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Abstract: Given a fleet of identical vehicles and a set ofn clients to be served from a single depot, the well-known
vehicle routing problem (VRP) consists in serving each client (with a deterministic demand) once with a unique
vehicle, with the aim of minimizing the total traveled distance. In this work, the basicVRPis extended within
a medical environment, leading toMVRP(for medicalVRP). Indeed, the depot is typically a laboratory for
blood analysis, and a client is assumed to be a medical location at which blood samples should be picked up by
a vehicle. In order to have efficient tests at the laboratory, at most 90 minutes should elapse between the release
time of the blood sample and the delivery time at the laboratory. In addition, only a proportion of the demand
is known in advance and the travel times depend on the traffic conditions. A fleet of non-identical vehicle is
considered (with different speeds and capacities), and each location has to be visited anytime a blood sample
is available. Finally, medical items should be daily delivered from the laboratory to some medical locations.
A transportation cost function with three components has to be minimized. Solution methods are proposed,
which are able to account for all the specific features of the problem. The experiments highlight the benefit of
considering diversion opportunities (which consists in diverting a vehicle away from its planned destinations).

1 INTRODUCTION TO THE
PROBLEM

This study is motivated by a real situation encoun-
tered in the city of Geneva (Switzerland). When the
analysis of blood samples is required at the consid-
ered hospital, the samples are sent to an external lab-
oratory (denotedLABO, which cannot be named be-
cause of a non-disclosure agreement). In order to pre-
serve the quality of the samples, it is very important
to deliver them toLABO as soon as possible. More
precisely, no more than 90 minutes should elapse be-
tween the availability of a sample and its delivery to
LABO. The pick-up of the samples at different loca-
tions is ensured by the vehicles managed byLABO.
These vehicles are continuously turning around the
city in order to collect and deliver all blood samples
(Grasas et al., 2014). In contrast with the broad exist-
ing literature on the vehicle routing problem (VRP),
the combination of the following features makes the
considered problem new. It is denotedMVRP (for
medicalVRP), for which the planning horizon is a day
(from 8am to 6pm).

• Time-windows: the deliveries (blood sample and
medical items) have to be performed before their
associated deadlines (Ciavotta et al., 2009).

• Non-identical vehicles: two fleet of vehicles are
available, namely cars and scooters. In the con-
sidered city, a scooter is on average slightly faster
than a car, but its capacity is lower.

• Stochastic demand: even if the static requests can
be considered before the beginning of the day,
there are stochastic requests all along the day.

• Dynamic planning: the travel times depend on the
traffic conditions, and diversion (i.e., diverting a
vehicle away from its planned route) is allowed.

• Multi-trip with pick-up/delivery: a location has
to be visited when a blood sample is available.
This leads to the situation where each vehicle is
allowed to come back to depot as many times as
decided.

The objective functionf to minimize contains
three types of costs (denotedf1, f2 and f3), consid-
ered in a lexicographic order (i.e., a higher level ob-
jective is infinitely more important than a lower level
one). Note that a lexicographic optimization is often
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used in practice (Respen et al., pted; Solnon et al.,
2008; Thevenin et al., 2015; Zufferey et al., 2006).

1. Taxi cost (f1): each request which cannot be
served on-time byLABO is treated by a taxi (or
a courier service) at a high cost (involving a fixed
cost as well as a variable component depending
on the traveled time).

2. Car cost (f2), formulated as the number of used
cars. Obviously, if a request is served with a
scooter, the cost is lower than if it is served by
a car.

3. Travel cost (f3), computed as the total travel time
of all the vehicles. This cost is proportional to the
fuel consumption.

Because of the difficulty of the problem, heuris-
tic or metaheuristic approaches have to be used (see
(Gendreau and Potvin, 2010; Zufferey, 2012a) for
general references on such solution methods). A main
contribution of this work is the design of efficient so-
lutions methods able to account for all the specific
components of theMVRP. Relying on (Cho, 2015),
this study is organized as follows. TheVRPand some
of its extensions, with the associated literature review,
are discussed in Section 2. The employed method-
ology is presented in Section 3. Experiments are
discussed in 4. They showed the benefit of allow-
ing diversion opportunities in the proposed solution
method. Finally, a conclusion ends up the paper in
Section 5.

2 THE VRPAND SOME
EXTENSIONS

As depicted in (Zufferey, 2012a), modern methods for
solving complex optimization problems are often di-
vided into exact methods and metaheuristic methods.
An exact method guarantees that an optimal solution
will be obtained in a finite amount of time. Among
the exact methods are branch-and-bound, dynamic
programming, Lagrangian relaxation based methods,
and linear and integer programming based methods
(Nemhauser and Wolsey, 1988). However, for a large
number of applications and most real-life optimiza-
tion problems, which are typically NP-hard (Garey
and Johnson, 1979), such methods need a prohibitive
amount of time to find an optimal solution. For these
difficult problems, it is preferable to quickly find a
satisfying solution. If solution quality is not a dom-
inant concern, then a simple heuristic can be em-
ployed, while if quality occupies a more critical role,
then a more advanced metaheuristic procedure is war-
ranted. There are mainly two classes of metaheuris-

tics: local search and population based methods. The
former type of algorithm works on a single solution
(e.g., descent local search, simulated annealing, tabu
search, and variable neighborhood search), while the
latter makes a population of solutions evolve (e.g., ge-
netic algorithms, scatter search, ant colonies, adap-
tive memory algorithms). At each iteration of a lo-
cal search, aneighborsolution is generated from the
currentsolution by performing a modification on the
current solution, called amove. The reader interested
in a recent book on metaheuristics is referred to (Gen-
dreau and Potvin, 2010).

As exposed in (Zufferey et al., 2015), theVRP
is one of the most popular problems in combinato-
rial optimization because of its obvious applications
in transportation. It consists in designing the route
of each of thek identical vehicles with the aim of
minimizing the total traveled distancef (or the to-
tal cost or the total travel time). All vehicles are ini-
tially in a depot, where each route starts and ends.
Each clientv (with a known demand) has to be vis-
ited once by the collection of routes. The problem
is defined in an undirected graphG = (V,E), where
V = {v0,v1, . . . ,vn} is the vertex set andE= {(vi ,v j) |
vi ,v j ∈V, i < j} is the edge set. Note thatv0 is the de-
pot and the other vertices are clients. The following
lexicographical approach is generally used: minimize
k, then the total distancef . The two most well-known
constraints associated with the VRP are: (1)capacity:
each vehicle has a limited capacityQ, thus the de-
mand of each route cannot exceedQ; (2) autonomy:
each vehicle has a limited autonomyA, thus the total
duration of each route cannot exceedA.

For survey papers on theVRP, the reader is re-
ferred to (Cordeau et al., 2005; Cordeau et al., 2002;
Cordeau and Laporte, 2004; Gendreau et al., 2002;
Golden et al., 1998; Laporte and Semet, 2002). Many
algorithms have been developed for theVRP. Among
them, there are some successful classical heuristics
such as Clarke & Wright, Two-matching, Sweep, 1-
Petal and 2-Petal, as tested in (Cordeau et al., 2002).
However, the best performance is achieved by meta-
heuristics (e.g. (Cordeau et al., 2001; Mester and
Braysy, 2007; Nagata and Braysy, 2009; Rochat and
Taillard, 1995; Toth and Vigo, 2003; Vidal et al.,
2014)). Relying on (Zufferey et al., 2015), such com-
petitive metaheuristics are discussed below.

• Adaptive Memory (AM). AM (Rochat and Tail-
lard, 1995) has been proved to be a good algo-
rithm for theVRPand introduces a very innova-
tive approach. At each generation ofAM, an off-
spring solutions is built route by route from a cen-
tral memoryM (which contains routes), thens is
improved with a local search, and the resulting so-
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lution is used to updateM (i.e. routes ofM are
replaced with routes ofs).

• Unified Tabu Search (UTS). UTS(Cordeau et al.,
2001) has been proved to be a very flexible al-
gorithm (easily adapted to variations of theVRP)
with competitive quality and speed.UTSrelies on
a tabu search using an objective function which
dynamically penalizes the constraint violations
(the penalty component is likely to be increased
if the last iterations violate the constraints).

• Granular Tabu Search (GTS). GTS(Toth and Vigo,
2003) has proved to be a very balanced algorithm
in terms of speed and quality. It uses a tabu
search framework and relies on the use ofgranu-
lar neighborhoods to discard the edges that rarely
would belong to a competitive solution.GTSuses
a granularity threshold which is dynamically ad-
justed.

• Active Guided Evolution Strategies (AGES).
AGES(Mester and Braysy, 2007) has been proved
to be very efficient (it is one of the bestVRP
method), with a reasonable speed.AGES is a
combination of several procedures (including lo-
cal search techniques), but an important drawback
is its significant number of parameters.

• Edge Assembly-based Memetic Algorithm
(EAMA). EAMA (Nagata and Braysy, 2009)
combines an edge-assembly crossover with
well-known local search procedures.

• Unified Solution Framework for Multi-Attribute
VRP (USFMA). USFMA (Vidal et al., 2014) is
able to tackle a wide range ofVRPvariants. Us-
ing a diversity management process, the proposed
method is a hybrid genetic algorithm relying on
problem-independent local search and genetic op-
erators.

Several extensions of theVRPcan be found in the
literature (e.g., time-windows, pick-up and delivery,
multi-trips). As indicated in (Lorini et al., 2011; Re-
spen et al., 2014), the recent developments observed
in communication facilities have led to the consid-
eration of dynamic vehicle routing problems where
new customer requests must be inserted in the cur-
rently planned routes as soon as they occur (Gen-
dreau and Potvin, 1998; Psaraftis, 1995). A good sur-
vey about methodologies for solving different types
of dynamic vehicle routing problems can be found
in (Ichoua et al., 2000). The travel times can also
be time-dependent to account for rush hours (Fleis-
chmann et al., 2004; Horn, 2000; Ichoua et al., 2003;
Kaufman and Smith, 1993).

As detailed in (Respen et al., 2014), dynamic ve-
hicle routing, where a part of the information about

the customers to be visited is not known in advance,
is attracting a growing attention from transportation
companies (see, for example, (Gendreau and Potvin,
1998; Psaraftis, 1995)). An interesting survey on
this topic can be found in (Pillac et al., 2013), where
the problem is first discussed, applications are re-
viewed, and solution methods are presented. In par-
ticular, tabu search led to impressive results on dif-
ferent dynamic vehicle routing problems. Nowadays,
new possibilities offered by localization devices such
as global positioning systems (GPS) can be exploited
to improve vehicle routing management. In (Potvin
et al., 2006), the authors are interested in a vehi-
cle routing problem with time windows and dynamic
travel times. The travel times include three differ-
ent components: long-term forecasts, such as those
based on long-term trends (time-dependency), short-
term forecasts, where the travel time on a link is mod-
ified with a random uniform value to account for any
new information available when a vehicle is ready to
depart from its current location, and dynamic pertur-
bations, which represent any unforeseen events that
might occur while traveling on a link (e.g., accident
causing sudden congestion). A modification to a
planned route is only possible when the vehicle is at a
customer location. That is, a planned route cannot be
reconsidered while a vehicle is traveling on a link. An
extension of this model is proposed in (Lorini et al.,
2011), where the position of each vehicle can be ob-
tained when a vehicle reaches some lateness tolerance
limit or when a new customer request occurs. Based
on this information, the planned route of each vehicle
is reconsidered, including the possibility of diversion
(i.e., redirecting a vehicle en route to its current desti-
nation). The results show that the setting of an appro-
priate lateness tolerance limit can provide substantial
improvements. In line with (Respen et al., 2014), in
the second proposed heuristic of this study, we present
a further extension by assuming that the position of
each vehicle is known at all time, thanks to accurate
GPS devices. This assumption allows the system to
react appropriately.

3 METHODOLOGY

In this section, additional information is first given,
and the proposed heuristics are then presented. Be-
cause the planning horizon is a day (from 8am to 6pm)
and the concerned territory is a rather small city, the
autonomy constraint (i.e., the refueling of vehicles)
can be ignored, because fuel can be provided to the
vehicles before or after the planning horizon.
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3.1 Additional Assumptions

The graphG is built based on the Geneva network,
which allows to deduce the distance matrixD. Two
typesS (for scooters) andC (for cars) of vehicles are
considered. Each vehicle has its own speed coeffi-
cientρ (in km/h), and it is assumed thatρS= 1.1·ρC,
whereρS (resp.ρC) is the speed coefficient for scoot-
ers (resp. cars). Indeed, a scooter generally moves
faster than a car within a city environment. The stan-
dard travel timêti j between two locationsi and j is
computed asDi j /ρ (whereρ ∈ {ρS,ρC}). A coeffi-
cientT is used to model the traffic situation:T = 1 in
standard conditions,T > 1 if there is traffic conges-
tion (e.g., beginning and end of the day), andT < 1
if we have low traffic conditions (e.g., second part of
the morning, first part of the afternoon). The actual
travel timeti j between locationsi and j is computed
ast̂i j ·T. Based on the situation of the city of Geneva,
two coefficients are considered: low traffic condition
between 10am and 3pm (withT = 0.5) and high traf-
fic condition for the remaining part of the planning
horizon (withT = 1.25).

Two types of request are considered: (1) the blood
samples represent 80% of the demand; (2) freight
(i.e., the delivery of medical material from the depot)
constitutes 20% of the demand. The previous requests
are all static (i.e., their release times are known before
the planning horizon), whereas 40% of the blood re-
quests are dynamic (i.e., they appear randomly during
the day). Each requestj is associated with: a unique
location, a volumeq j , a release timer j (at the cus-
tomer location), and a deadlined j (at theLABO de-
pot). In other words, a time window[r j ,d j ] is asso-
ciated with each requestj, where in contrast with the
classicalVRPliterature,d j is not a due date (or time)
at location j, but a deadline at the depot. Note that
formally, a due date can be exceeded but penalized,
whereas a deadline cannot be exceeded. For each re-
quest j, its release timer j is generated based on a
uniform distribution during the whole day (but not
within the 90 last minutes of the day for the blood
request). The deadlined j of any blood sample is as-
sumed to be 90 minutes after its release time (i.e.,
d j = r j +90), whereas the deadline for the freight is
randomly generated with a uniform distribution in in-
terval min(r j + 60;d0), whered0 is the closing time
of LABO(i.e., 6pm).

3.2 Heuristics

Because of the dynamic nature ofMVRP, quick
reactions have to be taken during the day. For
this reason, sophisticated metaheuristics cannot be

employed, thus a straightforward but fast solution
method is designed.

The proposed heuristic relies on a fixed fleetF =
(S,C), whereS is the set of scooters andC the set
of cars. In a first phase, before the beginning of the
planning horizon, astatic solutionis generated with a
greedy insertion procedureGR, followed by a descent
local search methodDLS based on the well-known
CROSS-exchanges (as in (Lorini et al., 2011)).GR
starts from scratch and at each step, it inserts a re-
quest j to a routeR (of a scooter or a car) in order
to minimize the augmentation off2 (ties are broken
with f3, and then it tries to balance the request load
over all the vehicles), while satisfying the capacity
and the deadline constraints. If it is not possible to
find a feasible insertion, a taxi is used for requestj
(i.e., the value off1 augments). Because the static
solution will be significantly modified with the occur-
rence of random events (e.g., dynamic travel times,
stochastic requests), there is no need to use more ad-
vanced methods to generate it.

In order to obtain afull solution, a discrete event
simulator (e.g., (Silver and Zufferey, 2005)) is needed
to generate the random events occurring all along the
day. The used time bucket is a minute. Anytime a
request appears, it is greedily assigned to a route (as
in GR), andDLS is then directly performed. There is
no need to discuss the computing time of the proposed
overall method, because the insertion of a new request
only requires a small fraction of a second.

In the basic versionH1 of the heuristic, each in-
sertion can only be performed after the current desti-
nation of each vehicle, whereas in the enhanced ver-
sionH2 of the heuristic, it is allowed to divert a vehi-
cle away from its current destination. Of course,H2
is only possible if there is an information system al-
lowing an efficient communication between the vehi-
cles and the dispatching office, as described in (Lorini
et al., 2011). Giving an opportunity to divert a vehi-
cle away from its initially planned route is a signifi-
cant advantage: it gives more flexibility to the plan-
ner. Note that the insertion procedure (involvingGR
andDLS) works withexpectedtravel times, which are
different from theactual(i.e., simulated) travel times.
In such a context, the use of diversion actions is more
than relevant.

Let s⋆ be the best solution encountered during the
search process, and letf ⋆ = ( f ⋆1 , f ⋆2 , f ⋆3 ) be its asso-
ciated simulated values. We have now all the ingre-
dients to formulate a generalizable approach in Al-
gorithm 1, where the stopping condition can be the
non-reduction off ⋆ at the end of the main loop.
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Algorithm 1: General solution method forMVRP.

Initialization

1. Choose an initial fleetF = (S,C) of vehicles (e.g.,
the one associated with the involved company).

2. Set f ⋆ = ( f ⋆1 , f ⋆2 , f ⋆3 ) = (+∞,+∞,+∞).

While a stopping condition is not met, do

1. SetsF as theempty solution(i.e., it does not con-
tain any request).

2. Before the planning horizon, generate astatic so-
lution sF while considering only the known static
requests. For this purpose,GR andDLS are se-
quentially used to insert the requests one by one.

3. Use the discrete event simulator to extendsF as a
full solution. Anytime a request appears, insert it
greedily to the current solutionsF (i.e., to a route)
with GR, followed byDLS. In the variantH1 of
the method, each insertion can only be performed
after the current destination of a vehicle, whereas
in the variantH2, diversion is allowed.

4. Updates⋆: if f (sF )< f ⋆ (under the lexicographic
approach), sets⋆ = sF and f ⋆ = f (sF ).

5. Modify the fleetF = (S,C) by augmenting or re-
ducingSor C (but not both) by one unit (it is for-
bidden to consider again an already investigated
fleet).

Return s⋆ with value f ⋆ = ( f ⋆1 , f ⋆2 , f ⋆3 ).

4 EXPERIMENTS

In addition to the above provided information, the fol-
lowing data is also assumed to be given.

• Instance size: 300 static requests, 200 dynamic
requests, 25 material requests,n= 20 locations.

• The distances (in km) between the medical loca-
tions belong to[5,30].

• LABOfleet: 15 cars and 10 scooters, car capacity
= 900 (liters), scooter capacity = 60 (liters).

• Volume q j (integer) of a blood sample request:
uniformly generated in interval[1,10] (liters).

• Volume q j of a medical material request: uni-
formly generated in set{10,20,30,40,50,60}
(liters).

• For each location, a blood requestj is generated
everyt minutes, wheret is an integer uniformly

generated in interval[23,33] (if j is static)
or in interval[40,50] (if j is dynamic).

• The car base speed (i.e.,ρC) is fixed to 17km/h
(based on the provided practical information).

An important issue is to determine the fleetF =
(S,C) of vehicles. One can deduce that ifF is too
small (resp.C too large,S too large), f1 will be too
high (resp. f2 too high, f3 too high). Initially, F is
defined as the current situation encountered byLABO
(i.e., 15 cars and 10 scooters). For each fleetF, 10
runs of the heuristic (eitherH1 orH2) on 10 scenarios
are performed, and average costs (i.e., over 100 exper-
iments) are computed for each component (f1, f2 and
f3). Then, other fleets are tested by adding a single
vehicle (either a scooter or a car), until bad results
(i.e., solutions with high costs) are obtained. It was
first observed that the initial fleet is significantly un-
derstaffed. As a goal ofLABOconsists in assigning at
most 10% of the total number of requests to the taxis,
then a fleet of 18 scooters and 12 cars was found to be
the most efficient. We have performed various sensi-
tivity analysis, which are summarized as follows.

• With the initial fleet of vehicles, ifρC increases
from 17km/h to 27km/h, the number of taxi re-
quests averagely decreases from 19.5% to 7.3%.
The most sensitive interval forρC is [19,22], cor-
responding to taxi requests in [18.8%, 11.2%].

• With 15 cars, the average number of requests as-
signed to taxis decreases from 84 to 62 if the num-
ber of scooters increases from 10 to 24. The most
sensitive interval for the number of scooters is
[10,15], corresponding to taxi requests in [84, 66].

• With 18 scooters, the average number of requests
assigned to taxis decreases from 79 to 62 if the
number of cars increases from 8 to 18. The most
sensitive interval for the number of cars is[8,12],
corresponding to taxi requests in [79, 64].

We have observed the benefit of the proposed in-
gredients introduced in the heuristics. Firstly, the use
of the CROSS-exchanges (Taillard et al., 1997) leads
to a reduction of the total travel time (i.e.,f3) by
roughly 15%. More precisely, the total travel time
averagely decreases from 114.8 hours to 101.9 hours.
Secondly, consideringT ∈ {0.5,1.25} for two distinct
time periods (versusT = 1 for the whole day) leads
to an augmentation of 22% on the number of assigned
requests toF . It means that no attention should be
paid to standard traffic conditions (i.e., withT = 1)
when designing and tuning a solution method, be-
cause standard traffic conditions are far away from
real conditions. Thirdly, the use of diversion oppor-
tunities has an important impact, asH2 is able to
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roughly assign the double of dynamic requests when
compared toH1.

5 CONCLUSION

In this paper, we have introducedMVRP, a new prob-
lem relying on the well-known vehicle routing prob-
lem. In MVRP, blood samples have to be picked-up
(when available) at some medical locations and then
delivered on-time (in order to preserve the quality of
the blood samples) to the depot, which is a labora-
tory denotedLABO. The planning horizon is a day.
Two fleets of vehicles are managed byLABO: cars
and scooters. IfLABO is not able to assign a request
to one of its vehicle, it can call an external taxi to
treat the request (but at a higher cost). ForLABO, the
involved transportation functions to minimize are the
taxi costs, the number of employed cars, and the total
traveled distance of its vehicles. Because of the dy-
namic nature of the problem (indeed, the demand is
stochastic and the travel times depend on the traffic),
a quick solution method has to be employed.

The performance of a solution method can be eval-
uated according to several criteria (Zufferey, 2012a).
The most relevant criteria are presented below.

• Quality: value of the obtained results, according
to a given objective function.

• Speed: time needed to get good results.

• Robustness: sensitivity to variations in problem
characteristics and data quality.

• Ease of adaptation of the method to a problem,
because, as mentioned in (Woolsey and Swanson,
1975), ”people would rather live with a problem
they cannot solve than accept a solution they can-
not understand”.

• Possibility to incorporate properties of the prob-
lem. It is admitted that an efficient metaheuris-
tic should incorporate knowledge from the con-
sidered problem (Grefenstette, 1987).

The second heuristic, able to divert away a vehicle
from its current destination, seems to perform well
according to all the above criteria. Future works
might include: the consideration of maintenance con-
straints with an extended planning horizon (Hertz
et al., 2009), the use of other constructive algorithms
with a learning process (Zufferey, 2012b), and the de-
velopment of exact methods (e.g., based on linear pro-
gramming) to benchmark the heuristics on determin-
istic cases.
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