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Abstract: Multi-agent Plan Recognition (MPAR) infers the goals of teams of agents from their observed actions. 
Recognizing action sequences spread over an unknown team composition significantly increases the 
complexity of creating a priori plan libraries. A key challenge in MPAR is effectively pruning the large 
search space of goal to team assignments and agent to team compositions. In this paper, we describe discrete 
Multi-agent Plan Recognition as Planning (MAPRAP), which extends Ramirez and Geffner’s Plan 
Recognition as Planning (PRAP) approach into multi-agent domains. MAPRAP uses a planning domain 
(rather than a library) and synthesizes plans to achieve hypothesized goals with additional requirements for 
suspected team composition and previous observations. Recognition is accomplished by comparing the 
planning results and identifying feasible combinations of plans and teams being observed. We establish a 
performance profile for discrete MAPRAP in a multi-agent blocks-world domain. We vary the number of 
teams, agent counts, and goal sizes and measured accuracy, precision, and recall at each time step. We also 
compare two pruning strategies for discrete MAPRAP that dampen the explosion of hypotheses. More 
aggressive pruning recognizes multi-agent scenarios with an average of 1.05 plans synthesized per goal per 
time step as opposed to 0.56 for single agent scenarios demonstrating feasibility of MAPRAP and 
benchmarking for future improvements. 

1 INTRODUCTION 

Recognizing the plans of multi-agent teams from 
remote observation of their actions enables people 
and intelligent systems to make sense of complex 
behaviors, identify collaborations pursuing goals of 
interest, and better predict the future actions and 
states of the world. The process of identifying 
cooperative plans and the composition of teams 
pursuing them is called Multi-agent Plan 
Recognition (MPAR) (Sukthankar et. at., 2014). 
MAPR attempts to identify plans underlying the 
observable actions of a collection of agents, which 
are organized into teams that share a common goal 
and perform coordinated planning. An online 
recognizer observes actions conducted by agents 
over time and at each time step infers a set of 
interpretations for the scene. These interpretations 
including which agents are working together as a 
team, what goal(s) each team is pursuing, and how 
they may intend to achieve their goal(s) in the form 
of a multi-agent plan. 

In this paper, we describe two variants of 
discrete Multi-agent Plan Recognition as Planning 

(MAPRAP), which extends Ramirez and Geffner’s 
(2009, 2010) Plan Recognition as Planning (PRAP) 
approach into multi-agent domains. We outline the 
core challenges and present our approach for 
evaluation. Finally, we give results for a version of 
the well-established Blocks World domain (e.g., 
Ramirez and Geffner, 2009; Zhou et al., 2012; 
Banerjee et al., 2010). These results serve as a 
baseline for on-going research exploring alternative 
strategies (e.g., probabilistic), application to other 
benchmark multi-agent domain, and comparing 
recognition performance under less ideal conditions 
(e.g., missing observations or competing teams). 

MAPRAP is intended as a general plan 
recognition technique, meaning that it can be applied 
to any domain provided the necessary inputs and, 
until fully general, stated assumptions are met. Our 
focus on disallowing prior domain knowledge 
follows the lead of General Game Playing (GPP) 
(Genersereth and Love, 2005) and International 
Planning Competition (IPC) communities. In 
MAPRAP, the planning domain is based on Plan 
Domain Description Language (PDDL) (McDermott 
et al., 1998) annotated for multiple agents (similar to 
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MA-PDDL (Kovacs, 2012) conversion via (Muise et 
al., 2014)). This domain includes a complete initial 
state, list of agents, list of potential goals, and action 
model. 

In contrast, most plan recognition techniques 
match observables to patterns within a plan library 
(often human generated). Where a plan library 
represents what to watch for if a plan is being 
attempted, a plan domain is designed for creating 
plans to accomplish goals. As a result, MAPRAP 
does not depend on human expertise to identify 
domain-specific recognition strategies. Likewise, 
this approach does not require a training set of 
labeled traces or a priori base rates. 

Figure 1 shows our high level architecture for 
staging and evaluating MAPRAP (and other 
recognizers). We simulate a given scenario to 
produce a full action trace and ground truth 
interpretation of goals and team composition. Under 
the keyhole observer model (Cohen, Perrault, and 
Allen, 1981) used here, the recognizer has no 
interaction with the observed agents. The results in 
this paper reflect an ideal observer model with a 
serialized trace. Our online recognizer (MAPRAP) 
then infers team goals and compositions after every 
observation (not required). Finally, we evaluate the 
performance of recognition using precision, recall, 
and accuracy by comparing the recognizer’s 
interpretation with the simulator’s ground truth 
interpretation. 

 
Figure 1: Our architecture uses a general planning domain 
to simulate and recognize multi-agent actions, enabling 
reliable performance evaluation. 

We position this work with related research in 
plan recognition in Section 2. We describe our 
recognizer in Section 3, and our evaluation approach 
in Section 4. Section 5 provides baseline results for 
efficiency and recognition performance. This is 
followed by future work and conclusions. 

 
 

2 RELATED RESEARCH 

Multi-agent Plan Recognition (MAPR) solutions 
attempt to make sense of a temporal stream of 
observables generated by a set of agents. The 
recognizer’s goal is to infer both the organization of 
agents that are collaborating on a plan, and the plan 
each team is pursuing. (While not addressed here, 
some have also included identifying dynamic teams 
that change over time (e.g., Banerjee, Kraemer, and 
Lyle 2010; Sukthankar and Sycara, 2006, 2013).) To 
accomplish this goal, solutions must address two 
challenges noted by Intille and Bobick (2001). First, 
the combination of agents significantly inflates state 
and feature spaces making exhaustive comparisons 
infeasible. Second, detecting coordination patterns in 
temporal relationships of actions is critical for 
complex multi-agent activities. 

One approach is to use domain knowledge to 
identify activities indicative of team relationships. 
For example, Sadilek and Kautz (2010) recognized 
tagging events in a capture-the-flag game by 
detecting co-location followed by an expected effect 
(tagged player must remain stationary until tagged 
again). Sukthankar and Sycara (2006) detected 
physical formations in a tactical game domain and 
inferred cooperation to prune the search space. 
While practical and effective for the given domains, 
discovering exploitable characteristics has been a 
human process and similar patterns may not exist in 
other domains. 

Generalized MAPR solutions use domain-
independent recognition algorithms along with a 
description of the domain. Most commonly, a plan 
library is created that provides patterns for which a 
recognizer searches. For example, Banerjee, 
Kraemer, and Lyle (2010) matched patterns in 
synchronized observables, for all combination of 
agents, to a flattened plan library. Sukthankar and 
Sycara (2008) detected coordinated actions and used 
them to prune the multi-agent plan library using a 
hash table that mapped key observerable sequences 
for distinguishing sub-plans (i.e., last action of 
parent and first of sub-plan). However, it may be 
difficult to build a full plan library for complex 
domains, so others use a planning domain to guide 
the recognizer. Zhuo, Yang, and Kambhampati 
(2012) used MAX-SAT to solve hard (observed or 
causal) and soft (likelihood of various activities) 
constraints derived from the domain (action-model). 
In an effort to replicate the spirit of general game 
playing and IPC planning competitions where the 
algorithm is only given a general description of the 
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problem at run-time, we use no a priori domain-
specific knowledge or manually tuned libraries. 

Plan Recognition as planning (PRAP) was 
introduced by Ramirez and Geffner in (2009) as a 
generative approach to single agent plan recognition 
that uses off the shelf planners and does not require 
a plan library. They convert observations to interim 
subgoals that the observed agent has accomplished. 
They synthesize plans for each goal with and 
without the observed subgoals, if the costs are equal 
then observations could be interpreted as pursuing 
that goal. In (Ramirez and Geffner 2010), they 
extended PRAP to probabilistic recognition. In the 
case of uniform priors, the most likely goals are 
those that minimize the cost difference for achieving 
the goal with and without explicitly meeting the 
observed subgoals. This research builds on PRAP 
for creating a generalized MAPR given a planning 
domain. 

3 MULTI-AGENT PLAN 
RECOGNITION AS PLANNING 

We had three key objectives for MAPRAP: 
1) Perform recognition from a standardized planning 

domain (in PDDL) and action trace, vice a plan 
library. This removes the quality of the plan 
library as a factor in recognition performance. 

2) Prune the search space intelligently for any 
generalized domain (without domain-specific 
tricks) and scale efficiently (i.e., closer to a single 
agent solution). 

3) Accuracy of MAPR as characterized by precision, 
recall, and accuracy measures over time and 
across a wide range of randomly generated 
recognition instances. This provides a baseline for 
performance comparison. 

3.1 Recognizing Multi-agent Plans 

We consider a set of ݊ agents, ܣ ,଴ܣ}= ,ଵܣ …	,  ௡ିଵ} partitioned into ݉ teams from aܣ
set ܶ = { ଴ܶ, ଵܶ, … , ௠ܶିଵ} possible teams such that 
each | ௫ܶ| ≥ 1. Agents perform actions in pursuit of a 
team goal ܩ௫ ∈  is the set of all ܩ for all ܶ, where ܩ
possible goals. In this paper, each team has one goal. 
Agents perform actions over time, (1, … ,  to (ݐ
achieve goals. These actions, M, and environment 
state, E, are defined in PDDL. We define the 
planning domain as a tuple ܦ = ,ܣ} ,ܯ,ܩ  We .{ܧ
define a scenario as a set of team assignments {(ܣ௫, ௫ܶ) … ,௭ܣ) ௭ܶ)} and team goals 

,௫ܩ)} ௫ܶ) … ,௭ܩ) ௭ܶ)} with each agent assigned to a 
single team and each team having a unique goal. 

Our simulation component accepts both the 
domain and scenario, plans actions for teams, and 
generates a trace file. A trace consists of time-
stamped observations ܱ = { ଵܱ, … , ܱ௧} where each 
includes a grounded action from ܦ parameterized by 
the acting agent ܽ ∈  We refer to observable .ܣ
actions performed by a specific agent ܽ at time ݐ as ܱ௧௔. Actions that can take place concurrently (same ݐ) are randomly ordered in the serial trace. 

Our keyhole observer component interleaves the 
actions of all agents while maintaining action 
dependencies within the teams. This is also where 
adding noise and observation filtering can be 
performed, if desired. In this paper, all actions in the 
domain are observable, such that ଵܱ…௧௔  includes all 
actions performed by the agent from time 1 to time ݐ, but this is not a requirement. Our system does not 
add “noop” actions when no action is observed for 
an agent at any time unless this is an action explicit 
in the PDDL. 

The recognition component takes the domain as 
input and accepts a stream of observables. For each 
observable (alternatively each simulation time step) 
the recognition component outputs a set of 
interpretations. An interpretation is the tuple ܫ ,ݐ)= ,௫ܣ ௬ܶ, ,,௭ܩ ,݌ ்ܲೡ) where p is the probability (in 
this discrete case 0 or 1) that at time ݐ the scenario {(ܣ௫, ௩ܶ), ( ௩ܶ,  ௭)} is true and ்ܲೡ is the team planܩ
trace on which the interpretation is based. ்ܲೡ 
includes observerables ଵܱ…௧஺ೣ , and predicts future 
actions necessary to achieve the goal ܩ௭ 

Finally, the evaluation component compares the 
ground truth scenario against each of the 
recognizer’s interpretations. It scores accuracy, 
precision, and recall of each agent/goal combination 
for interpretation at each time step. We do not 
penalize interpretations for agents that with no 
observed actions up to that time step. 

3.2 Extending PRAP to Teams 

The single agent PRAP method of plan recognition 
compares the utility cost ܥ (e.g., number of actions) 
of two plans for each possible goal ܩ௫ ∈  The first .ܩ
reflects only the goal ܩ௫, the second incorporates a 
sequence of observations ଵܱ…௧ (from initial to the 
current time step	ݐ) expressed as subgoals that are 
achieved by performing the observed actions, ܩ௫ ∩ଵܱ…௧. When ܥ(ܩ௫) < ௫ܩ)ܥ ∩ ଵܱ…௧), the goal ܩ௫ is 
not supported by the observations because the 
observed actions increased the cost of achieving the 
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goal. See Ramirez and Geffner’s (2009) single agent 
PRAP for complete explanation and implementation. 

We summarize performance simply as the 
number of plans synthesized, because CPU and 
clock time for planning varies greatly with domain 
and planner used. The worst-case number of plans 
synthesized for a single agent scenario (|A|=1) with 
interpretations at every time step is |ܩ| ∙ ݐ) + 1). If 
we directly apply this to any partitioning of agents 
into teams, the worst case is |ܩ| ∙ ݐ) + 1) (|ܣ|)ܾ∙ ∙  is the Bell number (web 	(|ܣ|)ܾ	where	ଶ|ܣ|
2015) of number of agents (representing an 
exponential number of possible team combinations). 
By accepting the domain assumption that team 
activities are independent of other team 
compositions, we can reduce the worst case to |ܩ| ݐ)∙ + 1) ∙ (2|஺| − 1). In either case, considerable 
pruning is required to contain this explosion in the 
number of plans synthesized and make this approach 
tractable. 

MAPRAP manages the potential agent to team 
assignments ߪ for each goal ܩ௫ఙ. We start by 
hypothesizing all teams compositions are pursuing 
all goals, until observations indicate otherwise. We 
then synthesize multi-agent plans using team 
compositions to get a base utility cost ܥ(ܩ௫ఙ) 
without observations. At each time step, ܥ(ܩ௫ఙ) ௫ఙܩ)ܥ	>	 ∩ ଵܱ…௧ఙ ) identifies that the last observed 
action is inconsistent with the plan and MAPRAP 
then prunes the search space. Two variants of this 
algorithm (A and B) are outlined below, where an 
off-the-shelf planner is called to compute ܩ)ܥ௫௔ ∩ଵܱ…௧௔ ) by the function “plan	 (goal,	 previously	observed	 actions,	 hypothesized	 team	 composition)”. 
The plan function internally prunes cases where no 
agents are hypothesized for a particular team/goal 
combination. The “obs	 (step,	 goal,	 team)” function 
returns the appropriate previously observed actions 
of the hypothesized team as subgoals. The function 
“report(step)” outputs the inferred agent/goal 
interpretations for external scoring. 

In the discrete MAPRAP case, we can prune 
planning instances that cannot effect the 
interpretation. These include: any hypothesized team 
in time steps with no new observables for agents on 
the team (i.e., no explaining away alternatives), and 
all team/goal combinations that have been 
previously eliminated. MAPRAPA implements this 
as outlined in Code 1. 

MAPRAPB further reduces the worst-case 
bounds by starting with a single team (composed of 
all agents) for each goal, and removing agents from 
compositions when their individual actions cause the 
utility cost to increase. While this will not work for 

all domains (there is a requirement for independence 
between the actions of agents on separate teams), the 
worst-case performance for MAPRAPB (in  terms  of 

 
//Step 1: Initialize all possible 
// interpretations are feasible 
#comps=2^#agents // all agent combos 
hyps[#comps][#goals]=true 
 
//Step 2: Baseline cost of plans 
// for goals given no observables 
for each goal in all goals 
 for each team composition 
  baseCost[team] goal]= 
    plan(goal, null, team) 
 
//Step 3: Process observations 
// comparing costs to baseline 
step=0 
for each new observable action 
 step++ 
 agent=agentFromAction(observable) 
 for each goal in all goals 
  for each team composition 
   if(hyps[team][goal]==true) 
    cost=plan(goal, obs(step,goal, 
     team), team) 
 
//Step 4: Prune compositions when 
// observed actions counter plan 
    if(cost > baseCost[team][goal]) 
     hyps[team][goal]=false 
 
//Step 5: report metrics for time 
step 
 report(step) 

Code 1: MAPRAPA prunes team composition/goal 
combinations when plan given observables has a higher 
cost than without observables. 

plans synthesized) is bound by |ܩ| ∙ ݐ) + 1) + |ܩ|  The second term counts updating the .(1-|ܣ|)∙
baseline plan after eliminating an agent from a 
goal/team combination. In Code 2 the baseline cost 
never goes down, if reducing the number of agents 
in a domain could reduce cost, this strategy would 
fail. However, MAPRAPB effectively reduces the 
number of planning jobs run closer to single agent 
PRAP speed. 

3.3 Assumptions and Limitations 

There are several aspects of MAPRAP that are not 
addressed in this paper, for example, alternative 
domains and planners, probabilistic recognition, and 
imperfect observer models. These will be addressed 
in future papers. 
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The given initial and discrete implementation of 
MAPRAP relies on two assumptions about the 
domain that we will resolve in future research. The 
first assumption is that every agent is performing 
towards a goal optimally  and  is  never  impeded  by 
//Step 1: Initialize all possible 
// interpretations are feasible 
#teams=#agents // worst case 
comps[#teams][#agents]=true 
hyps[#teams][#goals]=true 
 
//Step 2: Baseline cost of plans 
// for goals given no observables 
for each goal in all goals 
 for each team composition 
  baseCost[team][goal]= 
    plan(goal, null, team) 
 
//Step 3: Process observations 
// comparing costs to baseline 
step=0 
for each new observable action 
 step++ 
 agent=agentFromAction(observable) 
 for each goal in all goals 
  for each team composition 
   if (hyps[team][goal]==true) 
    cost=plan(goal,obs(step,goal, 
     team),team) 
 
//Step 4: Prune agents from teams 
when 
// their actions reduce performance 
    if (cost > baseCost[team][goal]) 
     comps[team][agent]=false 
     baseCost[team][goal]= 
      plan(goal, null, team) 
 
//Step 5: report metrics for time 
step 
 report(step) 

Code 2: MAPRAPB prunes agents from teams when their 
actions increase the utility cost. 

agents on other teams. Since team plans are 
synthesized independently, this also requires that the 
actions of different teams be independent of each 
other. This assumption excludes competitive 
domains, which is important for many applications. 

A second assumption, is that more agents on a 
team achieve a goal at least as efficiently as fewer 
agents, even if this means some agents simply do 
nothing. This may not be true for domains with 
communication or sequential action requirements 
that burden larger teams. MAPRAP relies on this 
condition when comparing its initial hypothesis (all 
agents are on the same team for all goals) to 
alternatives. 

Other PRAP assumptions, such as finite and 
enumerable goals, and purposeful actions are also 
true of MAPRAP. 

4 MAPRAP EVALUATION 

MAPRAP is designed to be independent of any 
particular domain or planner. For this evaluation, we 
selected the Team Blocks domain because it is 
simple multi-agent adaption is well established 
within the MAPR community. Similarly, we chose 
an open source implementation of GraphPlan 
because it is well known and we wished to 
emphasize the use of an off-the-shelf planner. 

4.1 A Team Blocks Domain 

Team Blocks is a multi-agent adaptation of the 
Blocks World domain. In this domain there are a 
series of lettered blocks randomly stacked on a table. 
Each agent operates a robot gripper that can pick up 
one block at a time as shown in Figure 2. Teams are 
composed of 1 to |A| agents that are planning 
together and act collaboratively towards the same 
goal. Actions are atomic and include: pickup, 
unstack (pickup from atop another block), put down 
(on table), stack (put down atop another block); each 
action is parameterized by the block(s) acted on and 
agent performing the action. 

We added several domain predicates to prevent 
agents from picking up blocks held by other agents. 
Since we plan teams independently, we also 
partitioned the blocks and goals to avoid conflicting 
plans. However, no information about teams (count 
or sizes), partitioning of blocks, or goals 
assignments are accessible to the recognizer. 

The goal of Team Blocks is for each team to 
rearrange blocks into a stack in a specified sequence. 
Goals are random letter sequences of various lengths 
interpreted from bottom (on table) to up (clear). 
Letters are not repeated in a goal. For example, (and 
(ontable A) (on B A) (on C B) (clear C)) specifies the 
goal “ABC” pursued by Team0 in Figure 2. 

4.2 Multi-agent Plan Synthesis 

We used PDDL to specify our plan domain, which 
enables the use of a wide range of off-the-shelf 
planners (e.g., those used in the IPC Planning 
Competitions). For this research we used an instance 
of GraphPlan (Pellier, 2014) with post-planning 
multi-agent scheduling logic. Because PDDL was 
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Figure 2: In Team Blocks, agents (grippers) are controlled 
by a team to achieve a stacking. Elements in blue are 
inferred by the recognizer.  

not designed for multi-agent planning, every action 
in our domain includes a parameter of type “agent” 
which allows the planner to treat all available agents 
as a resource (i.e., it plans for the entire team). We 
synthesize plans for each team independently, 
including only agents on, or hypothesized to be on, 
that team. The trace outputs for all teams are 
interleaved by time step, and concurrent actions are 
shuffled to mitigate ordering effects. 

We randomly generated 5180 different Team 
Blocks scenarios (280 were used to evaluate the less 
efficient MAPRAPA) with stacks of 6-8 blocks per 
team (μ=6.5). We generated 1-2 teams with 1-5 
agents that did not need to be balanced, but had at 
least one agent per team. Goals were all 
permutations of selected stacking orders of 4-7 
blocks (μ=4.5). The number of potential goals 
averaged 64 for single team and 873 for two team 
scenarios. In the two team case, each team’s 
partition was full sized, and possible goals included 
permutations across the partitions. During the 
generation process, we stored the ground truth team 
and goal assignments as a key for evaluation, but 
these were not available to the recognizer. 

We simulated each scenario and recorded an 
action trace. Each trace consists of a serialized 
sequence of observerables identifying time step (1 to 
t), agent, and action. Traces ranged from 5 to 16 
actions (μ=9.2 for single and μ=8.6 for two team 
scenarios). The average action parallelism (multiple 
agents acting in the same time step) for multi-agent 
scenarios was 1.4 concurrent actions. We used the 
action trace from initial simulation as the 
observables for plan recognition. 

 
 
 

5 RESULTS 

Efficiency of MAPRAP pruning is measured in 
terms of the count of plans synthesized, which we 
normalized to average number of runs per goal per 
time step. (Figure 3). 

 
Figure 3: MAPRAPA effectively prunes the multi-agent 
search space well below the exponential worst case. 
MAPRAPB reduces the average runs/goal/time for 
scenarios to near the single agent worst-case (1.0). 

Precision at each time step indicates how well 
recognition eliminates interpretations of the scenario 
that do not match ground truth. In MAPRAP, all 
interpretations are hypothesized correct until 
demonstrated to be incorrect by conflicting 
observations. As shown in Figure 4, single agent 
scenarios require fewer observations to converge on 
interpretations than multi-agent scenarios. 

We observed that reduced precision in the multi-
agent cases reflects both fewer observations per 
individual agent at any time, and a large number of 
potential team compositions. In essence, the 
explanatory power of each observation is diluted 
across the pool of agents. As a result, it takes more 
observations to rule-out all feasible, but ultimately 
incorrect, interpretations. In fact, unlike the single 
agent case, most multi-agent traces ended before the 
recognizer converged to a single correct 
interpretation. We did not reduce the goal count or 
ensure goals diversity, which would improve 
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precision. Since MAPRAP is an online recognizer, it 
is not aware does not observe the ending of a trace. 
Accuracy is the ratio of correct classifications to 

total classifications. As shown in Figure 5, the mean 
accuracy of MAPRAP trails the single agent case, 
but demonstrates correct classifications of potential 
interpretations for observerables over time. 

 

 
Figure 4: Precision plots show multi-agent scenarios have 
significantly more possible interpretations, so many more 
observations are required to eliminate interpretations that 
are consistent with observations up to that time, but 
incorrect. 

Overall, performance of MAPRAP performance 
for multi-agent scenarios trailed single agent. 
MAPRAPA averaged 4.38 plans synthesized for 
each goal and time step for multi-agent, and 0.73 for 
single agents. MAPRAPB averaged 1.05 plans 
synthesized for each goal and time step for multi-
agent, compared to an exponential worst case at the 
high end and 0.56 for single agents as a lower 
bound. MAPRAP recognizes multi-agent scenarios a 
accurately, which is driven by the ability to quickly 
eliminate many incorrect interpretations. However, 
the magnitude difference in precision between single 
and multi-agent scenarios reflects the large number 
of team composition possibilities. This indicates that 
few multi-agent recognition jobs converged to a 
single interpretation. 
Recall is the measure of how well the recognizer 

positively classifies correct interpretations. Discrete 
MAPRAP, when pruning assumptions are met, has 
complete recall (value of 1) at every time step 
because it only  eliminates  candidate  interpretations 

   
Figure 5: Accuracy metric shows single agent scenarios 
converge on correct interpretation faster than multi-agent 
scenarios. 

when contradicted by observables. This results in no 
false negative interpretations. This was expected 
given that we did not implement erroneous 
observations, suboptimal agent action, or 
probabilistic recognition in this experiment. 

6 FUTURE WORK 

These discrete implementations of MAPRAP expose 
several potential areas for improvement. We are 
adapting additional planning domains for multi-
agent benchmarking. New domains challenge the 
limitations of the current approach and enforce 
generality. One key consideration is to select/build 
domains that sample the relevant domain 
characteristic space. Also, the ability to scale from 1 
agent on 1 team to n agents on n teams, ensures we 
the domain does not artificially limit the team 
composition search space, and allows us to compare 
performance. Similarly, Ramirez and Geffner (2009) 
demonstrated that satisficing and specialized 
planners improved speed at little cost to PRAP 
accuracy, making it useful for investigating larger 
parameter spaces. We intend to examine the use of 
other planners as well. 

Secondly, we have implemented discrete 
MAPRAP. Like Ramirez and Geffner (2010), we 
can extend this to a probabilistic solution. Moving 
away from discrete decisions will introduce new 
efficiency challenges for which we are developing 
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new pruning strategies. Critically, this will also 
better enable recognition of less optimal action 
traces, not currently addressed in the discrete 
version. We expect probabilistic interpretations will 
also improve precision and accuracy, but vary recall. 

In addition we intend to reduce our current 
limitations, show the effects of observation 
error/loss, and reduce restrictions on inter-team 
interaction (e.g., competition) in future research. 

7 CONCLUSIONS 

In this paper we introduce a discrete version of 
MAPRAP, our MAPR system based on an extension 
to PRAP. It meets our key objective for working 
from a planning domain vice plan library. This 
enforces generalization and eliminates the 
dependency on human expertise in designating what 
actions to watch in a domain.  

We show that recognizing team compositions 
from an online action sequence, without domain-
specific tricks, greatly extends the search space. We 
evaluated the efficiency and performance of two 
MAPRAP pruning strategies on a range of Team 
Blocks scenarios, and established (with stated 
domain limitations) efficiencies nearing single agent 
solutions. We found we can effectively prune the 
search space to improve run-time independent of the 
planner used. 

We evaluated recognition performance on a 
multi-agent version of the well-known Blocks World 
domain. We assessed precision, recall, and accuracy 
measures over time. This is particularly relevant as 
observations in multi-agent scenarios have many 
more possible valid interpretations than the single 
agent case. This in turn requires more observations 
to limit potential interpretations down to the single 
correct interpretation. Our precision and accuracy 
measures over time help quantify this difference. 

REFERENCES 

Banerjee B, Kraemer L, and Lyle J (2010) “Multi-Agent 
Plan Recognition: Formalization and Algorithms,” 
AAAI 2010. 

Banerjee B, Lyle J, and Kraemer L (2011) “New 
Algorithms and Hardness Results for Multi-Agent 
Plan Recognition,” AAAI 2011. 

Cohen P R, Perrault C R, and Allen J F (1981) “Beyond 
Question Answering,” in Strategies for Natural 
Language Processing, NJ: Hillsdale, pp. 245-274. 

Genersereth M and Love N (2005) “General Game 
Playing: Overview of the AAAI Competition,” AI 
Magazine, vol. 26, no. 2. 

Intille S S and Bobick A F (2001) “Recognizing planned, 
multi-person action,” Computer Vision and Image 
Understanding, vol. 81, pp. 414-445. 

Kovacs D (2012) “A Multi-Agent Extension of 
PDDL3.1,” WS-IPC 2012:19. 

McDermott  D and AIPS-98 Planning Competition 
Committee (1998) “PDDL–the planning domain 
definition language” 

Muise C, Lipovetzky N, Ramirez M (2014) “MAP-
LAPKT: Omnipotent Multi-Agent Planning via 
Compilation to Classical Planning,” Competition of 
Distributed and Multi-Agent Planners (CoDMAP-15). 

Pellier D (2014) “PDDL4J and GraphPlan open source 
implementation,” http://sourceforge.net/projects/pdd4j. 

Ramirez M and Geffner H, (2009) “Plan recognition as 
planning,” in Proceedings of the 21st international 
joint conference on Artificial intelligence. 

Ramirez M and Geffner H (2010) “Probabilistic Plan 
Recognition using off-the-shelf Classical Planners,” 
Proc. AAAI-10. 

Sadilek A and Kautz H (2010) “Recognizing Multi-Agent 
Activities from GPS Data,” in Twenty-Fourth AAAI 
Conference on Artificial Intelligence. 

Sukthankar G, Goldman R P, Geib C, Pynadath D V, Bui 
H H (2014) “Plan, Activity, and Intent Recognition 
Theory and Practice.” Morgan Kaufmann. 

Sukthankar G and Sycara K (2006)  “Simultaneous Team 
Assignment and Behavior Recognition from Spatio-
temporal Agent Traces,” Proceedings of the Twenty-
First National Conference on Artificial Intelligence 
(AAAI-06). 

Sukthankar G and Sycara K (2008) “Efficient Plan 
Recognition for Dynamic Multi-agent Teams,” 
Proceedings of 7th International Conference on 
Autonomous Agents and Multi-agent Systems (AAMAS 
2008). 

web (2014) "Bell Numbers" Wikipedia, The Free 
Encyclopedia. Wikimedia Foundation, Inc. 

Zhuo H H, Yang Q, and Kambhampati S (2012) "Action-
model based multi-agent plan recognition." Advances 
in Neural Information Processing Systems 25. 

 

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

148


