-based metamodel
composition, a parent element, a mixin metamodel el-
ement and a mixin inclusion composition operator are
needed.

• Parent element. A parent element in the mixin
composition may be any element of a compound
type, i.e. an element that contains other elements.
For instance, a class is a compound metaclass that
may contain structural features such as properties
and references.

• Mixin element. A mixin element is a compound
element type that contains features to be shared
among other elements. We define mixin element
as a non-instantiable, abstract element, in order to
denote its pure supporting metamodelling capa-
bility. The mixin element must be of the same
type as the base element. For example, an ab-
stract element of type Class may be defined that
contains a set of common properties and/or refer-
ences that may be shared between various other
classes. In our case, appropriate candidates for
mixin classes are RiskHolder and SimulationAc-
tivity.

• Mixin inclusion. Mixin inclusion operator is a re-
lation that takes a parent element and a mixin el-
ement as an input, and includes (“mixes in”) the
child elements of the mixin element to the par-
ent element. A parent element may mix in many
mixin elements. In turn, a mixin element may
be reused by arbitrary parent elements. Hence,
mixin operator allows for an increased flexibility
in appending features to an element without dis-

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

262



Figure 2: Metamodel customisation based on mixin inclusion and extension composition operators.

tracting the inheritance hierarchy. On the other
side, it enables the definition of self-contained as-
pectual modules which can be flexibly combined,
thus fostering reuse and clear separation of con-
cerns. In our example, the class DerivedTask may
now include mixin classes RiskHolder and Simu-
lationActivity, in order to obtain their features.

3.3 Extension-based Metamodel
Composition

While mixins solve the problem of inheritance sin-
gleness and complex inheritance hierarchies, mixins
do not tackle the issue of the subclass imperative,
when it comes to extending an already existing base
metamodel. We still need to create a derived type,
when extending the very base element (in our exam-
ple, class Task). In order to address this issue, we
introduce the concept of extension and extender-like
elements. The extenders may be thought of as in-
verse mixins. They allow for extensively injecting the
features into a parent element without creating a de-
rived element. The extension mimics the semantics of
the inheritance, however without a need for a derived
type.

The extension-based metamodel composition
picks up on the initial idea of invasive software com-
position (Aßmann, 2003), in which program frag-
ments such as methods and properties may invasively
be injected into existing program code by operating
on their implicit interfaces using transformative tech-
niques. However, instead of intrusively changing the
code, we introduce a native metamodelling language
operator that allows to add features to an existing el-
ement without the need to modify it. Applied on
metamodels, implicit interfaces allow for controlled
variation points where metamodel elements may be

extended. An implicit interface represents an exten-
sion point of a metamodel element, which is implic-
itly defined by the inherent semantics of the underly-
ing metamodelling language. Each element type may
have different implicit interfaces. For example, im-
plicit interfaces of the metaclass Class are its struc-
tural feature sets. Using the extension operator, an-
other element may access such an implicit interface
and extend that particular class by injecting e.g. addi-
tional member attributes or references. Implicit inter-
faces are crucial in metamodel customisation, where
extensional composition should take place on previ-
ously not explicitly defined extension points, or on
non-modifiable elements. To combine elements based
on extension, a base element, an extender element and
an extension operator are required.
• Base element. A base element may be any com-

pound metamodel element, for which at least one
implicit interface exists. For example, it doesn’t
make sense to extend elements such as attribute
types that do not aggregate other elements and
features. In our case, the base element is the class
Task.

• Extender element. An extender element is a com-
pound element, that holds extensions that should
be injected to the base element. Since it is a pure
supporting metamodelling construct, it is a non-
instantiable, abstract element. In addition, the ex-
tender element must be of the same type as the
base element. This is required to implicitly con-
strain only extensions that are possible for that
specific element type.

• Extension composition operator. Extension op-
erator is a relation that takes a base element and
an extender element as input and extends the base
element by injecting extensions based on well-
defined implicit interfaces. Like in inheritance,

Mixins and Extenders for Modular Metamodel Customisation

263



but inversely, the structural features of the exten-
der element are propagated to the base element
without any syntactic modification of the base el-
ement. An extender element may extend many
base elements. In turn, a base element may be ex-
tended by arbitrary extender elements. Hence, the
extension operator diminishes the necessity of the
subclassing imperative, since base elements may
be extended via direct feature injection.

Figure 2 illustrates the revisited customisation of
the BPMN module now using the mixin inclusion and
extension operators. The modules RM and PS be-
come self-contained, reusable “mixin" modules, hav-
ing classes RiskHolderMixin and SimulationActivi-
tyMixin as their central mixin elements. Instead of
having the explicit derived class DerivedTask, the ex-
tension module extBPMNc defines the extender class
TaskExtender, which, on the one side, includes the
mixin classes, and, on the other side, extends the class
Task by injecting its structural features, that of mixins.
Mixin and extension operators, when used in combi-
nation, allow for flexible, non-intrusive, and modu-
lar metamodel customisation by composition. While
mixins can be used to define self-contained, reusable
modules applicable for arbitrary metamodels, exten-
ders play the role of the composition glue logic, i.e.
they allow for injecting mixins into existing meta-
model fragments.

4 APPLICATION IN ADOxx

This section elaborates on the application of the in-
troduced metamodel composition concepts within the
metamodelling language of the metamodelling tool
ADOxx (Junginger et al., 2000; Kühn, 2010; OMI-
Lab, 2015). Even though the concepts introduced
in the following are defined considering the charac-
teristics of ADOxx metamodelling language, we be-
lieve that ideas presented may be translated to other
metamodelling languages due to comparable meta-
modelling expressiveness (see Section 1, Table 1).

4.1 ADOxx Metamodelling Language

ADOxx Meta2-Model is the meta-metamodel of
ADOxx. In the following, we explain its main con-
cepts that will serve as a basis for the further dis-
cussion regarding the introduced compositional ex-
tensions. Figure 3 illustrates the ADOxx meta-
metamodel. In ADOxx, all metamodel constructs
are identified by IDs and names. This is repre-
sented by the top-level abstract metaclass AObject and

its subclass ANamedObject. Further, various meta-
constructs in ADOxx may have attributes. The meta-
class AttributeDefinition represent an attribute con-
struct that may have a default value, a set of con-
straints and may be of some simple or complex at-
tribute type. Attributable constructs are generalised
by an abstract metaclass AObjectWithAttributes. A
ALibrary is an attributable construct which consists
of model types and implicitly of other constructs such
as classes and relations. As such, a library represents
a bundle of different diagram types. To define dia-
gram types, the concept of model type is used. A
AModelType is an attributable construct that typifies
models and consists of classes and relations. In ad-
dition, a model type may have AModes, which fur-
ther subset a model type with respect to available
classes and relations. A AClassDefinition is an ab-
stract metaclass that can hold attributes, and can be
contained by model types. Class definitions may be
classes or relations. A AClass is the central meta-
modelling construct used to specify entities of a mod-
elling language. ADOxx supports single inheritance
for classes. The construct ARelationClass connects
classes and/or model types. A relation class con-
nects to other elements indirectly using the concept
of endpoint definition. An AEndpointDefinition al-
lows classes and model types to be target types of
a relation. The number of endpoints defines the ar-
ity of the relation, however ADOxx restricts relations
to be binary. To be directed, a relation must have
at least one endpoint of type From and one of type
To. Hence, an endpoint specifies which elements may
participate in the relation and how (multiplicity). Fur-
thermore, ADOxx features an additional reuse mech-
anism by aggregation to increase the support for intra-
level reuse. Reuse by aggregation is a Cartesian prod-
uct aggregation function, such that any allowed child
element may be aggregated by any allowed parent el-
ement. For example, a globally defined attribute defi-
nition may be reused by any attributable element and
vice versa. Similarly, classes and relations may be
reused by model types and modes, endpoints by rela-
tions etc. Finally, the central modularisation construct
for encapsulating metamodel elements into reusable,
modular units is a AFragment. A fragment may con-
tain owned or imported elements. Owned elements
are existential members of that fragment. Imported
elements are those referenced from other fragments.
Imported elements contribute to inter-fragment reuse
and provide a basis for the application of arbitrary
composition operators.

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

264



Figure 3: Meta-metamodel of ADOxx featuring Mixins and Extensions.

4.2 Mixins and Extenders in ADOxx

While introducing the idea of mixins and extenders
for metamodelling in Section 3, we also defined on
which type of metamodelling constructs mixin inclu-
sion and extension composition operators can be ap-
plied. In particular, we defined what the parent ele-
ment, the base element, as well as, what the mixin and
the extender elements may be. For all elements ap-
plies that they must be of the compound type, i.e. that
they must contain an extensible set of child elements.
Furthermore, mixin and extender elements must be
abstract elements. Therefore, in ADOxx we define
both mixin inclusion and extension operator as rela-
tionships on the most general level of attributable con-
structs, i.e. at the metaclass AObjectWithAttributes
(see Figure 3). By saying that an attributable con-
struct may mixin and/or extend another attributable
construct, we allow for the application of these oper-
ators for all compound subtypes such as the class, the
model type, the relation class, the endpoint, and the
library. This is desirable as all of the compound ele-
ments have at least attributes as child elements and, in
addition, other contained elements, too. For example,
an endpoint has attributes, and a set of target classes
or target model types. However, there is a number of

constraints that need to be obeyed. In the following,
we mention the most important ones:

• Constraint 1: Same type mixin composition.
Mixin inclusion relationship can only connect el-
ements of the same metatype. For example, a
class can mix in another class, but cannot mix in
a model type.

• Constraint 2: Same type extension composition.
Extension relationship can only connect elements
of the same metatype. For example, a model type
can extend another model type, but cannot extend
a class.

• Constraint 3: Abstract mixin element. The target
element of the mixin inclusion relationship must
be declared as abstract.

• Constraint 4: Abstract extender element. The
source element of the extension relationship must
be declared as abstract.

• Constraint 5: Acyclic mixin dependency. The
mixin element cannot mix in itself, neither di-
rectly nor indirectly.

• Constraint 6: Acyclic extender dependency. The
extender element cannot extend itself, neither di-
rectly nor indirectly.

Mixins and Extenders for Modular Metamodel Customisation

265



• Constraint 7: Acyclic mixin/extender depen-
dency. A parent element cannot mix in a mixin
element, if it at the same time extends it, neither
directly nor indirectly.
The semantics of both operators are common for

each instantiable compound metaclass (class, relation
class, endpoint definition, model type, mode, library),
with regard to inclusion and extension of attributes.
Moreover, the semantics of the inclusion operator is
very similar to the inheritance of attributes, whereas
for extension, it acts as a kind of inverse inheritance
of attributes. Hence, in ADOxx, we implement the
semantics for mixin inclusion and extension relation-
ship based on the following definitions. First, we
introduce the common semantics for all metaclasses
that are attributable elements (all subclasses of the
metaclass AObjectWithAttributes).
• Definition 1: Inclusion of Objects with Attributes.

Given the parent element E p with the set of at-
tributes Sp, and the mixin element Em with a set
of attributes Sm, E p includes Em by aggregating
all attributes of Sm into Sp.

• Definition 2: Extension of Objects with At-
tributes. Given the base element Eb with the set of
attributes Sb, and the extender element Ee with a
set of attributes Se, Ee extends Eb by aggregating
all attributes of Se into Sb.
However, since each metaclass (subclass of ob-

jects with attributes) has a different compound struc-
ture, i.e. the set of containable structural features on
which the operators are applied, the semantics of op-
erators vary for each such metaclass. For example,
model type mixin inclusion aggregates all classes of
a model type to the parent model type. Inversely, a
model type extender inserts all its class members into
the base model type. Since listing of all additional
definitions for each construct would exceed the lim-
its of the underlying work, we focus only on those
elements which, as we will see, we also use in our
running example - classes and endpoint definitions.
While for classes no further structural containment
exists, for the endpoint we define mixin inclusion and
extension as follows:
• Definition 3: Inclusion of Endpoint Definitions.

Given the parent endpoint EPp with the set of tar-
get classes Sc1 and the set of target model types
Sm1, and the endpoint mixin EPm with a set of
target classes Sc2 and the set of target model types
Sm2, EPp includes EPm by aggregating all target
classes of Sc2 into Sc1 and all target model types
of Sm2 into Sm1.

• Definition 4: Extension of Endpoint Definitions.
Given the base endpoint EPb with the set of target

classes Sc1 and the set of target model types Sm1,
and the endpoint extender EPe with the set of tar-
get classes Sc2 and the set of target model types
Sm2, EPe extends EPb by aggregating all target
classes of Sc2 into Sc1 and all target model types
of Sm2 into Sm1.

Finally, both inclusion and extension relationships
are applied transitively.

4.3 Applying Mixins and Extenders

In the following, we revisit the running example from
Section 2 and the conceptual solution from Section 3,
in order to exemplify the application of mixins and
extenders in ADOxx. Figure 4 illustrates the revis-
ited solution. We now apply ADOxx metaclasses to
implement metamodel fragments BPMN, RM, PS and
extBPMNc. In doing so, we use UML stereotypes
to denote corresponding metaclasses from ADOxx.
Note that we explicitly model cross-package relation-
ships, instead of re-modelling the imported classes, in
order to save the space in the diagram. We define the
abstract class TaskExtender, which, on the one side,
includes the mixin class SimulationActivityMixin, and
on the other side, extends the class Task by insert-
ing the structural features (that of the included mixin).
Note that in ADOxx, only attributes Time and Costs
will be propagated as the only member features of
the class SimulationActivityMixin. Since relations be-
tween classes in ADOxx are defined over endpoints as
first-order constructs, a relation of a class is syntacti-
cally not an inherent feature of that class. Instead, a
class is a target, a structural feature of a relation end-
point. Hence, to extend the class Task with the rela-
tion AssignedPerformer, we define the endpoint ex-
tender FromAPExtender, which, on the one side, tar-
gets the class Task, and on the other side, extends the
corresponding endpoint FromAP of the relation As-
signedPerformer. Similarly, we define the endpoint
extender FromARExtender for the endpoint FromAR
of the relation AssignedRisks, in order to allow for
tasks to connect to performers. As a result of com-
position, the class Task contains both risk-related and
simulation features.

4.4 Application Evaluation

One may argue that introduced concepts such as mix-
ins, extenders and, in general, modular thinking, al-
though powerful, bring an additional level of com-
plexity in metamodelling. While this argument is true
for a one-time metamodel customisation project, the
true benefit of modular customisation with mixins and
extenders becomes visible with repeated use. In order

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

266



Figure 4: Application of mixin inclusion and extension composition operators in ADOxx.

Table 2: Comparison of customisation effort with basic
metamodelling constructs and with mixins and extenders
for modular metamodel customisation (estimation in story
points (SP)).

Customisation
effort

Basic ADOxx
constructs

Mixins and
Extenders

Initial customi-
sation

3 SP 3.5 SP

Migration of
customisation

2 SP 0.5 SP

Reuse of cus-
tomisation

2 SP 0.5 SP

to evaluate this thesis, we conducted a survey among
experienced ADOxx language and metamodel engi-
neers. As part of the survey, we asked engineers to
provide two effort estimations for the sample meta-
model customisation project from the introduced run-
ning example. Given the introduction of the new
modular customisation concepts in ADOxx, they pro-
vided effort estimations to conduct the work 1) based
on basic metamodelling constructs, 2) based on new
modular metamodel customisation constructs. The
following customising tasks have been considered: 1)
initial (from scratch) customisation, 2) migration of
the customisation to a new base metamodel version,
3) reuse of customisation for another metamodel. The
results are summarised in the Table 2.

As expected, the initial customisation effort es-
timation in average was slightly higher when using

new constructs (mixins and extenders). This was ex-
plained by the fact, that this kind of customisation
required upfront design in modules for future reuse.
However, the estimated effort for the migration was
significantly lower when using mixins and extenders.
This was mainly due to the fact that the extension
could be ported as a mixin module to the new version
and injected via extenders without needing to migrate
data (refer to the subclassing imperative issue of in-
heritance). Regarding the reuse of customisation in
another project, the effort was clearly lower, since the
mixin extension module could be reused as-is, with
the only effort of defining new extender class.

5 RELATED WORK

In the area of programming languages, the idea of
mixins has been around for years. The term was
coined in the language Flavors (Moon, 1986), how-
ever, mixins have been initially defined as a for-
mal language construct for language CLOS (Bracha
and Cook, 1990). Mixins found usage in OOPLs
such as Smalltalk (Bracha and Griswold, 1996), and
Scala (Odersky et al., 2004). GPLs such as C++, that
do not support mixins natively, aim at emulating the
behaviour of mixins based on parameterised inheri-
tance and template classes (Smaragdakis and Batory,
2001). Similarly, in (Ancona et al., 2000) an exten-

Mixins and Extenders for Modular Metamodel Customisation

267



sion for Java has been proposed called Jam, to al-
low for mixin-based class composition. As for ex-
tensions, the initial idea of an Extend operator that
injects program code fragments into an existing pro-
gram code at implicit interfaces was proposed in (Aß-
mann, 2003) as a part of the broader approach of in-
vasive software composition. Similar approach to ex-
tend existing types exists in C#, in which so-called
Extension Methods allow for injecting methods into
an existing base type without the need to create a new
derived type, recompile, or otherwise modify the base
type (MSDN, 2015).

In modelling language engineering, several tech-
niques for metamodel and DSML composition have
been proposed (Vallecillo, 2010). We focus on those
that allow for metamodel customisation beyond in-
heritance. UML 2 provides the profile mechanism
for metamodel customising, particularly applicable
for UML 2 family of languages. In UML Profiles,
selected concepts of the UML metamodel may be
extended using stereotypes. With UML 2, profiles
have been improved from a lightweight customisa-
tion approach to a sound mechanism for both meta-
model customisation and for the design of new lan-
guages (Selic, 2007). In the current UML version
2.4.1 (OMG, 2011), the concept of the Stereotype
is a full metaclass that specialises the Class concept
and extends it through the explicit association Exten-
sion. As a subclass of the Class, a stereotype may
own properties that extend the base class. Further-
more, stereotypes allow for the creation of new as-
sociations between stereotypes and other metamodel
elements. The notion of a stereotype is comparable
to our extender element, and the extension associa-
tion with our extension operator. However, instead
of introducing a separate metaclass for it, we add ex-
tensibility capability to the corresponding metaclass
itself, with the only constraint that such extender ele-
ment must be abstract. Hence, our extender element
is simply a supporting metamodelling construct that
extends an existing element while not being instan-
tiable on the model-level. Since the extension occurs
in design and compile time, no further model-level
mechanisms are required to correlate the instances of
a stereotype with instances of a base element. Al-
though, it is claimed that profiles are made generic
and compatible for any MOF-based language (Selic,
2007; OMG, 2011), to our best knowledge, we are not
aware of any other profile applications than those for
UML.

In (Langer et al., 2012), the idea of profiles is ap-
plied on Ecore, however, not on the meta-metamodel
level but on the metamodel level through metalevel
lifting. The so-called EMF Profiles help to customise

arbitrary DSMLs that are based on EMF Ecore. Since
the same idea of UML Profiles is applied, similari-
ties and differences to our approach apply as men-
tioned before for UML profiles. Furthermore, two
additional mechanisms are added that increase profile
reuse, Generic Profiles and Meta Profiles. Generic
profiles are based on generic types. This is inher-
ently supported in our approach through the usage of
abstract elements when defining mixin and extender
modules. Meta Profiles aim at applying extensions to
the constructs of the meta-metalevel, such that exten-
sions are applicable for all DSMLs. This is an inter-
esting approach for massive extensions, we do not yet
support.

In (Braun and Esswein, 2015) a similar idea
of adapting the UML Stereotype concept towards a
mechanism for generic metamodel extensions, how-
ever only on the conceptual level, is proposed. Un-
like in (Langer et al., 2012) and similar to our ap-
proach, the authors, propose an extension on the
meta-metamodel level, with an application focus on
enterprise modelling languages. As in the UML/MOF
stereotype mechanism, the stereotype construct is de-
fined as a separate metaclass, however not only for
the Class construct, but multiplied for each metaclass
type (model type, property etc.). Each stereotype con-
struct has a limited set of extension possibilities. In
our approach, we fully reuse existing metaclasses as
abstract constructs to capture extensions, and, instead,
define precise extension semantics on the extension
operator.

Another metamodel extensibility concept com-
mon to UML and MOF is the PackageMerge. Pack-
age merge is used to merge elements and the content
of two packages. As noted in (Selic, 2011), pack-
age merge allows for incremental metamodel refine-
ment, because one can define an extending element
(increment) with the same name as the base element,
add additional properties to it and merge it with the
base. The semantics of the package merge is sim-
ilar to that of generalisation, with a difference that
the derived element has the same name as the base.
In comparison to our work, package merge has sim-
ilarities to both mixin and extension. However, the
difference is that we do not rely on name match-
ing algorithm but on explicit relationships defined by
language engineer, which contributes to an increased
soundness in metamodel composition. Furthermore,
both mixins and extensions are applied on the level of
metamodel elements to allow for a fine-grained and
precise extension definition, whereas package merge
operates on the level of packages, which potentially
opens the door for uncontrolled reuse and the need for
metamodel pruning techniques such as Package Un-

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

268



merge (Fondement, Frédéric and Muller, Pierre-Alain
and Thiry, Laurent and Wittmann, Brice and Forestier,
Germain, 2013). Another MOF extensibility capabil-
ity is the Extension, a lightweight approach to anno-
tate existing metamodel elements with Tags that, how-
ever, solely represent simple name-value pairs.

Apart from the mainstream metamodelling ap-
proaches, in (de Lara and Guerra, 2013), generic pro-
gramming techniques such as concepts, templates and
mixin layers are applied for metamodelling in order
to increase the support for abstraction, modularity,
reusability and extensibility of (meta)models and cor-
responding model management operations. Focusing
on the usage of mixins, mixin layers rely on templat-
ing technique that allows for defining templated meta-
model extensions (mixin layers), that can be applied
on metamodels that conform to template parameters.
The basic idea is to use the parameterised inheritance
to realise a generic mixin. The “instantiation” of the
template binds the mixin layer to a concrete meta-
model that is the subject to extension and that con-
forms to the structure defined by the parameter type
(concept). While the authors introduce templates and
template instantiation to realise generic mixins and
their application, we rely on the abstract metaclasses,
and mixin and extension operators. Instead of ap-
plying the parameterised inheritance to achieve the
flexibility of mixin applications, we define extenders
that insert mixins into arbitrary elements. However,
we believe that the two approaches are complemen-
tary. While acknowledging the power of templates for
specifying the generic concepts that promote abstrac-
tion, modularity and reuse, our mixin inclusion, and,
in particular, extension operator may be applied on the
level of templates to allow for mixing and extending
of template definitions themselves.

Finally, in (Jézéquel et al., 2013) an approach to
design domain-specific languages based on multiple
meta-languages within the Kermeta language work-
bench is proposed. The composition operators aspect
and require are introduced that allow for the compo-
sition of language elements such as abstract syntax,
static semantics, and behavioral semantics. Inspired
from the open class concept, the aspect allows to re-
open a previously created class and to add features.
In what it does, the aspect is similar to our extension
operator. Differently to our approach, the focus is on
modular composition of language concerns, whereas
we concentrate on the pivotal language aspect, the
metamodel. The authors state that the modularisation
does not apply for the metamodel aspect (for which
definition the EMOF is used).

6 CONCLUSIONS

This work represents a contribution to the field of
metamodel composition and customisation, in the
context of metamodel-based modelling language en-
gineering. Our approach is based on the notions of
Mixins and Extenders and appropriate composition
operators, that allow for flexible, modular metamodel
customisation. Mixin and extension-based meta-
model composition facilitate reuse and contribute to
more flexibility and overall efficiency in metamodel
definition. Mixins allow for the creation of reusable
aspectual metamodel element extensions that can be
combined by arbitrary metamodel elements using the
mixin inclusion operator. Furthermore, the extension
operator allows for the injection of structural features
into otherwise non-modifiable base metamodel ele-
ments in a non-intrusive way by relying on their im-
plicit interfaces. While mixin inclusion complements
single inheritance, and, at the same time, represents
a lightweight alternative to multiple inheritance, ex-
tension resolves the issue of subclass imperative, an
important issue in metamodel customisation. We il-
lustrated the usefulness of the approach based on a
running example of the simplified BPMN metamodel
customisation. We also elaborated on the applica-
tion of our approach within the metamodelling tool
ADOxx. Although we explained the syntax and se-
mantics of the operators based on ADOxx, the con-
cepts may be mapped to other metamodelling lan-
guages and tools, as well.

In this work, we focused primarily on the meta-
model as a pivotal part of language definition. A part
of our future work at OMILab 1 will focus on in-
vestigating how modular approach based on mixins
and extensions may be applied on the composition of
other language elements such notation and semantics.
Furthermore, with an increased usage of mixins and
extenders in metamodel composition, we will work
on identifying common patterns for modular meta-
model engineering.

REFERENCES

Ancona, D., Lagorio, G., and Zucca, E. (2000). Jam-
a Smooth Extension of Java with Mixins. In
ECOOP 2000ŮObject-Oriented Programming, pages
154–178. Springer.

Aßmann, U. (2003). Invasive Software Composition.
Springer.

Bracha, G. (1992). The Programming Language Jigsaw:

1http://omilab.org

Mixins and Extenders for Modular Metamodel Customisation

269



Mixins, Modularity and Multiple Inheritance. PhD
thesis, The University of Utah.

Bracha, G. and Cook, W. (1990). Mixin-based inheritance.
In ACM SIGPLAN Notices, volume 25, pages 303–
311. ACM.

Bracha, G. and Griswold, D. (1996). Extending Smalltalk
with Mixins. In Workshop on Extending Smalltalk.

Braun, R. and Esswein, W. (2015). Designing Dialects
of Enterprise Modeling Languages with the Profiling
Technique. In 19th IEEE International Enterprise
Distributed Object Computing Conference, EDOC
2015, Adelaide, Australia, September 21-25, 2015,
pages 60–67.

de Lara, J. and Guerra, E. (2013). From Types to Type Re-
quirements: Genericity for Model-Driven Engineer-
ing. Software & Systems Modeling, 12(3):453–474.

Fondement, Frédéric and Muller, Pierre-Alain and Thiry,
Laurent and Wittmann, Brice and Forestier, Germain
(2013). Big Metamodels are Evil. In Model-Driven
Engineering Languages and Systems, pages 138–153.
Springer.

Herbst, J., Junginger, S., and Kühn, H. (1997). Simulation
in Financial Services with the Business Process Man-
agement System ADONIS. In Proceedings of the 9th
European Simulation Symposium.

Jézéquel, J.-M., Combemale, B., Barais, O., Monperrus,
M., and Fouquet, F. (2013). Mashup of Metalan-
guages and its Implementation in the Kermeta Lan-
guage Workbench. Software & Systems Modeling,
pages 1–16.

Junginger, S., Kühn, H., Strobl, R., and Karagiannis, D.
(2000). Ein Geschäftsprozessmanagement-Werkzeug
der nächsten Generation - ADONIS: Konzeption und
Anwendungen. Wirtschaftsinformatik, 42(5):392–
401.

Kelly, S., Lyytinen, K., and Rossi, M. (1996). Metaedit+ a
Fully Configurable Multi-User and Multi-Tool CASE
and CAME Environment. In Advanced Information
Systems Engineering, pages 1–21. Springer.

Kühn, H. (2010). The ADOxx Metamodelling Plat-
form. In Workshop on Methods as Plug-Ins for Meta-
Modelling, Klagenfurt, Austria.

Langer, P., Wieland, K., Wimmer, M., Cabot, J., et al.
(2012). EMF Profiles: A Lightweight Extension Ap-
proach for EMF Models. Journal of Object Technol-
ogy, 11(1):1–29.

Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett,
J., Thomason, C., Nordstrom, G., Sprinkle, J., and
Volgyesi, P. (2001). The Generic Modeling Environ-
ment. In Workshop on Intelligent Signal Processing,
Budapest, Hungary, volume 17.

Moon, D. A. (1986). Object-oriented programming with
Flavors. In ACM Sigplan Notices, volume 21, pages
1–8. ACM.

MSDN (2015). Extension Methods (C# Program-
ming Guide). https://msdn.microsoft.com/en-
us//library/bb383977.aspx.

Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S.,
Micheloud, S., Mihaylov, N., Schinz, M., Stenman,

E., and Zenger, M. (2004). An overview of the Scala
programming language. Technical report, EPFL.

OMG (2011). UML 2.4.1 Infrastructure
Specification. http://www.omg.org/
spec/UML/2.4.1/Infrastructure/PDF/.

OMG (2013). Business Process Model
and Notation (BPMN) Version 2.0.2.
http://www.omg.org/spec/BPMN/2.0.2/PDF.

OMG (2014). Meta Object Facility (MOF) Version 2.4.2.
http://www.omg.org/spec/MOF/2.4.2/.

OMILab (2015). ADOxx Metamodelling Platform.
http://www.adoxx.org.

Rausch, T., Kuehn, H., Murzek, M., and Brennan, T. (2011).
Making BPMN 2.0 Fit for Full Business Use. BPMN
2.0 Handbook Second Edition, page 189.

Selic, B. (2007). A Systematic Approach to Domain-
specific Language Design using UML. In Object and
Component-Oriented Real-Time Distributed Comput-
ing, 2007. 10th IEEE International Symposium on,
pages 2–9. IEEE.

Selic, B. (2011). The Theory and Practice of Modeling Lan-
guage Design for Model-Based Software Engineering
- A Personal Perspective. In Generative and Trans-
formational Techniques in Software Engineering III,
pages 290–321. Springer.

Smaragdakis, Y. and Batory, D. (2001). Mixin-
based Programming in C++. In Generative and
Component-based Software Engineering, pages 164–
178. Springer.

Steinberg, D., Budinsky, F., Merks, E., and Paternostro, M.
(2008). EMF: Eclipse Modeling Framework. Pearson
Education.

Vallecillo, A. (2010). On the Combination of Domain Spe-
cific Modeling Languages. In Proceedings of Euro-
pean Conference on Modelling Foundations and Ap-
plications, 2010. (ECMFA 2010), volume 6138 of
LNCS, pages 305–320. Springer.

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

270


