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Via Brecce Bianche 12, I-60131 Ancona, Italy

Keywords: Photoplethysmography, PPG, Motion Artifact Reduction, Heart Rate, Bayesian Classification, Identification,
GMM, Expectation Maximization, Karhunen-Loève Transform.

Abstract: Accurate heart rate (HR) estimation from photoplethysmography (PPG) recorded from subjects’ wrist when
the subjects are performing various physical exercises is a challenging problem. This paper presents a frame-
work that combines a robust algorithm capable of estimating HR from PPG signal with subjects performing a
single exercise and a physical exercise identification algorithm capable of recognizing the exercise the subject
is performing. Experimental results on subjects performing two different exercises show that an improvement
of about 50% in the accuracy of HR estimation is achieved with the proposed approach.

1 INTRODUCTION

Photoplethysmography (PPG) is a non invasive tech-
nique to estimate the heart rate (HR) by measuring
the blood flow at the surface of the skin. In wearable
devices for fitness and/or daily activities this signal
needs to be monitored when motion is always present.

The subjects’ hand movements during intensive
physical exercise cause a strong motion artifact (MA)
that corrupts PPG signal, making HR monitoring
from wrist devices a challenging problem.

Many signal processing techniques have been pro-
posed to remove MA from raw PPG signal. The
most common are: independent component analysis
(Kim and Yoo, 2006), adaptive filtering techniques
(Foo, 2006; Gibbs et al., 2005), Kalman filtering
(Lee et al., 2010), wavelet based methods (Raghuram
et al., 2010), empirical mode decomposition (Raghu-
ram et al., 2014; Raghuram et al., 2012). More re-
cently combinations of a number of techniques have
been successfully used (Ram et al., 2012; Zhang et al.,
2015).

However, although an HR estimation with an aver-
age absolute error less than 2 beats per minute (BPM)
can be obtained by these latest techniques, such a
performance is limited to PPG signals recorded from
subjects during fast running.

Thus accurate HR estimation from PPG recorded
from subjects’wrist when the subjects are perform-
ing various physical exercises, such as fast running,

weightlifting, or jumping, remains a challenge.
This paper focuses on this aspect, namely MA re-

duction in PPG when subjects perform various phys-
ical exercises. In particular a physical exercise iden-
tification algorithm, based on Bayesian classification
and truncated Karhunen-Loève transform (KLT) rep-
resentation, which is able to recognize the physical
exercise the subject is performing, is adopted to this
end. This algorithm is combined with a robust arti-
fact reduction algorithm, CARMA (Bacà et al., 2015),
which can be optimized for a single physical exercise
by setting a specific tracking model. Once a set of
different tracking models are derived, the exercise the
subject is performing is automatically selected by the
identification algorithm.

The rest of the paper is organized as follows. Sec-
tion 2 reviews the CARMA algorithm. Section 3 re-
ports the physical exercise identification algorithm.
Section 4 describes the framework adopted for MA
reduction combining both CARMA and the physical
exercise identification algorithm. Section 5 discusses
experimental results. Conclusion is given in the last
section.

2 CARMA ALGORITHM

The CARMA algorithm has proven to be very effec-
tive for HR monitoring from PPG signals with sub-
jects performing a single physical exercise.
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Figure 1: Flow chart of CARMA algorithm (g1 andg2 are
the PPG channels,x, y, z are the 3-axial accelerometer sig-
nals).

A flow chart of the algorithm is shown in Fig. 1.
It consists of the following steps:i) pre-processing
of PPG and accelerometer signals,ii) singular value
decomposition (SVD),iii) peak detection of the FFTs,
iv) MA reduction,v) tracking of the HR.

2.1 Review of Subspace Decomposition
Approach and Tracking

Given the accelerometer signalsx,y,z the main objec-
tive of the algorithm is to determine the correspond-
ing subspace〈S〉 they belong to, that is a basisS

that generates〈S〉. To this end letX =
[
x(1) . . .x(L)

]
,

Y =
[
y(1) . . .y(L)

]
, Z =

[
z(1) . . .z(L)

]
be the Hankel

data matrices of the three signals respectively, then
the complete matrix of sample signals

H = [X Y Z] (1)

can be approximated by the SVD as

H ∼=
P

∑
i=1

λisir
T
i , (2)

whereλi are the singular values in decreasing order
andsi , r i the corresponding left and right singular vec-
tors.

This approximation is equivalent to assume the
signals are in the subspace

〈S〉= span(s1 . . .sP) , (3)

generated by the basisS= [s1 . . .sP] wheres1 . . .sP are
the most significative components of the motion sig-
nal, and〈S〉 represents the subspace of motion signals
(SMS).

Considering the following model for the PPG sig-
nal

g= m+e , (4)

wheree is the HR signal,m the artifact andg the PPG
signal, asmbelongs to the subspace〈S〉, then the cor-
responding Hankel data matrixG can be written as

G= SA+E . (5)

Assuming the componentSB of E belonging to
the subspace〈S〉 is negligible when comparing with
the artifact componentSA, that is

E ≃ S⊥B⊥ , (6)

whereS⊥ = [sP+1, . . .sN] is orthogonal toS, it results

G= SA+E ≃ SA+S⊥B⊥ . (7)

Now let
G=UΣVT (8)

be the SVD of G, where U = [u1 . . .uN], V =
[v1 . . .vL], andΣ is the matrix of singular values, then
the two componentsSA, E can be derived by selecting
the vectorsui that are the closest to the subspace〈S〉.

In order to define a physically meaningful distance
between these vectors, bothsi andui are characterized
by the central frequency of their main spectral peak,
and the distance between a vectorui and the subspace
〈S〉 is defined as the shortest distance between the vec-
tor ui and any of thesi .

The set(ui1 . . .uiQ) is then chosen such that the
corresponding distances are below a given threshold
ϑ, so that the subspace

〈
Uq

〉
= span(ui1 . . .uiQ) is the

closest to the artifact subspace〈S〉.
As a consequence the following decomposition

G= [Uq Ud]

[
Σq 0
0 Σd

][
VT

q
VT

d

]

=UqΣqV
T
q +UdΣdVT

d , (9)

with Uq =
[
ui1 . . .uiQ

]
, Ud =

[
uiQ+1 . . .uiN

]
, holds.

Assuming the vectors
(
ui1 . . .uiQ

)
belong to the

subspace〈S〉 and posing

ΣqV
T
q =

[
b(1) . . .b(L)

]
(10)

it follows that every column of the matrix

UqΣqV
T
q =

[
Uqb(1) . . .Uqb(L)

]
(11)
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belong to〈S〉. Finally, comparing (7) with (9) yields
{

SA≃UqΣqVT
q

E ≃UdΣdVT
d

. (12)

Having derived the representation ofE, then the
HR can be found as the dominant frequency of the
first column ofUd alone.

Whilst the artifact removal so performed is usu-
ally very good, a frequency tracking algorithm is nec-
essary to further reduce HR estimation error and to
combine the signals from the two available PPG chan-
nels.

First a check is made to determine if the extracted
frequency is a harmonic of the HR, and it is halved
or doubled according to the result being more likely.
This is done exploiting a rough estimate of the joint
probability density function (pdf) of the HR versus
the motion artifact frequency (MAF).

Then, to select the best of the two PPG channels,
the one that is closest to the previous estimate is cho-
sen. Letet−1 be the previous HR estimate, the current
estimateet is found by

et = κet−1+(1−κ) ft , (13)

where ft is the frequency of the selected peak,κ ∈
[0,1] is a weighting factor that increases as the dis-
tance of ft from et−1 increases and can be adjusted
to filter out spurious estimates while simultaneously
tracking relatively rapid HR variations.

The algorithm previously reviewed behaves well
for a single physical exercise, however it fails when
subjects perform various physical exercises, as it will
be shown in Sect. 5. To remove this limitation a set
Γ of different tracking models, specifically optimized
for various physical exercises, can be derived and au-
tomatically selected by a physical exercise identifica-
tion algorithm.

3 PHYSICAL EXERCISE
IDENTIFICATION

The algorithm developed in this section follows the
approach reported in (Biagetti et al., 2015) as it was
successfully adopted in the field of speaker identifica-
tion.

3.1 Bayesian Classification

Let us refer to a frameξ[n], n= 0, . . . ,N−1, contain-
ing features extracted from the accelerometer signals.

We assume that the observations for all physical
exercises that need to be identified, are acquired and
divided in two sets,W for training andZ for testing.

For Bayesian classification, a group ofΓ exer-
cises is represented by the probability density func-
tions (pdfs)

pγ(ξ) = p(ξ | θγ) , γ = 1,2, · · · ,Γ , (14)

whereθγ are the parameters to be estimated during
training,ξ ∈ W . Thus we can define the vector

p= [p1(ξ), · · · , pΓ(ξ)]T . (15)

The objective of classification is to find the modelθγ
corresponding to the exerciseγ which has the maxi-
mum a posteriori probability for a given frameξ ∈ Z.
Formally:

γ̂(ξ) = argmax
1≤γ≤Γ

{
p(θγ | ξ)

}

= argmax
1≤γ≤Γ

{
p(ξ | θγ)p(θγ)

p(ξ)

}
. (16)

Assuming equally likely exercises (i.e.p(θγ) =
1/Γ ) and noting thatp(ξ) is the same for all exercise
models, the Bayesian classification is equivalent to

γ̂(ξ) = argmax
1≤γ≤Γ

{
pγ(ξ)

}
. (17)

Thus Bayesian identification reduces to solving the
problem stated by (17).

The most generic statistical model one can adopt
for p(ξ | θγ) is the Gaussian mixture model (GMM)
(Reynolds and Rose, 1995). The GMM for the single
exercise is a weighted sum ofF components densities
and given by the equation

p(ξ | θ) =
F

∑
i=1

αi N (ξ | µi ,Ci) (18)

whereαi , i = 1, . . . ,F are the mixing weights, and
N (ξ | µi,Ci) represents the density of a Gaussian dis-
tribution with meanµi and covariance matrix Ci . It
is worth noting thatαi must satisfy 0≤ αi ≤ 1 and
∑F

i=1 αi = 1.
θ (the indexγ is omitted for the sake of notation

simplicity) is the set of parameters needed to specify
the Gaussian mixture, defined as

θ = {α1,µ1,C1, . . . ,αF ,µF ,CF} . (19)

The usual choice for solving estimate of the mix-
ture parameters is the expectation maximization (EM)
algorithm.

The EM algorithm is based on the interpretation
of W as incomplete data andH as the missing part
of the complete dataX = {W ,H }. In general the
EM algorithm computes a sequence of parameter esti-
mates

{
θ̂(p) , p= 0,1, . . .

}
by iteratively performing

two steps:
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• Expectation step:compute the expected value of
the complete log-likelihood, given the training set
W and the current parameter estimateθ̂(p). The
result is the so-calledauxiliary function

Q
(
θ|θ̂(p)

)
= E

{
log[p(W ,H |θ)] |W , θ̂(p)

}
.

(20)

• Maximization step:update the parameter estimate

θ̂(p+1) = argmax
θ

{
Q
(
θ|θ̂(p)

)}
(21)

by maximizing theQ-function.

Recently, Figuereidoet al. (Figueiredo and Jain,
2002) suggested an unsupervised algorithm for learn-
ing a finite mixture model from multivariate data, that
overcomes the main lacks of the standard EM ap-
proach, i.e. sensitiveness to initialization and selec-
tion of numberF of components.

This algorithm integrates both model estimation
and component selection, i.e. the ability of choos-
ing the best number of mixture componentsF accord-
ing to a predefined minimization criterion, in a single
framework.

3.2 Bayesian Classification by
Truncated KLT Representation

For a sampling rate of 125 Hz a good choice ofN is
400 (Zhang et al., 2015). Although the Figuereido’s
EM algorithm behaves well with multivariate random
vectors, a too large amount of training data would be
necessary to estimate the pdfp(ξ | θγ) and, in any
case, with such a dimension the estimation problem
is impractical.

In order to face the problem of dimensionality, the
usual choice (Jain et al., 2000) is to reduce the vector
ξ to a vector kM of lower dimension by a linear non-
invertible transform H (a rectangular matrix) such that

kM = H ξ , (22)

whereξ ∈ RN, kM ∈ RM, H∈ RM×N, andM ≪ N.
It is well known that, among the allowable linear

transforms H :RN →RM, the Karhunen-Loève trans-
form truncated toM <N orthonormal basis functions,
is the one that ensures the minimum mean square er-
ror.

To this end, let us consider the vectorξ[n], n =
0, . . . ,N − 1, as an observation of theN × 1 real
random vectorξ = [ξ1, . . . ,ξN]

T with autocorrelation
function Rξξ.

Once Rξξ is estimated, an orthonormal set
{φ1, . . . ,φN}, can be derived so that the KLT ofξ is
given by the couple of equations (Fukunaga, 1990)

k = ΦTξ , (23)

ξ = Φ k , (24)

where k= [k1, . . . ,kN]
T is the transformed random

vector.
In order to reduce the dimension of such a repre-

sentation, let us rewrite (24) as:

ξ = Φ k = ΦM kM +Φη kη = ξM +ηξ , (25)

whereΦ = [ΦM , Φη], beingΦM = [φ1, . . . ,φM] the
eigenvectors corresponding to the most significative
eigenvalues, kM ∈ RM.

In (25)

ξM = ΦM kM (26)

is the truncated expansion, and

ηξ = Φη kη (27)

is the error or residual.
The truncation is equivalent to the approximations

ξ ≈ ξM , k ≈ kT =

(
kM
0

)
, (28)

thus, as kM is given by

kM = ΦT
M ξ , (29)

comparing with (22) yields H= ΦT
M.

Given a group ofΓ exercises, let us define the pdfs

pγ(kT) = p(kT | θγ) , γ = 1,2, . . . ,Γ , (30)

where kT is the truncation of k. Consequently the vec-
tor

p̃= [p1(kT), . . . , pΓ(kT)]
T (31)

represents an approximation of the vector p in (15).
Thus (17) becomes:

γ̂(ξ) = argmax
1≤γ≤Γ

{
pγ(kT)

}
. (32)

However, due to truncation, we have

pγ(kT) = pγ(kM) δ(kη) , (33)

so it results

γ̂(ξ) = argmax
1≤γ≤Γ

{
pγ(kM) δ(kη)

}

= argmax
1≤γ≤Γ

{
pγ(kM)

}
. (34)

As you can see comparing (34) with (17), the dimen-
sionality of classification problem is reduced fromN
to M, with M < N.
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Figure 2: Flow chart of proposed framework (g1 and g2
are the PPG channels,x, y, z are the 3-axial accelerometer
signals).

4 COMBINING CARMA AND
PHYSICAL EXERCISE
IDENTIFICATION
ALGORITHMS

A schematic diagram of the framework adopted for
MA reduction combining both CARMA and physical
exercise identification algorithm, is shown in Fig. 2.

By denoting withHt ∈ RN×3L the data matrix of
the accelerometer signals at each time instantt the HR
ht is estimated, in order to apply the physical exercise
identification algorithm, a feature vectorξt has to be
derived from this matrix.

We noticed that different types of exercises lead to
different distributions of the energy of the accelerom-
eter signals among its eigenvectors. Thus, a suit-
able candidate for identifying the type of exercise
is the normalized spectrum of singular valuesΛ =
[λ1 . . .λN], so as to avoid dependence on the intensity
of the exercise. Therefore we chooseξt = Λt/||Λt ||
where|| · || represents the norm of a vector.

This normalized singular value spectrum can eas-
ily be computed immediately after having performed
the SVD on the accelerometer signals, and used as
input to the Bayesian classifier after a KLT-based di-
mensionality reduction fromN = 400 toM = 10. The
output of the classifier is used to choose the param-

Table 1: Performance (sensitivity, specificity, precision, and
accuracy) of the exercise type identifier evaluated on the
whole testing set.

class sens. spec. prec. acc.
1 84.94% 92.02% 93.56% 87.94%
2 92.02% 84.94% 81.74% 87.94%

eters of both the MA remover and the HR tracker,
by looking them up on a hand-tuned table carefully
written for each exercise type. For instance, exer-
cises involving running require stronger MA removal,
thus the dimension of SMSP is set to 10 for them,
and just to 2 for other types. Running also require
second-harmonic detection, while this is unnecessary
for other exercises. A number of other tracking pa-
rameters need also be tuned accordingly.

Since the detection of the exercise type is per-
formed for every frame, the tracking parameters are
adjusted on the fly and the subject is free to move
from one exercise to another, and the system will try
to follow.

5 EXPERIMENTAL RESULTS

The experiments were carried out on datasets
recorded when subjects performed two different phys-
ical exercises. A total of 23 signals were available
(Zhang et al., 2015), 12 recorded while subjects per-
formed running drills (classified as type 1 exercise),
11 recorded while subjects performed a mixture of
other activities (classified as type 2 exercise). Of
these, the first 6 of each class were used for train-
ing the classifier, the others for testing purposes. The
signals, sampled at 125 Hz were processed using a
sliding window 8 s long (corresponding toW = 1000
samples), shifted by 2 s for each frame. The Han-
kel matrices were built usingN = 400 so thatL =
W−N+1= 601.

A first test was devoted to check the effectiveness
of the chosen motion eigenvalue spectrum as a signif-
icant feature to discriminate the exercise type. Re-
sults are shown in Table 1, and we deem an accu-
racy approaching 88% to be satisfactory, especially
since in many signals there are tails where the sub-
ject stood essentially still, making classification there
quite pointless. For reference, the two classes were
modeled using just 5 and 6 Gaussians in the GMM.

The final test involved executing the complete al-
gorithm on all the available data. The average HR
error for each signal is reported in Table 2. The up-
per two blocks report results obtained without using
the automatic classifier, and setting the tracking pa-
rameters to those optimized for class 1 and class 2
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Figure 3: Example of tracking obtained with CARMA
alone.

respectively. The bottom block reports the results ob-
tained with the proposed automatic classifier. As can
be seen, it nearly always succeeds in selecting the best
of the two results.

Moreover, Figs. 3 and 4 show the algorithm track-
ing capabilities respectively without and with auto-
matic parameter selection for a couple of significant
cases.

In these figures, black lines represent the reference
(true) HR obtained by simultaneous ECG recordings,
the green lines are the estimate obtained by the pro-
posed algorithm. Colored stars represent the frequen-
cies of the spectral peaks extracted from the singular
vectors (only first two are shown) which remain after
MA removal. These are the values the tracking algo-
rithm tries to follow. Blue circles are the MA frequen-
cies (only the strongest is shown). The bottom pane
of each figure shows the automatically identified ex-
ercise type for each input frame. As can be seen, most
errors occur only during the initial stage of the exer-
cise or when the subject is at rest (low or null MA
frequency).
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Figure 4: Example of tracking obtained combining
CARMA and exercise identification algorithm.

As can be seen e.g. in the top plot of Fig. 3, with-
out the classifier the tracker might be driven off-track
when the subject performs a different exercise, lead-
ing to huge errors. This does not happen with the
classifier enabled, as can be seen in the top plot of
Fig. 4. Unfortunately, there can be some points where
the classification fails (bottom plot of Fig. 4), but this
does not cause the tracker to go completely astray and
the loss in accuracy is contained.

A summary of the results, reporting the average
tracking error over the whole datasets, are shown in
Table 3.

These results clearly show that once the mode is
set (corresponding to a tracking model specifically
optimized for a single physical exercise) the mini-
mum mean error the CARMA algorithm is able to
reach is 10.25 BPM (with mode set to 1), while us-
ing the physical exercise identification algorithm the
mean error drastically drops to 5.60 BPM.

Of course, the automatic exercise classifier cannot
be expected to improve tracking results for the class
of signals that matches the one for which the fixed-
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Table 2: Average tracking error for the different signals. Shaded cells represents signals that were also used in the training of
the classifier.

class Heart Rate Error [BPM] — without classifier — mode fixed at 1
1 2 3 4 5 6 7 8 9 10 11 12

1 2.58 1.48 1.40 2.47 1.54 3.24 1.01 1.19 0.93 6.28 1.68 3.30
2 4.01 30.16 54.94 14.24 25.20 6.63 4.15 38.20 16.10 3.66 1.03

class Heart Rate Error [BPM] — without classifier — mode fixed at 2
1 2 3 4 5 6 7 8 9 10 11 12

1 15.01 21.91 41.52 3.62 1.53 37.71 3.51 21.01 0.98 67.50 1.70 4.41
2 8.50 20.70 2.85 9.05 23.09 6.62 3.48 3.98 18.12 3.37 1.01

class Heart Rate Error [BPM] — with automatic classifier
1 2 3 4 5 6 7 8 9 10 11 12

1 3.37 2.79 1.76 2.49 1.54 3.44 1.28 1.84 0.96 6.65 1.64 3.41
2 8.32 13.65 2.86 9.06 23.88 7.15 3.63 3.98 17.58 3.38 1.02

Table 3: Performance of the HR tracker evaluated on the
whole dataset with the original CARMA algorithm and with
and without the addition of the exercise type classifier. Data
are in beats per minute.

class mode 1
error

mode 2
error

automatic
error

1 2.26 18.37 2.60
2 18.03 9.16 8.59

mean 10.15 13.77 5.60

mode algorithm was optimized, though a minor im-
provement was still achieved for class 2, which com-
prises a variety of exercises which might sometimes
resemble running (class 1). For the first class, only a
minor increase in the average error occurs do to a few
misclassified frames, but the average error of the two
classes still manifest a significative improvement.

6 CONCLUSIONS

In this paper we propose a general framework to
reduce MA in PPG when subjects perform various
physical exercises.

Experimental results show that currently adopted
algorithms for artifact removal behave well when sub-
jects perform a single exercise, while fail when sub-
jects perform various physical exercises.

Using the physical exercise identification algo-
rithm proposed in this work gives a significative im-
provement (more than 50%) in the average error of
the HR estimation for different classes of exercises.
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