
An Efficient Label-setting Algorithm for the Bi-objective Shortest Path
Problem

Antoine Giret1, Yannick Kergosien1, Gael Sauvanet2 and Emmanuel Neron1

1Université François Rabelais de Tours, CNRS, LI EA 6300, OC ERL CNRS 6305,
64 avenue Jean Portalis, 37200 Tours, France

2La Compagnie des Mobilités, 30 rue André Theuriet, 37000 Tours, France

Keywords: Label-setting Algorithm, Pareto front, Bi-Objective Shortest Path Problem, Cycling, Exact Method.

Abstract: In this paper, we consider a classical Bi-objective Shortest Path problem (BSP) that takes into account both
distance and insecurity criteria. This work is in collaboration with an enterprise who provide a web platform
called Géovélo that aims to propose routes for cycling. We propose a new exact method to solve a BSP,
called Label Setting algorithm with Dynamic update of Pareto Front (LSDPF), which aims to find all non-
dominated solutions of the problem. Different exploration strategies have been proposed and tested. Numerical
experiments on real data sets and on instances of the literature were conducted. Comparison with recent
benchmarks algorithms solving BSP - the bounded Label Setting algorithm by (Raith, 2010) and the pulse
algorithm by (Duque et al., 2015) - shows that our method outperform these benchmarks algorithms.

1 INTRODUCTION

For economical and ecological reasons, alternative
transportation such as cycling is expanding. Pub-
lic actors have initiated several programs to adapt
the road network for cycling (e.g., greenway, cycling
lane), because users seek to be able to move safely.
For a cyclist, travelling time and distance are not
the only criteria to consider; they may also consider
safety, difficulty and tourist attractions.

This work is in collaboration withLa Compag-
nie des Mobilit́eswho provide a web platform called
Géovélo (http://www.geovelo.fr). Géovélo aims to
propose routes for cycling. These routes consider two
criteria which are safety (minimising lack of secu-
rity), and distance. Both criteria are very conflicting,
mainly because most road networks are designed for
cars.

The studied problem is a Bi-Objective Shortest
Path Problem: letG = (V,A) be a directed graph
whereV is the set of nodes (|V|= n) andA the set of
arcs (|A| = m). {c1

i j ,c
2
i j } denotes the costs associated

with each arc(i, j), wherec1
i j represents its distance

andc2
i j its insecurity. The problem consist in finding

a pathP from a source nodes to a target nodet mini-
mizing both criteria{∑(i, j)∈P c1

i j ,∑(i, j)∈P c2
i j }. The re-

sult of the problem is a set of strictly non-dominated
solutions also called Pareto front defined in (Ulungu
and Teghem, 1994).

The Bi-Objective Shortest Path Problem, noted
BSP, is a specific case of the Multi-Objective Shortest
Path Problem, that is one of the most studied prob-
lems among the Multi-Objective Combinatorial Op-
timisation (MOCO) problems. (Serafini, 1987) has
proved that the BSP isN P-Hard. (Tarapata, 2007)
presents a state-of-the-art MOSP problem.

The first methods solving BSP are label-correcting
and label-setting methods proposed by (Hansen,
1980) and (Martins, 1984). Labelling methods can
be seen as a generalization of existing methods solv-
ing the mono-objective problem (Bertsekas, 1998)
and they can be decomposed into two types: label-
correcting and label-setting. The difference between
these types is how the label queue is managed. Label-
setting methods often use a lexicographic order to
ensure that an explored label corresponds to a non-
dominated path (see (C.T. Tung, 1992)). Label-
correcting methods use a simple order to manage la-
bel queue exploration (e.g., FIFO) to simplify the
data structure of the queue (see (Brumbaugh-Smith
and Shier, 1989) and (Skriver and Andersen, 2000)).
There are two different selection types for the label-
correcting methods: a label is managed separately
in label selection, whereas all labels on a selected
node are extended at the same time in node selec-
tion. (Guerriero and Musmanno, 2001) compares dif-
ferent node and label selection strategies for the label-
correcting method. Node selection is generally used

Giret, A., Kergosien, Y., Sauvanet, G. and Neron, E.
An Efficient Label-setting Algorithm for the Bi-objective Shortest Path Problem.
DOI: 10.5220/0005757101970203
In Proceedings of 5th the International Conference on Operations Research and Enterprise Systems (ICORES 2016), pages 197-203
ISBN: 978-989-758-171-7
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

197

with label-correcting methods, whereas label selec-
tion must be used with label-setting methods.

Another type of method to solve BSP is Ranking
method (Climaco and Martins, 1982) that are based
on thekth-shortest path problem ((Carlyle and Wood,
2005)). These methods find the shortest path opti-
mizing one objective, then the second shortest path,
and so on. In addition to labelling and ranking meth-
ods, the two-phase approach is also commonly used
to solve BSP problems. (Ulungu and Teghem, 1995)
introduced this concept. The two-phase method is ba-
sically used to compute separately supported (i.e., lo-
cated on the boundary of the convex hull) and non-
supported solutions. All solutions in the first phase
can be computed by a single objective method with a
weighted sum objective. In the second phase, a bi-
objective method enumerates all non-supported so-
lutions. During this phase, the search space is re-
stricted by the solutions computed during the first
phase. (Raith and Ehrgott, 2009) has shown that this
approach is efficient and proposed a comparison of
the solution strategies for finding all efficient paths.
(Raith, 2010) focuses on label-correcting and label-
setting algorithm (bLSET) and propose an accelera-
tion technique, improving the efficiency of these al-
gorithms. He showed that it is not always neces-
sary to continue the search to the target node to con-
firm that it is dominated. According to (Demeyer and
al., 2013), bLSET algorithm presented better compu-
tational times among labelling approaches proposed
during this period.

Recently, (Duque et al., 2015) proposed a new ex-
act method, called Pulse algorithm, for the BSP and
large-scale road networks. Pulse algorithm is based
on recursive method using pruning strategies that ac-
celerate the graph exploration. The results shown that
the proposed algorithm outperform the bLSET algo-
rithm on very-large scale instances from the DIMACS
dataset.

This work is an extension of (Sauvanet and Neron,
2010) and aims to propose a new exact method to
solve BSP. The proposed method, called Label Set-
ting algorithm with Dynamic update of Pareto Front
(LSDPF), is based on existing methods previously
cited. However, some improvement techniques have
been added. The paper is organized as follows. Sec-
tion 2 presents the LSDPF algorithm with several
exploration strategies. Some numerical results are
given in section 3 in order to test the different ex-
ploration strategies and a parameter of the algorithm.
Then computational experiments compare our pro-
posed method to the bLSET algorithm developed by
(Raith, 2010) and the Pulse algorithm developed by
(Duque et al., 2015). Finally section 4 concludes the

paper and gives some future work directions.

2 LABEL SETTING ALGORITHM
WITH DYNAMIC UPDATE OF
PARETO FRONT (LSDPF)

The LSDPF algorithm is based on a two-phase
method introduced by (Ulungu and Teghem, 1995).
The first phase aims to compute dominated solu-
tions by solving several Mono-Objective Shortest
Path Problems. The second phase aims to get only
non-dominated solutions and is based on classic label-
setting algorithm which has been introduced in (Mar-
tins, 1984). The specificity of the proposed algorithm
is that the final Pareto front can dynamically evolve at
each iteration of the label-setting algorithm, and not
necessary when the target node is reached.

2.1 First Phase

As explained shortly before, the first phase consists in
running a set of Mono-Objective Shortest Path Prob-
lems (using a simple adaptation of (Dijkstra, 1959)),
and is composed by two steps.

The first step provides an upper bound of a given
criterion by solving a Mono-Objective Shortest Path
Problem froms to t, minimizing the other criterion.
These upper bounds allow to reduce the exploration
of the graph for the next step.

The second step consists in solving reverse one-
to-all Mono-Objective Shortest Path Problems fromt,
where each objective function is defined by a linear
combination of both criteria:

α ∑
(i, j)∈P

c1
i j +(1−α) ∑

(i, j)∈P

c2
i j

We noteA the set of allα values tested. After each
one-to-all resolution, each traversed node is charac-
terized by a pair of values (dα

i ,sα
i), representing a fea-

sible path fromi to t with a distance equal todα
i and

an insecurity equal tosα
i . This search is stopped at

a nodei when bothdα
i andsα

i are greater than upper
bounds found in the first step. Only non dominated
pairs - in Pareto sense - of values (dα

i ,sα
i) are saved.

Two specific cases are important:α = 1 andα =
0. Both allows to determine the lower and the upper
bound for each criterion at each node:

• Forα= 1, is obtained at each nodei ∈V the lower
bound of the distance criterion defined by (LB1

i =
d1

i), which is associated to an upper bound of the
insecurity criterion defined by (UB2

i = s1
i),

ICORES 2016 - 5th International Conference on Operations Research and Enterprise Systems

198

• For α = 0, is obtained at each nodei ∈ V the
lower bound of the insecurity criterion defined by
(LB2

i = s0
i), which is associated to an upper bound

of the distance criterion defined by (UB1
i = d0

i).

Finally, the set of pairs (dα
s ,sα

s) is used to initialize the
Pareto front. Additional one-to-one Mono-Objective
Shortest Path froms to t can be done (i.e. using more
values ofα), in order to extend the initial Pareto Front
(cf figure 1).

Figure 1: Initialisation of the Pareto front.

2.2 Second Phase

The second phase is based on a label-setting algo-
rithm with additional improvements related to the Bi-
Objective Shortest Path problem. These improve-
ments allow to reduce the number of labels created
and thus finding the final Pareto front faster. The pro-
posed method (LSDPF) is presented in the algorithm
1. Let us define:

• sandt respectively the source and target nodes.

• i and j the indexes of nodes andu, v, w andx the
indexes of labels.

• lu a label, defined by a tuple(i,vd,vs) where:

– i is the node associated to the label.
– vd andvs represent respectively the values of

distance and insecurity of a feasible path from
s to i.

• LNi the set of labels at nodei.

• Q contains unexplored labels.

• lv ≺p lu means that the labellv is strictly domi-
nated bylu in the Pareto sense.

The final Pareto front contained all non-dominated so-
lutions is obtained at nodet: it corresponds to the set
of labelsLNt .
The main steps of the LSDPF algorithm are:

• Line 1: the FIRSTPHASE function represents the
first phase of the proposed method explained in

Algorithm 1: Label Setting algorithm with Dynamic update
of Pareto Front (LSDPF).

1: FIRSTPHASE()
2: LNi ← /0, ∀i = {1, . . . ,n}
3: LNs← {(s,0,0)}
4: LNt ← {∪∀α(dα

s ,sα
s)}

5: Q← {(s,0,0)}
6: while Q 6= /0 do
7: (i,vd,vs)←NEXTLABEL(Q)
8: Q← Q\(i,vd,vs)
9: for all (i, j) ∈ A do

10: (j,vd′,vs′)← (j,vd+ c1
i j ,vs+ c2

i j)

11: lu← (j,vd′,vs′)
12: if ∄lv ∈ LNj/lv≺p lu then
13: if ∄lv ∈ LNt/lv≺p (j,vd′+LB1

j ,vs′+
LB2

j) then
14: if j 6= t then
15: Q←Q∪ lu
16: end if
17: LNj ← LNj ∪ lu
18: UPDATELABELS(Q, LNj , lu)
19: DPF(LNt , (j,vd′,vs′))
20: end if
21: end if
22: end for
23: end while
24: return LNt

Algorithm 2 : UPDATELABELS.

1: function UPDATE(Q, LNj , lu)
2: for all lv ∈ LNj/lu≺p lv do
3: LNj ← LNj \ lv
4: if lv ∈Q then
5: Q←Q\ lv
6: end if
7: end for
8: end function

the section 2.1. It allows to determine all pairs
(dα

i ,sα
i). The Pareto front is initialized in line 4.

• Line 7: the NEXTLABEL function defines the or-
der to explore the label, which affects the evolu-
tion of the Pareto front and thus the convergence
of the algorithm. Three strategies explained later
have been tested.

• Line 12: the current label is explored if and only
if it is not dominated by another label existing on
the same node.

• Line 13: the current labellu is explored if and only
if it is promising, i.e. if (j,vd′+ LB1

j ,vs′+ LB2
j)

is not dominated by a label existing on the target
node. (j,vd′+LB1

j ,vs′+LB2
j) represents a not

An Efficient Label-setting Algorithm for the Bi-objective Shortest Path Problem

199

Algorithm 3 : DPF.

1: function DPF(LNt , (j,vd′,vs′))
2: for all α ∈ A do
3: lv← (t,vd′+dα

j ,vs′+ sα
j)

4: if ∄lw ∈ LNt/lw≺p lv then
5: LNt ← LNt ∪ lv
6: for all lx ∈ LNt/lv≺p lx do
7: LNt ← LNt \ lx
8: end for
9: end if

10: end for
11: end function

necessary feasible path froms to t, containing two
subpaths. The first subpath is given by the labellu
(which is a feasible path froms to j), and the sec-
ond subpath corresponds to the lower bounds of
both criteria to reacht from j. In other words, the
label lu cannot give better solutions than those in
the current Pareto front. During the search, the
Pareto front will iteratively contain better solu-
tions involving that more and more labels will not
be explored. This explains why the initialization
of the Pareto front is important as well as its up-
dates (line 19).

• Line 18: the UPDATELABELS function is pre-
sented in the algorithm 2. The goal of this func-
tion is to updateQ andLNj , according to the cur-
rent explored labellu. All dominated labels inQ
andLNj are deleted since they are not interesting
ones.

• Line 19: the DPF function is presented in the al-
gorithm 3. It allows to dynamically update the
Pareto front. From the current explored labellu,
several feasible paths froms to t can be computed
thanks to each solution of Mono-Objective Short-
est Path Problems determined in the first phase (cf
figure 2). This kind of path is decomposed into
two subpaths: a subpath froms to j given by the
labellu, and a second one fromj to t given by the
solution of the linear combination determined by
α during the Mono-Objective Shortest Path Prob-
lem. This step aims to improve the Pareto front
throughout the search, and thus reducing the num-
ber of explored labels (line 13 of algorithm 1).

2.3 Exploration Strategies

The exploration strategy determines in which order
the labels will be explored (goal of the NEXTLABEL
function in the algorithm). From a strategy to another
one, the number of explored labels can be different

Figure 2: Dynamic update of the Pareto front.

as well as the computation time of the LSDFP algo-
rithm. The selected strategy is thus important, three
strategies are presented and have been tested.

2.3.1 Strategy 1

The first strategy is simple. It consists in selecting the
label that contains the minimumvd′ value among all
labels presents inQ. If several labels have the same
minimum valuevd′, the label with the smallest value
of vs′ is selected among these labels. The graphic evo-
lution of the set of explored nodes/labels can be repre-
sented by a circle around the source node, which be-
come increasingly larger. Only distance criterion as
first criterion has been tested (and not the insecurity
one). Indeed, the range of distance values is bigger
than the range of insecurity values in cycling context.
Considering the distance criterion first, the search will
be guided to more interesting labels.

2.3.2 Strategy 2

The second strategy aims to explore the most promis-
ing label first. From the set of labels presents inQ, the
next label to treat is the label with the smallest value
(vd′+ LB1

j). In case of equalities, the label with the
smallest value (vs′+LB2

j) is selected. As previously,
only distance criterion is tested as first criterion for
the the same reason. The representation graph of ex-
plored labels is close to an ellipsoid around the source
and target nodes.

2.3.3 Strategy 3

The last strategy uses a linear combination ofvd′+
LB1

j andvs′+LB2
j . Unlike other strategies, this one

will take into account both criteria to guide the explo-
ration. Thus the next label presents inQ to explore is
the label minimizing the function:

β∗ (vd′+LB1
j)+ (1−β)∗ (vs′+LB2

j)

ICORES 2016 - 5th International Conference on Operations Research and Enterprise Systems

200

3 COMPUTATIONAL
EXPERIMENTS

The LSDPF algorithm has been implemented
in C++ language using the library Boost
http://www.boost.org. Computational experi-
ments have been performed on an Intel Core i7 vPro
processor quad-core with 8GB of RAM and using
Linux system. First, numerical results are given for
the three strategies and several values ofA on real
data sets taking into account the study case (Cycling).
Next, the efficiency of the LSDPF algorithm with
the best exploration strategy is compared to efficient
benchmarks algorithms on instances of the literature.

3.1 Comparison of Exploration
Strategies

To compare the different exploration strategies pre-
sented in section 2.3, we used real roads networks that
come from the cooperative OpenStreetMap project
(http://www.openstreetmap.org). Each node of the
network represents an intersection and each arc be-
tween two intersections is composed by two val-
ues: the travel distance and the insecurity of the
road. Three graphs have been extracted: Paris
(France), Berlin (Germany) and San Francisco Bay
Area (USA). The Paris graph used represents the
city of Paris and its 30 adjacent towns, and contains
29,086 nodes and 64,538 arcs. The second graph con-
sidered in this study corresponds to the city of Berlin.
This one is interesting because Germany is a coun-
try in which the OpenStreetMap community is active
and thus safety informations are accurately reported.
It contains 59,673 nodes and 145,840 arcs. The San
Francisco graph is interesting because the road net-
work structure of US cities is rather different and big-
ger than European cities. It contains 174,975 nodes
and 435,959 arcs. For each graph, we randomly gen-
erated 50 instances (i.e. pair of source and target
nodes) for Paris and Berlin graphs, and 25 instances
for the San Francisco one.

The table 1 presents the average execution time
(in milliseconds) of LSDFP algorithm for each strat-
egy and each graph. The parameterβ is equal to 0.5.
The first column indicates the graph name, columns
from 2 to 4 shows the average execution time of each
strategy, and last column shows the average number
of non-dominated solutions on the Pareto front.

The same interpretation can be done for all the
graphs: the second strategy seems to be better than
the first one as we might expect but also than third
one, which can be surprising. The second strategy
improves by approximately 20% the execution time

Table 1: Average execution time (ms) of LSDPF for each
strategy.

Graph Str. 1 Str. 2 Str. 3 |S|
Paris 194,8 158,6 403,6 117
Berlin 206,2 150,8 246 127
SF 87040,8 71815,2 715942,4 1280

of the first strategy and between 40% and 90% exe-
cution times of the third strategy. Results of the third
strategy are not as good as expected. The linear com-
bination of both criteria doesn’t seems guide the ex-
ploration towards good solutions quickly.

The table 2 presents the average number of ex-
plored labels during the LSDPF algorithm, for each
strategy and each graph. The first column indicates
the graph name, columns from 2 to 4 shows average
number of explored labels. An explored label means
that it has been added to theQ set (line 15 of LSDPF
algorithm).

Table 2: Average number of explored labels for each strat-
egy.

Graph Str. 1 Str. 2 Str. 3
Paris 110754 72118 66464
Berlin 124773 73400 68796
SF 14679416 11071874 10450375

The strategy exploring the biggest number of la-
bels is the strategy one. The strategy 2 and 3 have
approximatively the same number of explored labels.
The result of the comparison between the strategies
1 and 2 is that when the number of explored label
decreases, the execution time decrease. However the
same interpretation cannot be done for the difference
found between the strategies 1 and 3 and between the
strategies 2 and 3. Even if the strategy 3 explores less
labels, its average of execution times are bigger than
others, meaning the linear combination of both cri-
teria cannot be used to quickly guide the exploration
towards good solutions.

3.2 Comparison of SeveralA Values

Only two strategies are used for the numerical exper-
iments of severalA values. Three cases have been
tested:

• A = {0;1} (| A |= 2)

• A = {0;0.5;1} (| A |= 3)

• A = {0;0.25;0.5;0.75;1} (| A |= 5)

Table 5 presents the average execution time (in ms)
of the first phase for each case. Table 3 shows the
average execution time (in ms) of the second phase
for each case and each strategy (strategy 1 noted S1

An Efficient Label-setting Algorithm for the Bi-objective Shortest Path Problem

201

strategy 2 noted S2). The total average execution time
(in ms) of LSDPF algorithm is presented in table 4.
Finally, the number of explored labels (in thousands)
of LSDPF algorithm is given in table 6.

Table 3: Average execution time of second phase (ms) for
several values ofA several strategies.

Graph | A |= 2 | A |= 3 | A |= 5

S1 S2 S1 S2 S1 S2

Paris 165 129 154 163 142 156

Berlin 146 91 139 113 110 114

SF 86844 71666 64430 75884 67118 82026

Table 4: Average execution time of LSDPF (ms) for several
values ofA and several strategies.

Graph | A |= 2 | A |= 3 | A |= 5

S1 S2 S1 S2 S1 S2

Paris 195 159 193 201 207 221

Berlin 206 151 223 197 257 261

SF 87041 71862 64641 76094 67488 82396

From previous tables 5 to 6, it seems not interest-
ing to use more than 2α values whatever the strategy
1 or 2. The fact that the execution time increase when
the number ofα values increases in a given strategy
can be explained by the additional consumption of
CPU time needed by DPF function. Moreover, the
degradation of execution time of the strategy 2 is more
significant in comparison with the strategy 1.

3.3 Efficiency of LSDPF

In order to compare our results with benchmarks al-
gorithms solving the BSP - the bounded Label Set-
ting algorithm (blSET) (Raith, 2010) and the pulse
algorithm (Duque et al., 2015) - computational ex-
periments have been performed on instances from
the 9th DIMACS challenge. Three graphs have been
used. The first graph corresponds to New York City.
This graph contains 264,346 nodes and 733,846 arcs.
The second corresponds to another representation of
the San Francisco Bay Area and contains 321,270
nodes and 800,172 arcs. The third corresponds to
the state of Florida and contains 1,070,376 nodes and
2,712,798 arcs. Criteria considered for these graphs
correspond to the physical distance and transit time
between nodes. To fairly compare algorithms, the
same pairs of source and target nodes considered in
(Duque et al., 2015) have been used for each instance.
As (Duque et al., 2015), the 30 instances of each
graph has been clustered into the same three equal
sized groups, denoted S (small), M (medium) and L
(large), based on the number of non-dominated solu-
tions found on the Pareto front.

The table 7 compares the average execution time

Table 5: Average execution time of first phase (ms) for sev-
eral values ofA.

Graph | A |= 2 | A |= 3 | A |= 5
Paris 30 39 65
Berlin 60 84 147
SF 196 211 370

Table 6: Average number of explored labels (in thousands)
for several values ofA several strategies.

Graph | A |= 2 | A |= 3 | A |= 5

S1 S2 S1 S2 S1 S2

Paris 111 72 89 71 78 70

Berlin 125 73 100 72 79 71

SF 14679 11072 12355 11023 11289 10965

of the bLSET algorithm, the Pulse algorithm, and LS-
DPF algorithm. All times are in milliseconds. The
first column indicates the cluster name, composed
of the instance name and the letter from the group
to which it belongs. Column 2 shows the average
number of non-dominated solutions on the the Pareto
front. Column 3, 4 and 5 presents the average exe-
cution time of the bLSET algorithm, Pulse algorithm
and LSDPF algorithm. Values followed by∗ means
that at least one of the instances could not be solved in
less than one hour and so the search has been stopped.

Table 7 shows that execution times of bLSET are
average bigger than other algorithms. Regarding the
Pulse and LSDPF algorithms, the Pulse algorithm is
particularly efficient on instances with a small num-
ber of solutions unlike other methods. For these in-
stances, LSDPF takes up to 7 times more to find the
entire Pareto front but execution times remain reason-
able since they are on average lower than 3 seconds.
Nevertheless, we can see that LSDPF has the same av-
erage order execution times to solve instances what-
ever the number of solutions which is not the case
of the two other algorithms where it appear to have
an exponential time progression. Moreover they may
not find the entire Pareto front in the case of larger in-
stances (see table 8). To conclude, LSDPF is clearly
the faster method to find the whole Pareto front for
medium and larger instances.

Finally, the criterion used for the shortest paths
search on these instances are distance and time, that
are not completely independents criteria. The Pareto
front thus contains fewer non-dominated solutions
that it is possible to have using more conflicting crite-
ria, such as distance and insecurity for example.

4 CONCLUSION

In this paper, we consider a classical Bi-objective

ICORES 2016 - 5th International Conference on Operations Research and Enterprise Systems

202

Table 7: Averaging times (ms) for the bLSET, the Pulse al-
gorithm and the LSDPF on 9th DIMACS challenge graphs.

Cluster |S| bLSET Pulse LSDPF

NY-S 34.10 62390 320 2169

NY-M 147.40 301160 52320 3692

NY-L 422.70 881260 1367660* 945

BAY-S 8.80 6780 160 509

BAY-M 49.90 55240 5700 508

BAY-L 171.80 317430 105550 360

FLA-S 14.70 330120 350 2343

FLA-M 94.10 566150* 347910 1189

FLA-L 552.30 2627430* 888590* 2776

Table 8: Number of instances unsolved in less than an hour
for bLSET, Pulse algorithm and the LSDPF.

Cluster bLSET Pulse LSDPF
NY-L 0 3 0
FLA-M 1 0 0
FLA-L 6 1 0

Shortest Path Problem (BSP) which considers both
distance and insecurity inspired from a cycling con-
text. We proposed an exact algorithm based on label-
setting methods and called LSDPF, in order to find all
non-dominated solutions of the problem. One of the
specificities of LSDPF algorithm is to dynamically
update the whole Pareto front during the search allow-
ing to reduce the number of explored labels. Different
strategies have been proposed and tested. Numerical
experiments on real data sets and on instances of the
literature were conducted. Comparison with recent
benchmarks algorithms to solve BSP (the bounded
Label Setting algorithm (blSET) (Raith, 2010) and the
pulse algorithm (Duque et al., 2015)) shows that our
method outperform the benchmarks algorithms.

The first perspective of this work is to general-
ize our methods to several conflictual criteria on same
type of instances. Another promising research direc-
tion is to use some graph contractions in the case of
multi-criteria.

REFERENCES

Bertsekas, D. (1998). Network optimization: Continuous
and discrete models.

Brumbaugh-Smith, J. and Shier, D. (1989). An empirical
investigation of some bicriterion shortest path algo-
rithms. European Journal of Operational Research,
43:216–224.

Carlyle, W. and Wood, R. (2005). Near-shortest and k-
shortest simple paths.Networks, 46:98–109.

Climaco, J. and Martins, E. (1982). A bicriterion shortest
path algorithm.European Journal of Operational Re-
search, 11:399–404.

C.T. Tung, K. C. (1992). A multicriteria pareto-optimal
path algorithm.European Journal of Operational Re-
search, 62:203–209.

Demeyer, S. and al. (2013). Speeding up martins’ algorithm
for multiple objective shortest path problems.4OR,
11:323–348.

Dijkstra, E. (1959). A note on two problems in connection
with graphs.Numerische Mathematik, (1):269–271.

Duque, D., Lozano, L., and Medaglia, A. (2015). An ex-
act method for the biobjective shorstest path problem
for large-scale road networks.European Journal of
Operational Research, (242):788–797.

Guerriero, F. and Musmanno, R. (2001). Label correct-
ing methods to solve multicriteria shortest path prob-
lems.Journal of optimization theory and applications,
111:589–613.

Hansen, P. (1980). Multiple criteria decision making the-
ory and application.Lecture Notes in Economics and
Mathematical Systems, 177:109–127.

Martins, E. (1984). On a multicriteria shortest path prob-
lem. European Journal of Operational Research,
(16):236–245.

Raith, A. (2010). Speed-up of labelling algorithms for biob-
jective shortest path problems. pages 313–322.

Raith, A. and Ehrgott, M. (2009). A comparison of solu-
tion strategies for biobjective shortest path problems.
Computers & OR, 36(4):1299–1331.

Sauvanet, G. and Neron, E. (2010). Search for the best
compromise solution on multiobjective shortest path
problem. Electronic Notes in Discrete Mathematics,
(36):615–622.

Serafini, P. (1987). Some considerations about compu-
tational complexity for multiobjective combinatorial
problems. InLecture Notes in Economics and Mathe-
matical Systems, pages 222–232. Springer-Verlag.

Skriver, A. and Andersen, K. (2000). A label correcting ap-
proach for solving bicriterion shortest-path problems.
Computers & Operations Research, 27:507–524.

Tarapata, Z. (2007). Selected multicriteria shortest path
problems: An analysis of complexity, models and
adaptation of standard algorithms.International Jour-
nal Of Applied Mathematics And Computer Science,
17:269–287.

Ulungu, E. and Teghem, J. (1994). Multi-objective combi-
natorial optimization problems: A survey.Journal of
Multi-Criteria Decision Analysis, 3:83–104.

Ulungu, E. and Teghem, J. (1995). The two phases method
: An efficient procedure to solve biobjective combina-
torial optimization problems.Foundations of Comput-
ing and Decision Sciences, 20(2):149–165.

An Efficient Label-setting Algorithm for the Bi-objective Shortest Path Problem

203

