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Abstract: Recently, there were major breakthroughs in computing DL in finite fields of small characteristics, as a result
the symmetric pairings which is defined by using such finite fields became unsuitable for cryptography. This
research aims to reveal a more efficient construction of pairings on hyperelliptic curves of genus 2, in the
beginning, we focus on the ordinary genus 2 curves and the optimal pairing algorithms at high (192-bit)
security level on such curves. In this paper, we show the method to construct optimal pairings over the family
of pairing-friendly curves of genus 2 by Kawazoe and Takahashi and offered a twisted version of Ate pairing.
We then provide the cost estimates to compare with the result of the pairings on elliptic curve at same security
level.

1 INTRODUCTION

Pairings on hyperelliptic curves (including elliptic
curves) have been applied to many cryptographic
schemes (functional encryption and its varieties), and
the various optimization methods that increase the
speed of the algorithm of pairings and their arithmetic
of curves have been exploited.

Recently, major theoretical and practical break-
through in computing discrete logarithms in finite
fields of small characteristic and also other fields have
been made (Barbulescu et al., 2014; Barbulescu et al.,
2015). As a result, the type 1 (symmetric) pairings
have been almost dead since these pairings are defined
on the supersingular curves of high embedding degree
over finite fields of small characteristic to use their
distortion maps. We should also improve the secu-
rity level of pairings for the complexity of the discrete
logarithm algorithm in other finite fields. Since type
1 pairings are still useful for constructing some cryp-
tographic protocols, some authors offered the type 1
pairing on the curves not defined over finite fields
of small characteristic in elliptic case (Teruya et al.,
2014; Zhang and Wang, 2014) and in genus 2 case
(Galbraith et al., 2008). Their pairings, however, are
not suitable for the situation required high security
level because of their small embedding degree.

Aranha et al. (Aranha et al., 2013) showed

optimal asymmetric pairings on Kachisa-Schaefer-
Scott (KSS), Barreto-Naehrig (BN), and Barreto-
Lynn-Scott (BLS) elliptic curves at the 192-bit secu-
rity level and their cost estimates and implementation
result. They constructed the optimal (ate) pairings and
Weil type ones (Hess, 2008; Vercauteren, 2010) on
each elliptic curve family. The BLS pairings is the
most efficient and the result of serial implementation
of BLS pairings is more than 3 times faster than the
result of (Scott, 2011).

In this paper, we focus on the ordinary hyperel-
liptic curves of genus 2 at high, i.e. 192-bit secu-
rity level. We show the method to construct the op-
timal pairing and its twisted version over the fam-
ily of pairing-friendly curves of genus 2 by Kawa-
zoe and Takahashi (Kawazoe and Takahashi, 2008)
We offered that a twisted Ate pairing is most efficient
and described cost estimates in detail. Especially, we
clarify the cost of the final exponentiation where em-
bedding degree k = 16.

The aim of this research is that eventually reveal
an efficient construction of pairings on hyperelliptic
curves of genus 2. This research for exploiting more
efficient pairings on genus 2 curves is in progress and
our pairing showed in this paper does not faster one
than the state-of-the-art elliptic pairing.

The remainder of this paper is organized as fol-
lows. We recall background on several pairings on hy-
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perelliptic curves in section 2. Section 3 describes the
method of constructing Kawazoe-Takahashi curves
and the curve parameter we used to evaluate the pair-
ing in practice. We show how to construct optimal
pairings derived from Hess (Hess, 2008) and Ver-
cauteren (Vercauteren, 2010) on the curve and its
twisted version in section 4, after that the cost esti-
mates and its comparison are described in section 5.
Finally, we present conclusions and suggestions for
future work in section 6.

2 PRELIMINARY

In this section, we describe the pairings on hyperel-
liptic curves, especially, Hess-Vercauteren (HV) pair-
ings (Balakrishnan et al., 2009) given by Hess (Hess,
2008) and Vercauteren (Vercauteren, 2010) as general
framework for pairings on Frobenius eigenspaces.

Let C be a hyperelliptic curve defined over Fq and
let JacC(' Pic0

C) denote Jacobian of C. Let r be a
positive integer and suppose that Fqk is an extension
field of Fq such that r|(qk − 1) and JacC(Fqk) con-
tains no elements of order r2. The smallest integer k
which holds the avobe condition is called embedding
degree of JacC with respect to r. For a divisor class
D ∈ JacC(Fqk)[r], fr,D denotes a rational function as-
sociated the principal divisor rD. Let E = ∑nPP be
a divisor class disjoint from D. Then we call Tr the
modified Tate-Lichtenbaum pairing as follows

Tr : JacC(Fqk)[r]× JacC(Fqk)[r]→ µr ⊂ Fqk

(D,E) 7→ fr,D(E) =

(
∏
P

fr,D(P)nP

)(qk−1)/r

.

The map Tr is bilinear, non-degenerate and the
value of Tr is independent of representation of the di-
visor classes.

By limiting the domains of pairings to eigenspaces
of the Frobenius map, more efficient pairings which
have shorter Miller loop were exploited, called Ate
pairings (Granger et al., 2007) and twisted Ate pair-
ings (Zhang, 2010). These pairings are special case
of HV pairings.

Let π be the q-th Frobenius map, we take G1 and
G2 which are subgroups of JacC(Fqk) as follows,

G1 := JacC(Fk
q)[r]∩ker (π− [1])

G2 := JacC(Fk
q)[r]∩ker (π− [q]).

We consider h(x)=
n
∑

i=0
hixi ∈Z[x] such that h(x)≡

0 (mod r) and generalized Miller function fs,h,D (D∈

JacC(Fqk)[r]) which is any function with

n

∑
i=0

hiρ(siD),

where ρ(D) is the reduced divisor which is equivalent
to D. Let s ≡ q j (mod r) for some j ∈ Z. We then
obtain the bilinear pairing (HV pairing) (Balakrishnan
et al., 2009, Theorem 4.1)

as,h : G2×G1→ µr

(D2,D1) 7→ fs,h,D2(D1)
(qk−1)/r,

satisfying

as,h(D2,D1) = Tr(D2,D1)
h(s)/r.

as,h is non-degenerate if and only if h(s) 6≡ 0
(mod r2).

If C has the twist Ct of degree d, i.e., d is the
minimal integer satisfying that there exists an isomor-
phism φ : Ct → C over Fqd , a twisted version of the
HV pairing exists (Balakrishnan et al., 2009, Remark
4.4). We suppose that gcd(k, ]Aut(C)) 6= 1, then

atwist
s,h : G1×G2→ µr

is also a bilinear and non-degenerate (under same con-
dition of HV pairings) pairing (Hess, 2008, Theorem
1).

In twisted case, we remark that the automorphism
[ξ]πk/m plays an important role where m = gcd(k,d)
and [ξ] ∈ Aut(C) defined by the twist (see (Zhang,
2010)). This map acts on G1 as [qm] and acts on G2
as [1], therefore we can reverse the roles of G1 and G2
in HV pairings.

3 KAWAZOE-TAKAHASHI
CURVES AND SECURITY
LEVEL

Many researcher has exploited the pairing-friendly
curves of genus 2 (Kawazoe and Takahashi, 2008;
Kachisa, 2010; Freeman and Satoh, 2011; Guillevic
and Vergnaud, 2013). In this paper, we focus on
Kawazoe-Takahashi curve (Kawazoe and Takahashi,
2008) of embedding degree 16 for efficient field size
at 192-bit security level. By using the method to con-
struct the cyclotomic family of type I (Kawazoe and
Takahashi, 2008, Section 6.1), we can obtain a family
of curves

C : y2 = x5 +ax
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defined over Fp such that the parameter p and r (prime
factor of the order of JacC(Fp)) are parametrized by
t ∈ Z as follows:

r(t) = Φ16(t)/2 = (t8 +1)/2,

p(t) = (1+2t + t2 +2t4 +4t5 +2t6 + t8

+2t9 + t10 +2t12−4t13 +2t14)/8.

Therefore, rho value ρ = g logq/ logr ≈ 3.5 (q is
the size of finite field which the curve is defined, so
now q = p) since p≈ r14/8.

For 192-bit security level, we should choose r over
2384 and pk over 27936 (BlueKrypt, 2012, NIST and
ECRYPT II Recommendations). Note that we chose
the embedding degree k = 16 and the family of curves
in the Table 1 in (Guillevic and Vergnaud, 2013) on
condition that k is in the form 2i3 j (pairing-friendly
field) and the size of r is as close as possible to the
appropriate key length 2384.

To reduce the cost of the pairing we should take
a low hamming weight t. We can find the following
curve by using (Kawazoe and Takahashi, 2008, The-
orem 2):

C : y2 = x5 +11x,

r = 5044072482384476573782993927890\
= 7728964465436586245254453311630\
= 1265371549743031290473008113404\
= 9215268011143297044068561 (392 bits),

p = 8028045195460366401855608810858\
= 1087520356536010516694719024006\
= 5200170619103295404281314877038\
= 0691756335410705811073413334511\
= 1951668540846123577019763686758\
= 1081351540637127776953763530546\
= 24502257207565576569 (685 bits),

t = 562958543356163
= 249 +233 +28 +2+1 (50 bits),

where ρ≈ 3.497.

4 CONSTRUCTION OF THE
PAIRING

Here we construct the optimal HV pairing and its
twisted version on the Kawazoe-Takahashi curve of
embedding degree 16 as described previous section.
First we consider optimal pairings over genus 2
curves as offered in elliptic case by (Aranha et al.,

2013), then we focus twisted version of the pairing in
order to reduce the cost of computing the pairing since
the cost of arithmetic on Jacobian over extension field
become extremely high.

4.1 Optimal HV Pairing

According to the optimal conjecture by Vercauteren
(Vercauteren, 2010), we can take the total loop length
of the Miller function as (log2 r)/ϕ(k) where ϕ is
the Euler’s totient function and this length is opti-
mal. In order to construct optimal HV pairings, we

need to choose h(x) =
n
∑

i=0
hixi ∈ Z[x] so that the total

loop length h(x) =
n
∑

i=0
log2 hi is optimal. Vercauteren

showed the several optimal HV pairings on elliptic
curve families by finding the shortest vectors in a
lattice (Vercauteren, 2010). Specifically, for a ϕ(k)-
dimensional lattice (spanned by the rows)

L =




r 0 0 · · · 0
−s (mod r) 1 0 · · · 0
−s2 (mod r) 0 1 · · · 0

...
...

. . .
−sϕ(k)−1 (mod r) 0 1 · · · 0



,

he used the function ShortestVectors() or
ShortVectors() in Magma (Bosma et al., 1997) for
specific input integers, and he found parametrized the
shortest vectors by interpolating for parametrized r
and s.

We can obtain the shortest vectors for HV pair-
ing ap,h on the Kawazoe-Takahashi curve defined in
previous section in the same manner. The prameters
p,r should be represented as polynomials over integer
ring, we substitute t = 2x+1 to p,r and obtain

r(x) = 128x8 +512x7 +896x6

+ 896x5 +560x4 +224x3

+ 56x2 +8x+1,

p(x) = 4096x14 +24576x13 +67584x12

+ 112640x11 +126848x10 +102144x9

+ 61184x8 +28544x7 +11184x6

+ 4064x5 +1432x4 +456x3

+ 115x2 +20x+2.

Now we can calculate shortest vectors for the lat-
tice L (s = p) using Magma, we obtain the vector

V (x) = [2x+1,0,0,0,0,1,0,0]
= [t,0,0,0,0,1,0,0],
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therefore it holds 2x+1+ p(x)5 ≡ 0 (mod r(x)). We
then compute the Miller function except for final ex-
ponentiation of HV pairing ap,h as

ft+p5,D2
= ft,D2 fp5,D2

c(x,y)
d(x,y)

where

div
(

c(x,y)
d(x,y)

)
= [t]D2 +[p5]D2− [t + p5]D2

is a rational function. Now we consider Frobenius
eigenspace G1,G2 as the domain of the pairing, it
holds fp5,D2

= f p5

1,D2
and f1 is constant, therefore we

can write

ap,h(D2,D1) = ft,D2 ·
c(x,y)
d(x,y)

(D1)
(qk−1)/r.

4.2 Twisted Optimal HV Pairing

As described in the beginning of this section, arith-
metic on Jacobian over the extension field (Fp16 ) costs
very high, we consider twisted version of the HV pair-
ings

Since p≡ 1 (mod 8), C has a twist of degree d =
8. Here we consider the twist over Fp2 as follows:

Ct : y2 = x5 +11λx,
ϕ : Ct →C

(x,y) 7→ (λ
1
4 x,λ

5
8 y)

where λ ∈ Fp2 is not l-th power residue in Fp2 for
l ∈ {1,2,4,8}. So it holds C(Fp16)'Ct(Fp16).

In our case, since m = gcd(k,d) = 8 and e =
k/m = 2 we can represent G2 as

G2 = JacC(Fk
q)[r]∩ker ([ξm]π2−1).

Therefore, we should search short vectors for h(x)
where the coefficients of pi (i : odd) equal to 0 to re-
duce the Miller function in the same manner as HV
pairings. For a lattice

L =




r 0 0 0
−p2 (mod r) 1 0 0
−p4 (mod r) 0 1 0
−p6 (mod r) 0 0 1


 ,

we can find the vector

W (x) = [(2x+1)2,1,0,0] = [t2,1,0,0]

by using ShortVectors() and it holds (2x+ 1)2 +
p(x)2 ≡ 0 (mod r(x)). In this case, the Miller loop
length is twice the one of optimal pairing. We
couldn’t find essentially shorter vectors such that the

coefficients of pi (i : odd) is 0. The twisted HV pair-
ing can be computed as follows:

atwist
p,h (D1,D2) = ft2,D1

· c(x,y)
d(x,y)

(D2)
(qk−1)/r,

where

div
(

c(x,y)
d(x,y)

)
= [t2]D1 +[p2]D1− [t2 + p2]D1.

4.3 Twisted Ate Pairing

Zhang (Zhang, 2010) proposed the hyperelliptic
twisted Ate pairing. Here we confirm that previous
twisted HV pairing corresponds to a twisted Ate pair-
ing. Zhang showed that

fqei (mod r),D1
(D2)

(qk−1)/r

is a bilinear pairing (Zhang, 2010, Theorem 4) where
e is same as the above. We want to take the smallest ei
(mod r), now it holds p10 (mod r) = t2. Therefore,
we can compute simply

atwist(D1,D2) = ft2,D1
(D2)

(qk−1)/r,

and the most efficient pairing on this curve is the
twisted Ate pairing since there is no extra rational
function occurred in the twisted optimal HV pairing
in 4.2.

5 COST ESTIMATES

In this section we provide the cost estimate of the pair-
ing on the Kawazoe-Takahashi curve of embedding
degree 16. As described previous section, the twisted
Ate pairing seems to be the fastest one, we only focus
on this pairing. We have not optimally implemented
the pairing and arithmetic on the field Fp and Fp16 yet,
we show here cost estimates by number of multiplica-
tions in definition field Fp.

The extension field Fp16 should be constructed the
tower of quadratic extension fields. In our case, we
can take 11 as a quadratic nonresidue modulo p and
this is the smallest one. We then construct each ex-
tension fields as follows:

Fp2 ' Fp[x]/(x2−11),

Fp4 ' Fp2 [y]/(y2−α), (α2−11 = 0),

Fp8 ' Fp4 [z]/(z2−β), (β2−α = 0),

Fp16 ' Fp8 [s]/(s2− γ), (γ2−β = 0).

We denote a multiplication and a squaring in Fpi by
Mi and Si, respectively. We also suppose that the cost
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of a squaring equal to one of a multiplication in Fp,
i.e. M1 = S1. We assume to use Karatsuba method for
multiplication in each field, so M16 = 81M1. In the
first quadratic extension field Fp2 , we can perform a
squaring

(a+bx)2 = a2 +11b2 +2abx

with computing
ab,

(a+b)(a+11b)−ab−11ab.

It costs 2 multiplications in Fp and additional ad-
ditions for computing 11c, (c ∈ Fp) (5 additions)
and accumulating. We can therefore consider S2 as
2M1, and we assume that S4 = 6M4, S8 = 18M8 and
S16 = 54M16.

Fan, Gong, and Jao (Fan et al., 2008) proposed
to use the twist of the curve and degenerate divisors
(Frey and Lange, 2006) to use denominator elimina-
tion technique and reduce the cost to evaluate the sec-
ond argument divisors by the rational functions. Their
method can be applied the twisted Ate pairing in our
case:

ft2,D1
(ϕ(D′2))

(qk−1)/r (D′2 = [x− xt ,yt ] ∈ JacCt (Fq2))

where ϕ(D′2) = [x−λ
1
4 xt ,λ

5
8 yt ].

5.1 Miller Loop

For the parameter we described in section 3, the
Miller loop computation of ft2,D1

(D2) requires 96
doublings and 53 addition on Jacobian. In general
case, we can do arithmetic on the divisor group us-
ing affine coordinates by Lange (Lange, 2005) where
the cost of a doubling is I1 +5S1 +22M1 and the one
of an addition is I1 + 3S1 + 22M1. Here we use the
explicit formula and the dedicated coordinate system
by (Fan et al., 2009) for C. As noted by the authors
(Fan et al., 2009, Section 4.6), since f2, f3 = 0 where
C : y2 = f (x), f (x) = x5 + f3x3 + f2x3 + f1x+ f0, a
doubling need 35M1 + 5S1. And we can perform a
mixed addition with 36M1 +5S1.

In the Cantor’s algorithm and Miller loop, we need
to evaluate the auxiliary rational function by substi-
tuting the points associated D2. The rational function
can be obtained as

y− v(x)
u′(x)

where degree of v(x) is at most 3. Since the x-
coordinate of ϕ(D′2) is defined in Fp8 , we can use
denominator elimination so we need not to evaluate
u′(x). By using the new coordinate system from (Fan

et al., 2009), we should evaluate

cD(x,y) = (r̃z11)y− ((s′1z11)x3 + l2x2 + l1x+ l0),

cA(x,y) = (r̃z21)y− ((s′1z21)x3 + l2x2 + l1x+ l0)

for a doubling and an addition, respectively, instead
of y−v(x). The parameters in the above functions are
from (Fan et al., 2008, Table 4,5)

Let f be the intermediate pairing value, when we
take degenerate divisors ϕ(D′2) as second inputs for
the pairing, in each doubling step we compute

f 2cD(ϕ(D′2)) = f 2cD(λ
1
4 xt ,λ

5
8 yt)

and
f cA(ϕ(D′2)) = f cA(λ

1
4 xt ,λ

5
8 yt)

in each addition step. After precomputing
(λ

1
4 xt)

2,(λ
1
4 xt)

3 with S8 +M8 = 45M1, we evaluate
cD(ϕ(D′2)) and cA(ϕ(D′2)) with 16M1 + 3 · 8M1 =

40M1. Therefore computing f 2cD(ϕ(D′2)) and
f cA(ϕ(D′2)) requires 40M1 +S16 +M16 = 175M1 and
40M1 +M16 = 121M1, respectively. Since

t2 = 1+23 +29 +210 +216 +234 +235 +242

+250 +251 +258 +266 +283 +298,

Miller loop requires totally
{45+98(40+175)+13(41+121)}M1 = 23221M1.

5.2 Final Exponentiation

For efficient computation of the final exponentiation,
we should use the method by Scott et al. (Scott et al.,
2009). In their method, we should estimate the cost
of computing Φ8(p)/r where

(p16−1)/r = (p−1)(p+1)(p2 +1)(p4 +1)(p8 +1)/r.

By using the parametrization of p(x) and r(x), we
can compute the coefficients as polynomial of the fol-
lowing polynomial

(p(x)8 +1)r(x) =
7

∑
i=0

li(x)p(x)i.

where
l0(x) = 256x9 +896x8 +1344x7 +1120x6

+ 568x5 +196x4 +66x3 +27x2 +8x+3
l1(x) = −2048x12−10240x11−23040x10

− 30720x9−26944x8−16448x7

− 7408x6−2752x5−980x4

− 348x3−111x2−26x−3
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l2(x) = −64x7−160x6−160x5−80x4

− 22x3−7x2−4x−1
l3(x) = 512x10 +2048x9 +3584x8 +3584x7

+ 2256x6 +960x5 +328x4 +120x3

+ 43x2 +14x+3
l4(x) = −4096x13−22528x12−56320x11

− 84480x10−84608x9−59840x8

− 31264x7−12912x6−4712x5

− −1676x4−570x3−163x2−32x−3
l5(x) = −128x8−384x7−480x6−320x5−124x4

− 36x3−15x2−6x−1
l6(x) = 1024x11 +4608x10 +9216x9 +10752x8

+ 8096x7 +4176x6 +1616x5 +568x4

+ 206x3 +71x2 +20x+3
l7(x) = 32x6 +64x5 +48x4 +16x3 +3x2 +2x+1

First, for an element f ∈ Fp16 , we need to compute

f := f x at 13 times ( f xi
, 1≤ i≤ 13) and this requires

13 · (48S16 +3M16) = 36855M1 since x = 248 +232 +
27 +1.

Second, we compute ( f xi
)p j

with 682M1 for the
coefficients of li(x) as described in (Scott et al., 2009,
Section 5).

Finally, we should a vectorial addition chain such
as (Scott et al., 2009, Section 5) to compute the multi-
exponentiation. To do this we need to compute an
addition chain from coefficients set from li(x), and we
get

[1, 2, 3, 4, 6, 7, 8, 14, 15, 16, 20, 22, 26, 27, 32,
36, 43, 48, 64, 66, 68, 71, 80, 111, 112, 120, 124,
128, 160, 163, 196, 206, 256, 320, 328, 348, 384,
480, 512, 520, 568, 570, 896, 960, 980, 1024, 1120,
1344, 1348, 1360, 1616, 1676, 2048, 2256, 2272,
2752, 3072, 3584, 3592, 4096, 4608, 4656, 4712,

4716, 7408, 7528, 8096, 8352, 9216, 10240, 10752,
10864, 11776, 12912, 16448, 16704, 22528, 23040,
26944, 27968, 28352, 30720, 30752, 31264, 31872,

53760, 56320, 59840, 84480, 84608].

We then compute a vectorial addition chain from this
chain and obtain a chain of length 230. This im-
plies 230− 71 = 159 multiplications in Fp16 includ-
ing 3 squarings where 71 is the number of unit vec-
tors. Consequently the final exponentiation requires
36855M1 +3S16 +156M16 = 49653M1.

5.3 Comparison

In (Aranha et al., 2013), the authors showed that the
pairing over the BLS curves of embedding degree
12 (BLS12) is the most efficient. Here we compare
our cost estimates of the twisted Ate pairing over the
Kawazoe-Takahashi curve with the result of the opti-
mal pairing over the BLS12 in Table 1.

Table 1: Comparison of the computation cost of pairing
over the pairing-friendly curve of genus 1 (BLS12) and
genus2 (Kawazoe-Takahashi).

Curve Phase Mult. in Fp scaled
BLS12 Miller loop 10865M640 10865M640

Final exp. 8464M640 8464M640
Total 19329M640 19329M640

Kawazoe Miller loop 23221M704 28098M640
-Takahashi Final exp. 49653M704 60081M640

Total 72874M704 88178M640

As described in (Aranha et al., 2013, Section 8),
they represent field elements a ∈ Fp as n-bit proces-
sor words (n = d1/`e, `= 1+ blog2 pc) and estimate
the cost of field arithmetic so we should use M704
for comparison. We simply normalize the cost of
our pairing so that M704 = 1.21M640 where 1.21 =
(704/640)2 and the data in “scaled” column are given
by multiplying 1.21 to each element.

In Miller loop, the cost of Kawazoe-Takahashi
pairing is about three times than the one of BLS12
pairing. Now the loop length of our pairing is twice as
much as optimal one, so the Miller loop cost seemed
not to be high and be efficient more of less thanks to
using degenerate divisor and other techniques like de-
nominator elimination.

On the other hand, the final exponentiation cost of
our pairing is very high than the one of BLS12 since
the arithmetic cost in Fp16 is relatively high than one
in Fp12 due to construction of their fields.In addition,
strategy to compute multi-exponentiation in final ex-
ponentiation is more complicated than when k = 12.

6 CONCLUSION

Aranha et al. (Aranha et al., 2013) clarify appropri-
ate pairing-friendly elliptic curves and optimal pair-
ings over the curves at high (192-bit) security level.
In this paper, we considered several pairings over
Kawazoe-Takahashi curves of embedding degree 16
and propose the twisted Ate pairing as most efficient
one. We showed the method to construct the opti-
mal pairings and its twisted version. Although the
Miller loop becomes twice as much as optimal one,
we offered a twisted version of Ate pairing since the
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degree of twist is 8 which is half of the embedding de-
gree to avoid performing arithmetic on divisor classes
defined over the extension field. We described that
some techniques to reduce the computation cost as de-
scribed in (Fan et al., 2008) can apply to our twisted
Ate pairing.

As shown in our cost estimates, the final exponen-
tiation cost is much larger than the stat-of-the-art el-
liptic pairing. We should consider other embedding
degree such as k = 12 to reduce complicated multi-
exponentiation, although we cannot take appropriate
r as an order of Jacobian whose size is close to 384-
bit. The other alternative, we consider to take k = 15
or 27 so that the embedding degrees are coprime to
degree of the twist. In this case, we can construct
twisted pairings whose length of Miller loop are op-
timal unlike the situation in 4.2. We will tackle to
construct the curves which have the above embedding
degrees and a twisted Ate pairing on each curve as a
future work. In addition, other pairing-friendly or-
dinary curves of genus 2 like (Freeman and Satoh,
2011) should be explored whether these curves are
appropriate for constructing pairings at high security
level.

Furthermore, we should explicitly construct ex-
tension fields and optimize the arithmetic on these
field to obtain detailed cost estimate. We will imple-
ment the pairing on Haswell CPU using the SIMD
instructions (AVX2) and show experimental result in
practice.
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