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Abstract: Automatic human action recognition is a challenging and largely explored domain. In this work, we focus
on action segmentation with Hough Transform paradigm and more precisely with Deeply Optimised Hough
Transform (DOHT). First, we apply DOHT on video sequences using the well-known dense trajectories fea-
tures and then, we propose to extend the method to efficiently merge information coming from various sensors.
We have introduced three different ways to perform fusion, depending on the level at which information is
merged. Advantages and disadvantages of these solutions are presented from the performance point of view
and also according to the ease of use. Thus, one of the fusion level has the advantage to stay suitabe even if
one or more sensors is out of order or disturbed.

1 INTRODUCTION

Action Recognition has been widely investigated
since it is a challenging issue with many applications
in various domains such as surveillance, interactive
video games and smart homes.

In the context of human action recognition, many
works have been done for classification purposes.
Most of them classify a short video representing one
action instead of detecting an action in unsegmented
video. In real applications, videos are not segmented
and it is challenging to correctly extract the action(s)
occurring at each frame.

Many descriptors, extracted from RGB images,
depth or audio sensors have been employed to cor-
rectly recognize actions. However, in real applica-
tions, some of these sensors can be unavailable or data
can be irrelevant for noise reasons or temporary oc-
clusions. In this context, merging information from
available sensors and ignoring irrelevant information
seems very accurate.

In this paper, we propose a fusion method based
on Hough transform (more precisely on Deeply Op-
timised Hough Transform (Chan-Hon-Tong et al.,
2014) ) which benefits from available information, but
still works if one of the data sources becomes unavail-
able.

After a short review of previous works on action
recognition in section 2, section 3 presents Hough
methods and particularly DOHT. Then, the three fu-
sion methods proposed in this article are introduced in
section 4. Finally, experimental results are presented
in section 5.

2 RELATED WORK

First, many works have been done using local feature
descriptors extracted directly from 2 dimensions RGB
videos as, for example, Histogram of Oriented Gra-
dient (HOG) (Dalal and Triggs, 2005), Histograms
of Optical Flow (HOF) (Dalal et al., 2006), Motion
Boundary Histograms (MBH) (Wang et al., 2013) or
SIFT (Lowe, 2004). To successfully focus on interest
areas, various methods have also been explored such
as Space-Time Interest Points (STIPs) (Laptev, 2005;
Laptev et al., 2008) or Dense Trajectories and Im-
proved Dense Trajectories (Wang et al., 2013; Wang
and Schmid, 2013). Some works detect and use visual
related parts to recognise actions, as (Tian et al., 2013)
for example which extend the Deformable Part Model
of (Felzenszwalb et al., 2010) to action recognition or
as (Xiaohan Nie et al., 2015) which jointly estimates
human poses and recognizes actions. Other methods
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use contextual information in videos (Sun et al., 2009)
in order to improve classifiers with richer descriptors.

Then, with the emergence of low-cost depth sen-
sors, many works exploit the depth information to
model the environment and improve recognition rates
for many usages (see (Han et al., 2013) for a re-
view). Other works (Hu et al., 2015) use both
RGB and depth data to discover actions in RGB-
D videos. Augmented descriptors were constructed,
such as (Xia and Aggarwal, 2013) who designed a
filtering method to extract STIPs from depth videos
(called DSTIP)and a new feature to describe 3D
depth cuboid (DCSF). Another paper introduces Tra-
jectories of Surface Patches (ToSP) which describe
depth appearance around trajectories extracted near
the body, in the RGB domain (Song et al., 2015).
Thanks to those depth sensors, it’s now also possible
to extract and utilize skeleton information in addition
to RGB-D information (Wang et al., 2012).

It has been proven that depth and skeleton infor-
mation can improve recognition rates in action recog-
nition issues (Han et al., 2013). However in some real
applications, this kind of sensor can hardly be setting
up since it would mean replacing many sensors (video
surveillance, for instance). Moreover, low-cost depth
sensors are not accurate in outdoor situations. Thus, it
seems opportune to design a method which can ben-
efit from depth information but which can also work
efficiently without such data. For instance, (Lin et al.,
2014) designed an approach using depth and skele-
ton data during training and extracting ”augmented
features” from RGB cameras by retrieving depth in-
formation from the learned model during testing step.
(Wang et al., 2014) use skeleton data to create a multi-
view model of human body parts gestures and then,
recognize action using only 2D videos.

As previously mentioned, many descriptors and
extractors have been proposed in order to model and
classify human actions. They all have their benefits
and disadvantages. With the idea of gaining from all
these methods, approaches able to fuse various de-
scriptors are necessary.

For RGB features, more and more works explore
the feature fusion to enhance recognition rates. In
(Wang et al., 2011), each descriptor (extracted along
trajectories from a dense grid) is quantized with k-
means clustering and histogram of visual word is
computed for video representation. Then, using a
non-linear SVM with a RBF-χ2 kernel (Laptev et al.,
2008), descriptors are combined in a multi-channel
approach (Ullah et al., 2010). (Peng et al., 2014)
propose a comprehensive study of fusion methods
where three fusion levels have been explored for ac-
tion recognition, namelydescriptor, representation

andscore levels. They show that the result of each
fusion level depends on the correlation between fea-
tures. More recently, (Cai et al., 2015) merge hetero-
geneous features at a semantic level.

In this work, we aim to merge information coming
from different features and/or different views for ac-
tion segmentation. At this end, we decide to use meth-
ods based on Hough Transform (Hough, 1962) as they
lead to accurate results (Yao et al., 2010) and can be
deployed in real time. Among them, we choose the
DOHT method (Chan-Hon-Tong et al., 2013a) that is,
at present, the more efficient since it optimizes all the
voting scores used in the Hough method.

3 HOUGH TRANSFORM FOR
ACTION RECOGNITION

3.1 Hough Transform Paradigm

Following (Chan-Hon-Tong et al., 2014), we in-
troduce in this section the Hough Transform and
different methods to compute the associated vote
map, particularly Deeply Optimized Hough Trans-
form (DOHT) that we use for our evaluation.

Since it has first been published to dectect lines
in pictures (Hough, 1962), Hough transform has been
widely used in computer vision and various Machine
Learning applications. For example, it has been ap-
plied for tracking (Gall et al., 2011), object detection
(Gall and Lempitsky, 2009) or human action detec-
tion (Yao et al., 2010; Chan-Hon-Tong et al., 2013a;
Kosmopoulos et al., 2011). Moreover, as this method
is computically efficient and has low complexity, it
fits well for real-time system like skeleton extraction
(Girshick et al., 2011).

In order to recognize human activities, Hough
transform follows a Vote Paradigm in three steps: af-
ter feature extraction from the video and a quantiza-
tion step, each of the localised features (extracted at
time t) votes (through its representing codewordc)
for an actiona, centered at timet + δt with a weight
θ(a,δt ,c). Theθ function represents the weight map
used to link each localised feature to the final Hough
scoreHV that estimates the likelihood that the action
a is performed at timet ′

HV (t ′,a) = ∑
(c,t)∈V

θ(a, t ′− t,c). (1)

V represents the set of all localised quantified fea-
tures extracted in a video. Note thatθ does not depend
on t but only onδt the interval between extraction
time and the action center. Thus, the Hough paradigm
is summarised as:
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1. Feature extraction and quantization,

2. Voting process based on learned weights,

3. Extraction of the action(s) to be detected.

The following section focuses on the second step,
consisting in computing the map weight associated to
each localised feature.

3.2 Training Process

Most of existing algorithms based on Hough trans-
form mostly differ on the weights learning method.
The methods are either based only on statistic on the
training data (Leibe et al., 2004) or use an optimisa-
tion step to compute the weights map (Maji and Ma-
lik, 2009; Wohlhart et al., 2012; Zhang and Chen,
2010).

Chan-Hon-Tong et al. (Chan-Hon-Tong et al.,
2013a) introduced a new formulation of the voting
process to include the existing methods. Thus, in
the Implicit Shape Model (ISM) (Leibe et al., 2004),
weights are only based on statistics on the training
dataset :

θISM(a,δt ,c) = P (a,δt |c), (2)

whereP (a,δt |c) is proportional to the number of oc-
currences where an actiona is observed with a dis-
placementδt from a codewordc.

Some methods optimize these weights as the Max-
margin Hough Transform (MMHT) (Maji and Malik,
2009) which introduces a coefficientwc associated to
each codeword, increasing the weights according to
the discriminative power of the codewords:

θMMHT (a,δt ,c) = wc×θISM(a,δt ,c). (3)

With the Implicit Shape Kernel (ISK) (Zhang and
Chen, 2010), also introduced a coefficient but this
ones are set according to the training examples :

θISK(a,δt ,c) = ∑
i

wi ×Pi(a,δt |c), (4)

wherePi(a,δt |c) is also based on statistics computed
on the training database but considering only the ex-
amplei.

The method proposed by Wohlhart et al.
(Wohlhart et al., 2012) introduces a weighting coef-
ficient associated to each displacement:

θISM+SV M(a,δt ,c) = wδt ×P (a,δt |c) . (5)

The common point between all these optimized
methods is that they add discriminative parameters
(wc, wi or wδt ) to the generative coefficient introduced
by the ISM. Moreover, each method optimizes only
one parameter.

In (Chan-Hon-Tong et al., 2013a), Chan-Hon-
Tong et al. propose to use discriminative votes

strongly optimized on the training database accord-
ing to all the parameters,i.e. the considered action,
the codeword and the time displacement:

θDOHT(a,δt ,c) = wa,δt ,c. (6)

In this article, we exploit the weights estimated
with this method called DOHT that uses, in its origi-
nal version, only skeleton based features. We propose
to extend this method in such a way it will be able to
merge features coming from different camera views,
different features or different sensors.

4 FUSING INFORMATION IN
THE DOHT CONTEXT

The DOHT algorithm is very promising as weights
are globally optimized according to all parameters.
Moreover, its structure, based on a voting process,
leads to a computationally efficient method, with re-
stricted and controlled latency, which can be used in
real time applications.

To our best knowledge, DOHT algorithm has only
been developed on skeleton data for action recogni-
tion. We propose, in this article, to apply it on video
stream or on streams coming from multiple sensors.
At this end, a step is necessary to merge information
that can be various and heterogeneous. This allows,
for example, the method to works on RGB video and
depth data on inside areas and only on video data on
outside areas where low-cost depth sensors are not ef-
fective.

4.1 Video Features into DOHT
Algorithm

Among existing video features, only local features
can be used due to the structure of the algorithm based
on weights associated to localized features. Among
the widely-used video features, we use three descrip-
tors estimated on a dense grid at multiple scales, since
they have proven to be efficient for action recognition:

Trajectory Shape (TS) (Wang et al., 2011)): suc-
cession of displacement vectors between subse-
quent points of a trajectory,

Histogram of Oriented Gradient (HOG) ((Dalal
and Triggs, 2005)): Focuses on statistical appear-
ance information along the extracted trajectory
(Wang et al., 2011),

Histogram of Optical Flow (HOF) (Laptev et al.,
2008): captures the local motion information,
along the extracted trajectory (Wang et al., 2011).
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The performance evaluation of DOHT indepen-
dently applied on these new features consists in di-
rectly replacing skeleton trajectories with dense tra-
jectories. This means that all trajectories extracted at
each frame generate a quantized localized featurec
what will be used to estimate the weightsθ(a,δt ,c)
during the learning process and to vote (equation
1) during the segmentation process. Thanks to the
DOHT paradigm, a different weight is learned for
each combination of (a, δt , c), namely action, time
displacement and codeword. Thus, the algorithm
gives more importance to trajectories that are locally
(time axis) discriminant to recognize an action and
penalize irrelevant trajectories.

A new extension, proposed in this paper, is the
fusion of features in the DOHT context, that can be
performed in a single camera view (fusion of differ-
ent visual features), across different camera views, or
both.

4.2 Fusion of Information

As mentioned in (Peng et al., 2014), the fusion of in-
formation can be done at three different levels : low
level, middle level or high level. In the following we
develop the deployment of these three fusion levels
for action segmentation based on DOHT approach.

Low Level Fusion: This level, also calledfeatures
fusion hereafter, consists in concatenating extracted
descriptors before quantization, leading to an highest
dimensional feature vector (Figure 1). As previously,
the feature vector is then quantize to obtained local-
ized featuresc used in the voting process. In the liter-
ature, this fusion level has, for example, been applied
on cuboids as in (Peng et al., 2014)). In our case, we
use trajectories which can be described by a single
feature (TS, HOG or HOF), by two features (the con-
catenation or HOG and HOF, TS and HOG,...) or by
all features.

This fusion level is simply managed with the
DOHT algorithm since descriptors are transformed in
codewords as in the original version of the algorithm.

Middle Level Fusion: At this stage, also called
vote fusion in the following, each feature is pro-
cessed independently in a first step. They are then
merged in a single vote map (Figure 1). This level cor-
responds to the representation fusion level in (Peng
et al., 2014). More concretely, in the DOHT case,
each trajectory generates as many codewords as the
number of used features. During the training process,
the vote mapθ(a,δt ,c) is bigger than previously as
the number of codewordsc is higher (for example, if

we usen1 codewords for the first feature andn2 code-
words for the second one, the last dimension of the
vote table is nown1+ n2). During the vote process,
each trajectory votes as many time as the number of
used features.

With this level of fusion, in the case of a descriptor
not provided during the testing step (e.g. sensor fail-
ure), the corresponding descriptor will not participate
to the voting process and therefore the overall system
will be relatively undisturbed.

One disadvantage, compared with the low level
fusion, is that the learning and voting steps will be
longer as the dimension of the vote table is higher.

High Level Fusion: Finally, in the highest fusion
level (score fusion), each feature is processed inde-
pendently and leads to a scoreH f (t,a) (equation 1)
representing the likelihood for each actiona to be ex-
tracted at timet. In this paper, we use a SVM learned
onto the set of action scoresH f (t,a) which provides,
after learning, a global scoreH(t,a). Thus, this fusion
consists in learning the importance of each feature in
a global way rather than for each instance individu-
ally.

4.3 Fusion of Camera Views

When human actions are captured by cameras, an im-
portant issue occurs: occlusions (self occlusion or by
an object). This problem can be handle by combin-
ing information from different view points. If they
are correctly chosen, they will not be affected by the
same occlusions.

In a multi-view context, only two fusion levels
can be exploited: vote fusion and score fusion lev-
els. Indeed, features extracted from the different cam-
era views are not matched across the image. So, as
the number of trajectories is different according to the
view and as the trajectories are not identified from a
view to another, the feature fusion would not make
any sense in this context. The two other fusion levels
(vote fusion and score fusion) can be performed in the
same way as previously detailed.

5 EXPERIMENTAL RESULTS

We evaluated our method on the TUM dataset
(Tenorth et al., 2009) since it is well adapted to action
segmentation. It is composed of 19 videos of different
actors setting the table (around 2 minutes each). This
activity is segmented in 9 actions namelyCarrying
while locomoting, Reaching, taking something, Low-
ering an object, Releasing/Grab tomething,Opening
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Figure 1: DOHT algorithm combined with the three different fusion levels.

door, Closing door, Opening a drawerandClosing
a drawer. For each example, videos were captured
from four different views and skeleton data, manually
extracted from the different views, are provided. To
obtain results comparable to the state of the art, more
particularly to (Yao et al., 2011) and (Chan-Hon-Tong
et al., 2013a), the same experimental protocol has
been applied for dividing data between training and
testing databases. Moreover, results are presented in
terms of accuracy,i.e., the number of correctly la-
belled frames divided by the total number of frames.

We performed the experiments with descriptors
extracted with the available code of (Wang et al.,
2011) and kept the same trajectory length as in the
original paper (15 frames). For quantization step, we
evaluated various values ofK (number of centers for
K-means) and keptK = 3000 which provided best re-
sults on this dataset.

5.1 Results on Separated Descriptors

First, we performed the DOHT algorithm on each de-
scriptors (Trajectory Shape (TS), HOG and HOF) and
each view separately. Accuracy results are reported in
table 1.

On all views, HOG outperforms other descriptors,
meaning that static appearance (around trajectories) is
the most discriminative descriptor in the three tested

ones. In the case of TUM dataset, since movements
for taking or lowering something (for example) are
very similar, appearance is naturally much more dis-
criminative since it can encode information as holding
an object or not. For instance, for the actiontaking
something, on view 0, TS precision is 23.4% when
HOG’s is 61.9%.

5.2 Fusion of Information

We then evaluated our method with the three levels of
fusion presented in section 4.2. Results obtained by
combining video features are summarised in table 1.

Since TS encodes time evolution of points in the
image and HOG encodes local appearance, they are
very complementary and the DOHT algorithm bene-
fits from their fusion. On all views, when this fusion
is performed at features level, fusion results outper-
form single descriptor results.

On the opposite, HOF and TS are both extracted
from optical flow, thus they are highly correlated and
the algorithm doesn’t benefit from their fusion, these
fusion scores are very similar to those with TS or HOF
computed separately.

Combining HOG and HOF, which are both local
descriptors is less efficient than TS+HOG. HOG and
HOF are descriptors accumulated along the trajectory
but do not take into account evolution across time axis
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whereas it is really relevant for action recognition.
Finally, combining all descriptors leads to a very

high vote table dimension which makes classification
more difficult.

Table 1: Accuracy on TUM dataset. Blue values outperform
corresponding single descriptor performance.

Camera View 0 1 2 3

Each descriptor separately
TS 75.0 72.6 70.5 73.5
HOG 81.8 81.3 80.5 77
HOF 79.6 76.5 74.7 74.5

Fusion of 2 descriptors : TS+HOG
Features fusion 82.5 81.7 80.7 77.9
Votes fusion 80.3 80.1 78.1 77
Scores fusion 79.2 78.2 78.1 76.9
Fusion of 2 descriptors : TS + HOF
Features fusion 78.6 76.5 74.1 74.5
Votes fusion 79.3 76.6 73.4 75.0
Scores fusion 78.9 79.4 73.9 75.4
Fusion of 2 descriptors : HOG+HOF
Features fusion 80.5 78.2 79.7 77.5
Votes fusion 81.9 80.4 80.0 77.2
Scores fusion 81.4 79.4 78.5 76.4

Fusion of 3 descriptors : TS + HOG + HOF
Features fusion 80.6 78.0 78.3 77.9
Votes fusion 81.2 80.0 77.6 77.2
Scores fusion 80.0 78.6 77.3 76.8

5.3 View Fusion

Then, we evaluate our method on view fusion (table
2), since combining different views can be very infor-
mative and can manage occlusions. For this fusion,
concatenated TS+HOG descriptor were used since it
has proven to give best performances on single view.

In this dataset, views 0 and 1 are taken from the
same side of the room. They are thus both affected by
occlusions when the actor is dropping items on the ta-
ble. In the same way, cameras 2 and 3 are affected by
occlusions when actions are occurring on the kitchen
side (figure 2 shows approximate position of each sen-
sor).

Combinations using both sides of the room are the
most effective since occlusions on one view can be
compensated by another sensor. As view 3 is less
informative than view 2 (and view 1 less than view
0), best result is obtained when fusing views 0 and 2.
This demonstrates that our fusion method in DOHT
paradigm successfully extract and combine informa-
tion from different views.

When fusion is performed at the score level, the
learning step is faster since the weight maps dimen-

0 1

2 3

Table

Kitchen side

Figure 2: Approximate position of each camera (red), with
the actor (blue circle) being on kitchen side.

sions are lower and each weight map can be esti-
mated independently. However, execution times are
the same during the testing step for votes and scores
levels. For the performance point of view, discrimina-
tive power of each feature is learnt in a local way with
the votes level (for each time displacement) instead
of in a global way for the scores level, as explained in
section 4.2. So, using two views, the fusion of infor-
mation at the lowest fusion level (votes level) always
leads to the most accurate results. When combining
all views, similar results are obtained regardless of fu-
sion level.

Table 2: View fusion accuracy in DOHT paradigm accord-
ing to the fusion level. In brackets, the difference between
the fusion score and the best view score used in the fusion.

View Perf View Perf

Single View
0 82.5 2 80.7
1 81.7 3 77.9

Fusion of 2 views at the Votes level
0 + 1 83.1 (+0.6) 1 + 2 82.1 (+0.4)
0 + 2 83.9 (+1.4) 1 + 3 81.7 (+0)
0 + 3 83.4 (+0.9) 2 + 3 80.1 (-0.6)

Fusion of 2 views at the Scores level
0 + 1 83.0 (+0.5) 1 + 2 82.1 (+0.4)
0 + 2 82.5 (+0.0) 1 + 3 81.5 (-0.2)
0 + 3 82.0 (-0.5) 2 + 3 79.5 (-1.2)

Fusion of all views
Votes lvl 83.1 (+0.6) Score lvl 83.2 (+0.7)

5.4 Comparison with State of the Art
Methods

Table 3 compares our results with state of the art
methods. First, note that using combining multi-
ple views video (2 or more) in the DOHT paradigm
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outperforms methods using skeleton features, even if
skeleton features were estimated from all views. This
show that data coming from RGB images can be more
relevant than skeleton, as they carry more informa-
tion. In all cases, merging data from different views
outperforms state of the art methods.

Please note that contrary to (Chan-Hon-Tong
et al., 2013b) which report a recognition rate of
90.8%, data are not manually segmented but the
whole videos are used for segmentation and recog-
nition.

Table 3: Comparison with published results on TUM
datasets. Results are just extracted from the corresponding
papers and do not come from reimplementation.

Method Result
All features + HF (Yao et al., 2011) 81.5

DOHT (Chan-Hon-Tong et al., 2013a) 81.5
DOHT (27 joint skeleton) 83.0

ours (HOG+HOF, one view) 82.5
ours (all Views) 83.2

ours (best) 83.9

6 CONCLUSIONS

In this paper, we proposed a method for merging in-
formation coming from different sensors or different
features, particularly suitable in the context of Hough
detector. At the end, we introduced three fusion lev-
els tested on TUM dataset, using various descriptors
of Dense Trajectories (Wang et al., 2013) such as His-
togram of Oriented Gradient, Histogram of Optical
Flow or Trajectories Shape. We also evaluated the
fusion methods for data obtained from different cam-
eras.

When using only one descriptor and a single cam-
era, best results are obtained with HOG, for all views.

Descriptors fusion can be useful if they carry com-
plementary information but can deteriorate the results
otherwise, as the problem dimension increases. Thus,
we found that optimal combination of descriptors is
obtained using TS and HOG features. Moreover, best
performances appear when merging these descriptors
at the lowest level.

Later, we emphasized that merging different views
improves performances (compared to single view re-
sults). Best performances are again attained when
combining the views at the lowest fusion level, i.e.
at the votes level in this case. Furthermore, this
multi-view fusion method outperforms the skeleton-
based approach using the same DOHT paradigm, cor-
responding to state of the art best performances.
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