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Abstract: The reconstruction of human activities is an important prerequisite to provide assistance. In this paper, we
present an activity and plan recognition approach which is based on causal models of human activities. We
show, that it is possible to estimate current activities, the underlying goal of the user, and context information
about the state of the environment from noisy sensor data. Therefore we use real world data obtained from a
smart home system while observing unrestricted activities of daily living in an inhabited flat. We evaluate the
accuracy of the recognition for simulated data of different granularity and data obtained from the smart home
system. We furthermore show that performance measures solely based on action sequences are not sufficient
to evaluate a recognition system.

1 INTRODUCTION

The reconstruction of human behaviour based on sen-
sory inputs is a challenging research problem with
several applications. In this paper, we focus on the re-
construction of human behaviour within a living en-
vironment instrumented with a simple off-the-shelf
smart home system. We show how the noisy sensor
data obtained from the smart home system can be in-
terpreted and analysed to reconstruct the behaviour of
a person. We employ a causal model of potential ac-
tivities to disambiguate the sensory inputs.

The development of technical devices enables new
features and applications as well as smaller device
sizes and cheaper production costs. Additionally,
the integration of networking technologies in various
kinds of technical devices makes it easy to access in-
ternet services. This provides the basis of the Internet
of Things (McEwen and Cassimally, 2014). Based
on the ubiquitous availability of sensors and compu-
tational resources, the integration of assistance tech-
nologies into every day life became feasible. How-
ever, to provide a pro-active assistance beyond sim-
ple if-then-rules we need (a) to analyse the human
behaviour and (b) to infer likely future goals. The
detection of the goals underlying the protagonist’s ac-
tions enables an assistive system to execute appropri-
ate supporting actions.

To evaluate our approach for the reconstruction of
the human behaviour, we: 1. instrumented an inhab-
ited flat with a smart home system to collect real-

world data about the resident, 2. analysed the be-
haviour to identify exemplary scenarios (activity se-
quences, e.g. morning routine), 3. collected data cov-
ering 40 days in total, and 4. collected 37 sequences
for the identified scenarios including a fine-grained
annotation of activities. We evaluated the perfor-
mance of our activity reconstruction model by com-
paring the real actions (from the annotations) with
the estimated ones. A huge amount of the action se-
quences could be reconstructed successfully, i.e. only
small deviations occurred between real and estimated
actions.

The contribution of our investigation is a logical
modelling approach for human behaviour that enables
plan recognition by not only using observation data,
but also context and time information to infer the most
likely action sequence. Additionally these models can
be re-used in other settings. We further show how this
can be implemented in a real world setting. The ex-
tended evaluation shows the importance of an evalua-
tion with real data compared to simulated data.

This paper is structured as follows: Next, we
present our specific setup. In Section 2, after describ-
ing some related work with respect to activity recog-
nition, we show how to reconstruct the human be-
haviour from noisy sensors based on causal models.
Therefore, we present our general approach of Com-
putational Causal Behaviour Models, and describe
our model in detail. In Section 3, we present results of
a first evaluation based on simulated as well as real-
world data. Finally we draw some conclusions and
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Figure 1: The flat that has been equipped with smart home
system components. Blue areas indicate the estimated ob-
servation area of the motion function (multi sensor).

discuss possible future work.
For our experiments we instrumented an inhab-

ited ”one-room flat” (combined living and bedroom)
with a hallway, kitchen and bathroom (see Fig. 1)
with the following devices: 1. Multi sensor: Motion,
temperature, humidity and luminosity (H,L) 2. Power
switch: On/off button push, voltage, current, power
factor, power wattage and power consumption (K,B)
3. Door/window sensor: Open/close change (H,L).

In addition to the raw sensor data, the ground truth
has been recorded through a mobile application that
allows the on-line annotation of human behaviour.
The performed activities are simply selected by the
annotator and recorded together with a time stamp.

After an analysis of the daily routines of the res-
ident, four exemplary scenarios have been identified.
All four scenarios start and end in the living room.
S1) Fetch and Read Mail: The person walks into

the hallway to put on shoes and leaves the flat to
fetch mail. After a short time he returns and reads
mail as well as newspaper. (10-30 min., every day,
partial sensor coverage)

S2) Grocery Shopping: After putting on jacket and
shoes, the person leaves the flat to return after ap-
prox. 30 minutes. Afterwards the goods are stored
in the kitchen. (20-45 min., several times a week,
partial sensor coverage)

S3) Go to Work: After putting on jacket and shoes,
the person leaves the flat for 4-10 hours. The per-
son then returns to the living room. (5-10 hours,
several times a week, partial sensor coverage)

S4) Morning Routine: After waking up, the person
opens sun blinds and window, and walks into
the bathroom. After taking a shower, the person
dresses and has breakfast in the kitchen. (30-90
min., every day, full sensor coverage)
Scenarios S1 to S3 are more strict than S4 in the

following sense. The necessary actions to reach the
goal have a stricter order. Please note, that this does

not influence the action duration. The fixed order of
the single actions follows directly from the causal de-
pendencies. E.g., to leave the flat, the shoes have to be
put on. This can be done in the hallway only. There-
fore the person has to walk to the hall first.

2 BEHAVIOUR
RECONSTRUCTION

The literature usually distinguishes between activity
recognition from low level sensors and high level plan
recognition (Sukthankar et al., 2014). The first uses
methods of machine learning such as support vec-
tor machines or decision trees to estimate the activity
of a human subject. Here, activities often comprise
basic operations such as sitting, standing, or walk-
ing. Prominent examples are (Bao and Intille, 2004)
or (Lee and Mase, 2002). Additionally, to incor-
porate temporal knowledge, temporal classifier such
as Hidden Markov Models (HMM) or Hidden Semi
Markov Models (HSMM) are applied. While these
approaches usually reach very high recognition rates,
they are inherently unsuited to infer high level con-
nections of the current activity, the state of the envi-
ronment and/or future action or the final goal. Plan
recognition, in contrast, deals with estimating the se-
quence of future activities, including the final goal,
from an observed sequence of actions. However, typ-
ical plan recognition approaches are not able to deal
with uncertainties as known from sensors.

Several researchers strive at combining these
fields of research by using Bayesian reasoning to con-
clude high level knowledge about the plan and goal
from low level sensors. (Bui et al., 2002), for in-
stance, introduced the Abstract HMM, a hierarchi-
cal representation of plans and goals. The lowest
level consists of basic actions that, when combined,
result in sub plans of the upper level. Each level
thereby combines sub plans from the lower level to
create higher level plans. The topmost level consists
of high level plans, including the final goal. Action
selection probabilities are specified manually. They
showed this approach to be viable by inferring the fi-
nal goal of a human subject from location data. (Liao
et al., 2007) introduced a system for assistance in ur-
ban environments based on a graphical model that
incorporates different behaviours and different goals.
They provide several extensions to (Bui et al., 2002),
ranging from allowing the user to follow a sequence
of goals to learning the action selection probabili-
ties from training data. Additionally, the approach
allowed for detecting novel behaviour. The authors
use location data (from GPS) to demonstrate that their
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system is working.
While all of the above mentioned approaches suc-

cessfully recognise the plan of users from low level
sensors, they apply methods of machine learning to
establish the action selection (transition model). This
requires training data and effectively prevents the
transition models from being reused for similar set-
tings. (Baker et al., 2009) used a textual description
of the scenario in terms of precondition and effects
to reason about the final goal of a human participant.
A similar approach was introduced by (Ramı́rez and
Geffner, 2011) and (Hiatt et al., 2011). A computa-
tional description is used to generate generative mod-
els with sparse transition matrices. Actions are usu-
ally described in terms of precondition and effects.
(Krüger et al., 2014) introduced the term Computa-
tional State Space Models (CSSM) to summarise such
approaches. CSSMs use compact descriptions that al-
low a reuse for similar settings.

The application scenario targeted within this pa-
per is the recognition of everyday behaviour in in-
strumented homes. Several researches focused on
this setting, resulting in wide variety of approaches
in the literature. (Wilson and Atkeson, 2005) instru-
mented a complete house with anonymous binary sen-
sors like motion detectors, light barriers, and pres-
sure mats to recognise the activities of the residents.
Person specific behaviour models learned from train-
ing data and were later used for inference. They
showed that the recognition accuracy decreases with
increasing number of residents, due to the inability of
identification of anonymous sensors. Similarly, (van
Kasteren, 2011) applied different temporal models
such as HSMM or Hierarchical HMMs to recognise
the activities of elderlies in an instrumented home.
They also used sensors like motion detectors, reed
switches and pressure mats as source of observation.
The models were created from training data, but it has
been shown that transfer learning can be used to ap-
ply a trained model to a similar scenario. However,
there is no work on applying plan recognition based
approaches to reconstruct the behaviour within instru-
mented homes.

2.1 CCBM Toolbox

Our investigation uses so-called Computational
Causal Behaviour Models (CCBM), an implementa-
tion of Computational State Space Models. The main
objective of CCBM is to estimate the state sequence
of a dynamic system from noisy and ambiguous sen-
sor data. Besides this reconstruction, it is also possi-
ble to simulate and validate state sequences of such a
system. In this paper, we consider the resident of the

flat together with the state of the world as the dynamic
system.

CCBM uses an action language, similar to
STRIPS (Fikes and Nilsson, 1971) or PDDL (Mcder-
mott et al., 1998) to describe actions of the system
by means of preconditions and effects. The system’s
state is thereby described as a combination of envi-
ronment properties (e.g., position of the dining table).
Actions model how this state might evolve over time.
More formally, consider a set of states S , each given
by combinations of propositions, a set A of action la-
bels, and a ternary relation→⊆ S ×A×S represent-
ing the labelled transitions. If the triple (s,a,s′) ∈→,
where s and s′ are states and a is an action, we say
a is applicable in s. The state s′ is the result of exe-
cuting action a in state s. An initial state is a special
state, describing the condition of the environment at
starting time. A goal is a set of states. The state space
is constructed by combining all propositions from the
description of the environment.

A behaviour model consists of the following parts:
(1) the type-hierarchy, to group elements; (2) predi-
cates and functions, to describe allowed element prop-
erties; (3) actions, to specify the system’s dynamic;
(4) elements in the application scenario, to describe
the application specifics; (5) initial state of the envi-
ronment; and (6) the goal states. (1)-(3) are described
in the domain model, while (4)-(6) form the problem
description. See e.g. (Krüger et al., 2014) for a more
detailed description of the underlying ideas.

CCBM applies Bayesian Filtering methods to
estimate the state sequence of a dynamic system
from sensor data. Therefore, a Dynamic Bayesian
Network is constructed from the behaviour model.
The Bayesian filtering framework requires two sub-
models to be specified in order to be applied: the
observation model, providing the probability p(y | x)
that the sensor data y is result of the system being in
state x and the transition model p(xt+1 | xt), which de-
scribes the probability that the system’s state changes
from one state at time t to another at time t +1. In ad-
dition, CCBM allows to specify a duration model for
each action and different action selection heuristics to
select an action while being in a given state.

Due to the large state space and the unrestricted
duration model, exact inference is intractable. In
the CCBM Toolbox we use marginal filtering (Nyolt
et al., 2015), which implements an efficient approxi-
mation in discrete state spaces.

2.2 Causal Model

The causal model describes the evolution of states
from a logical point of view. It consists of two compo-
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(:action open_window
:agent resident
:parameters (?p - person ?l - location)
:duration (lognormal
(open_window_duration) (open_window_sd) )

:precondition (and
(location ?p ?l)
(has_windows ?l)
(not (windows_open ?l)) )

:effect (and
(windows_open ?l)
(ventilated ?p ?l) )

:observation ( setLocation ?l )
)

Listing 1: Example of the action open_window in CCBM.

nents: Actions and predicates as well as object types
are defined in the domain model. The problem model
contains a description of the initial and goal state as
well as the declaration of available objects.

Predicates describe the environment, e.g. the
predicate (has_windows living_room) indicates
that the location living_room has windows. Actions
are described by precondition-effect-rules containing:
agent. Restrict the possibility to execute the action to

a specific agent.
parameters. Action parameters and their type that

may be used within the action. Possible param-
eter combinations will be applied to the action
schema; the result are so-called grounded actions.

duration. A probability density function that speci-
fies the duration of this action.

precondition. Conditions that must hold in the cur-
rent state before action execution. They restrict
the number of states where the action is applica-
ble. Preconditions are specified as first order for-
mulae.

effect. A list of changes to the current state that will
be applied after action execution.

observation. Observations, e.g. sensor data, will be
handled in the observation model (Section 2.4).
The observation element of an action description
is used to describe effects of the sensor data.

An example action for opening a window is shown in
Listing 1. Actions are designed to be applicable in
different experimental settings, e.g. multi user envi-
ronments or other flats. This is implemented by pred-
icates that specify environmental parameters and the
use of objects for both residents and locations.

To capture the change in environmental condi-
tions, we used a multi-agent-modelling approach.
In the action description in Listing 1, the predicate
(ventilated ?p ?l) will not be removed automat-
ically if it once is set. This does not sufficiently im-
itate environmental influences, e.g. air consumption.

(define (problem read_mail)
(:domain everydaylife)
(:objects
johndoe - person
hall bathroom ... outside - location )

(:init
(location johndoe living_room)
(wears_clothes johndoe)
(has_mail) )

(:goal (and
(location johndoe living_room)
(read_mail johndoe) )

)

Listing 2: A snippet of the ”Fetch and read mail” scenario
description in CCBM.

Additional actions (for a second agent) capture these
influences. Please note that this will not influence the
action execution of the resident.

Our setting describes four different scenarios
within the same domain to enable comparison of the
reconstruction with respect to the same observation
data, i.e. a single domain model has been imple-
mented with four additional problem models. An ex-
ample snippet of the ”Fetch and read mail” scenario
is shown in Listing 2.

Our causal model consists of 28 action schemas
that result in 172 grounded actions. Four of these
action schemas were used to simulate environmen-
tal influences such as air consumption. Additionally,
35 predicate schemas of which 8 are for the defini-
tion of the flat were used. The corresponding state
space sizes are shown in Table 1. The maximum state
space size results from the combination of all predi-
cates, which is much higher than the real state space
size that only counts reachable states. Again here is a
difference between the scenarios S1 to S3 whose ac-
tions have a strict order and scenario S4: the number
of states is much smaller for the first three.

2.3 Modelling Action Durations

The actions within the causal model require a duration
to be defined by a probability density function. The
timestamped annotations in our setting enable the cal-
culation of these durations. A set of probability den-
sity functions have been evaluated using the Akaike
Information Criterion (AIC). The log normal distri-
bution is the one that best fits our durations across all
scenarios. Additionally, it must be determined what

Table 1: The size of the state space for the four scenarios.

Scenario ID S1 S2 S3 S4
Max. size 225 224 223 228

Real size 744 992 496 11904
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one time step in the model represents in reality, i.e.
how much time will elapse in reality if a time step in
the model is over. We used one second as a time step
duration.

The identified time model will be applied by spec-
ifying the :duration element within each action and
the declaration of the corresponding predicates in the
problem domain. Because our causal model consists
of four problem models, it is possible to use different
time models for each of them. This enables further a-
priori knowledge about different probability density
functions in different situations.

2.4 Observation Model

An observation model in the form of external C++
code needs to be implemented in addition to the
causal model. This handles the consecutively fetch
of the observation data and calculates the probability
that the observation data is the result of the system
being in the current state. The system state can be de-
livered by the causal model using the :observation
element of an action. E.g. the open_window action in
Listing 1 calls the C++ function setLocation of the
corresponding observation model.

3 EVALUATION

To evaluate the performance of our behaviour model
and its reconstruction abilities we performed four in-
vestigations on different modelling levels. First, we
excluded influences from observation model and an-
notated smart home data by using synthesized action
sequences as observation data. Afterwards, simulated
sensor data was used for evaluation. Finally, the anno-
tated data was used to investigate both the reconstruc-
tion of plans as well as the recognition of the most
likely scenario.

3.1 Evaluating the Causal Model

For the first evaluation we used an inbuilt feature of
the CCBM Toolbox that reads a list of actions as ob-
servation data. This enables the evaluation of the per-
formance of the causal model and the reconstruction
of the action sequence while excluding effects from
an observation model or real observation data. This
is a common method to evaluate the performance of
plan recognition systems. Altogether four steps have
been done:
1. Five causally correct plans, each achieving the

goal, were randomly generated for every scenario.

Figure 2: Accuracy of the reconstruction for scenario 1 with
noisy action sequences as observations.

2. All plans were randomly modified five times in
the following sense: For every time step of the
plan the corresponding action was removed with
a probability of up to 25 %. In addition, an action
was replaced by another action of the same causal
model with a probability of up to 25 %.

3. An action sequence was estimated by marginal fil-
tering the noisy plans.

4. Finally, the results of the filter were compared
with the initial plans. We use the accuracy to mea-
sure the performance, i.e. we counted the amount
of correctly estimated grounded actions.
Our expectations were, that higher noise levels re-

sult in lower accuracy of the reconstructed action se-
quence. The evaluation results for the first scenario
”Fetch and read mail” are shown in Fig. 2. The heat
map displays the accuracy of the reconstruction with
respect to the noise levels; the colour indicates the rate
of the current accuracy relative to all other accuracies;
the numbers inside show the mean accuracy across all
noisy plans at the corresponding level.

The accuracy is very high at all noise levels: Even
when 25 % of the actions were removed and 25 %
of them were replaced, the accuracy is 0.97 (±9e−5).
That means, 97 % of the action sequences had been
correctly estimated if up to the half of the time steps
were changed. The impact of replaced actions on the
accuracy is bigger than the one of removed actions.
The results of the other scenarios were almost identi-
cal with similar accuracies. Hence, the causal model
can very reliably reconstruct action sequences from
noisy action sequences which indicates that a strict
model has been defined.

3.2 Evaluating Simulated Sensor Data

The evaluation with simulated sensor data has been
done to exclude effects from the annotated observa-
tion data while using an observation model. To simu-
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late sensor data, we generated a sequence of locations
from a number of random plans. This mimics sen-
sory inputs from e.g. PIR sensors (motion function
of the multi sensor). The following steps have been
performed:

1. The location of the resident was extracted from
five causally correct random action sequences, as
they were used in the evaluation of the causal
model (Section 3.1), i.e. the resulting file con-
tains the correct location for the resident at every
time step. These locations were converted into tu-
ples of boolean values having one value for each
location. True values indicate the presence of the
resident.

2. The list of location tuples, was modified: True
values of correct locations became false with up
to 25 % probability and true values were inserted
for wrong locations with up to 25 % probability.

3. An observation model was implemented, that
parses the location tuples and calculates the cor-
responding probability.

4. Every location tuple set was used as observa-
tion data to estimates the most likely action se-
quence. The results were compared with the orig-
inal plans. Again we used the accuracy as mea-
surement of performance.

Fig. 3 displays a heat map of the reconstruction ac-
curacies for scenario S1. Similar to the evaluation of
noisy action sequences we expected that higher noise
levels result in lower accuracies. However, the results
are different. The heat map is split in two parts: If
wrong locations are always false (leftmost column),
the accuracies are identical for all values of the prob-
ability for correct locations. The other part of the heat
map indicates the opposite to our expectation, i.e. the
accuracy increases if also the probability for wrong
locations increases. The impact of the probability of
correct locations still coincides with our expectation.
If the probability for wrong locations is small, the un-
certainty about true values is small, too. However,
this results very likely in wrong locations to be con-
sidered as correct if their boolean value is true. If
the probability of wrong locations increases the un-
certainty about true values also increases which will
then be compensated by the causal model.

The results for the other scenarios are similar with
accuracies not lower than 60 % of correctly estimated
actions, i.e. using the causal model, the process can
reconstruct at least 60 % of the actions based on noisy
location information as the only observation data.

After these first evaluation steps that use computer
generated observation data, we investigated the recon-
struction with annotated real sensor data.

Figure 3: Accuracy of the reconstructions for scenario 1
with simulated location observations.

3.3 Evaluating Annotated Data

In the third evaluation we used real sensor and actu-
ator measurements together with annotations that in-
dicate the currently executed action of the resident. A
valid annotation is a list containing all actions from
the initial state to the goal state for the corresponding
scenario. During the annotation process several inci-
dents may occur, e.g. an action has not been annotated
by the resident or an action has been annotated with
the wrong label. Here, we used only valid sequences.
This can be ensured by converting the annotation list
into the corresponding action sequence that has been
validated with the causal model.

We restricted the evaluation to data sets which
cover a full scenario and are accompanied by causally
correct annotations. The filtered results were com-
pared to the plans produced from the annotations. The
steps in detail were:
1. Sensor and actuator measurements were com-

bined with valid annotation sets in the way that
tuples of features were created for every time step.
The features include all directly measured sen-
sor values. Additionally a counter for the num-
ber of time steps since the last value update was
added. Intermediate values for temperature, hu-
midity, light and instant power wattage were cal-
culated by linear interpolation.

2. Two observation models were implemented:
(OM1) a location based approach (as in Sec 3.2)
that uses events (motion, power switch and door
state changes) and instant power wattage only to
recognise appearance of the resident; (OM2) pre-
calculated action class probabilities from the pre-
dictions of a decision tree that has been build us-
ing the annotated data sets.

3. The observation data sets, i.e. the feature tuples or
pre-calculated probability tuples, were marginally
filtered using OM1 and OM2.
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Table 2: Accuracies for observation model OM1 and OM2.
Column # shows the number of valid data sets.

ID # Accuracy OM1 Accuracy OM2
S1 5 0.41 (±7.97e−3) 0.41 (±1.23e−1)
S2 4 0.80 (±6.59e−3) 0.58 (±1.59e−1)

S3 8 0.99 (±1.93e−5) 0.83 (±1.15e−1)
S4 9 0.22 (±2.85e−2) 0.38 (±3.24e−2)

4. The accuracy of the filter results were calculated
using plans that have been generated from the an-
notations.

Table 2 shows the accuracies. The observation model
OM1 performs best for the scenarios S2 and S3. The
second observation model achieves lower accuracies
for the scenarios S1, S2 and S3 compared to OM1, but
outperformed it in S4. The variance of the accuracies
is much bigger for the observation model OM2, i.e.
there were very good and very bad estimations. A
reason for this are actions that produce similar sensor
and actuator measurements and therefore cannot be
distinguished.

Even if the accuracies of the scenarios differ a lot,
the mean accuracy of all scenarios sums up to 58 %
for the observation model OM1 and 55 % for OM2,
i.e. more than half of the actions have been correctly
reconstructed from the sensor data.

3.4 Evaluating Goal Recognition

Finally, we compared the likelihood of the marginal
filter results for all scenarios using every annotated
data set to estimate the pursued goal. Again, the fea-
ture tuple and pre-calculated probabilities were used
as observation data with their corresponding observa-
tion models OM1 and OM2.

Table 3 shows an overview of the scenario recog-
nition performance. As in (Blaylock and Allen,
2014), precision is defined as the relative number of
time steps in which the correct scenario is the most
likely one. Convergence indicates whether the cor-
rect scenario will be identified at all. The convergence
point is defined as the earliest point at which the cor-
rect scenario is and stays the most likely one. Neg-
ative values indicate that the observation data set did
not converge.

The results show that here is a difference between
the results of scenario S1 to S3 and scenario S4 when
using observation model OM1. The first three sce-
narios have always been correctly identified whereas
the last one never converges. Though the convergence
point is very late in the scenarios S1 and S2 their pre-
cision is rather high. This indicates that there have
been multiple trend changes in the probability distri-
bution of the likelihoods. Other than with the first ob-

servation model, all of the data sets from scenario S4
were correctly identified with the observation model
OM2. Also the precision of 0.922 is very high. How-
ever, scenario S1 has never been correctly identified
by OM2.

Even if both observation models do not recognise
all scenarios equally they could successfully recog-
nise 65 % (OM1) and 70 % (OM2) of the scenar-
ios. Also the average precision is rather high with
44 % (OM1) and 66 % (OM2). These values indicate
the general performance of the scenario recognition
in our setup.

4 CONCLUSION

In this paper we investigated the reconstruction of
human behaviour from smart home system data us-
ing a Computational Causal Behaviour Model. The
model consists of action descriptions in the form of
precondition-effect-rules and a description of initial
and goal states. It has been converted into a prob-
abilistic model that was used to filter observation
data. The data sets are based on both computer gener-
ated random data and real world data which has been
recorded in an inhabited flat. The reconstruction is
evaluated on four scenarios that have been identified
from the behaviour of the resident.

Two kinds of computer generated random obser-
vation data have been used. Noisy action sequences
could be reconstructed with very high accuracies of at
least 97 % of the original actions even when up to half
of the observations have been modified. This reveals
the robustness of our causal model. The second kind
of random observation data were noisy location infor-
mation. Using them, a reconstruction accuracy of at
least 60 % could be achieved, i.e. more than half of
the action sequence was reconstructed correctly, even
when up to 25 % of the location information were
changed.

The smart home system data has been evaluated
using two observation models for both reconstruction
of the action sequence and recognition of the pursued
goal. One of the observation models uses the idea
of the simulated location information in the form of
considering sensor events that indicate the appearance
of the resident. The second observation model uses
pre-calculated action class probabilities. Those have
been calculated using a leave-one-out cross-validation
for the prediction of a decision tree.

The results of the goal recognition revealed that
the first observation model correctly identifies scenar-
ios that are strictly ordered and partially outside the
flat whereas the second observation model is less de-
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Table 3: Comparison of precision, convergence and convergence point for both observation models.

ID Scenario Mean Mean Prec. % Conv. Mean Conv. Point
Length OM 1 OM 2 OM 1 OM 2 OM 1 OM 2

S1 Fetch and read mail 420 0.383 0.047 1.00 0.00 0.824 -0.002
S2 Go to grocery shopping 2064 0.340 0.728 1.00 0.75 0.910 0.022
S3 Go to work 33602 0.974 0.718 1.00 0.75 0.029 0.032
S4 Morning routine 2869 0.048 0.922 0.00 1.00 -0.0004 0.082

pendent on those. Many of the annotated observation
data sets could be successfully identified, but not all
scenarios could be recognised equally well.

We have shown that it is not sufficient to evalu-
ate the performance of human behaviour reconstruc-
tion solely based on action sequences. Furthermore,
Computational Causal Behaviour Models can easily
be used together with smart home environments.

In the future our approach will be further eval-
uated using other environments, e.g. with multiple
residents and in other flats. Additionally the set of
actions and scenarios will be extended to cover addi-
tional scenarios in the flat such as cooking or sleeping.
The observation model can also be extended by addi-
tional context information, e.g. the personal calendar,
which might influence the reconstruction especially
if the resident is outside of the flat. Another investi-
gation will be the use of other time and observation
models, e.g. a minute based time model and an obser-
vation model that considers delay times. Finally, we
will combine our setting with the ideas presented in
(Yordanova and Kirste, 2016) to learn the necessary
models directly from a natural language text.
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