
Multi-Agent Plan Recognition as Planning (MAPRAP)

Chris Argenta and Jon Doyle
North Carolina State University, Raliegh NC, U.S.A.

Keywords: Multi-Agent Systems, Plan Recognition.

Abstract: Multi-agent Plan Recognition (MPAR) infers the goals of teams of agents from their observed actions.
Recognizing action sequences spread over an unknown team composition significantly increases the
complexity of creating a priori plan libraries. A key challenge in MPAR is effectively pruning the large
search space of goal to team assignments and agent to team compositions. In this paper, we describe discrete
Multi-agent Plan Recognition as Planning (MAPRAP), which extends Ramirez and Geffner’s Plan
Recognition as Planning (PRAP) approach into multi-agent domains. MAPRAP uses a planning domain
(rather than a library) and synthesizes plans to achieve hypothesized goals with additional requirements for
suspected team composition and previous observations. Recognition is accomplished by comparing the
planning results and identifying feasible combinations of plans and teams being observed. We establish a
performance profile for discrete MAPRAP in a multi-agent blocks-world domain. We vary the number of
teams, agent counts, and goal sizes and measured accuracy, precision, and recall at each time step. We also
compare two pruning strategies for discrete MAPRAP that dampen the explosion of hypotheses. More
aggressive pruning recognizes multi-agent scenarios with an average of 1.05 plans synthesized per goal per
time step as opposed to 0.56 for single agent scenarios demonstrating feasibility of MAPRAP and
benchmarking for future improvements.

1 INTRODUCTION

Recognizing the plans of multi-agent teams from
remote observation of their actions enables people
and intelligent systems to make sense of complex
behaviors, identify collaborations pursuing goals of
interest, and better predict the future actions and
states of the world. The process of identifying
cooperative plans and the composition of teams
pursuing them is called Multi-agent Plan
Recognition (MPAR) (Sukthankar et. at., 2014).
MAPR attempts to identify plans underlying the
observable actions of a collection of agents, which
are organized into teams that share a common goal
and perform coordinated planning. An online
recognizer observes actions conducted by agents
over time and at each time step infers a set of
interpretations for the scene. These interpretations
including which agents are working together as a
team, what goal(s) each team is pursuing, and how
they may intend to achieve their goal(s) in the form
of a multi-agent plan.

In this paper, we describe two variants of
discrete Multi-agent Plan Recognition as Planning

(MAPRAP), which extends Ramirez and Geffner’s
(2009, 2010) Plan Recognition as Planning (PRAP)
approach into multi-agent domains. We outline the
core challenges and present our approach for
evaluation. Finally, we give results for a version of
the well-established Blocks World domain (e.g.,
Ramirez and Geffner, 2009; Zhou et al., 2012;
Banerjee et al., 2010). These results serve as a
baseline for on-going research exploring alternative
strategies (e.g., probabilistic), application to other
benchmark multi-agent domain, and comparing
recognition performance under less ideal conditions
(e.g., missing observations or competing teams).

MAPRAP is intended as a general plan
recognition technique, meaning that it can be applied
to any domain provided the necessary inputs and,
until fully general, stated assumptions are met. Our
focus on disallowing prior domain knowledge
follows the lead of General Game Playing (GPP)
(Genersereth and Love, 2005) and International
Planning Competition (IPC) communities. In
MAPRAP, the planning domain is based on Plan
Domain Description Language (PDDL) (McDermott
et al., 1998) annotated for multiple agents (similar to

Argenta, C. and Doyle, J.
Multi-Agent Plan Recognition as Planning (MAPRAP).
DOI: 10.5220/0005707701410148
In Proceedings of the 8th International Conference on Agents and Artificial Intelligence (ICAART 2016) - Volume 2, pages 141-148
ISBN: 978-989-758-172-4
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

141

MA-PDDL (Kovacs, 2012) conversion via (Muise et
al., 2014)). This domain includes a complete initial
state, list of agents, list of potential goals, and action
model.

In contrast, most plan recognition techniques
match observables to patterns within a plan library
(often human generated). Where a plan library
represents what to watch for if a plan is being
attempted, a plan domain is designed for creating
plans to accomplish goals. As a result, MAPRAP
does not depend on human expertise to identify
domain-specific recognition strategies. Likewise,
this approach does not require a training set of
labeled traces or a priori base rates.

Figure 1 shows our high level architecture for
staging and evaluating MAPRAP (and other
recognizers). We simulate a given scenario to
produce a full action trace and ground truth
interpretation of goals and team composition. Under
the keyhole observer model (Cohen, Perrault, and
Allen, 1981) used here, the recognizer has no
interaction with the observed agents. The results in
this paper reflect an ideal observer model with a
serialized trace. Our online recognizer (MAPRAP)
then infers team goals and compositions after every
observation (not required). Finally, we evaluate the
performance of recognition using precision, recall,
and accuracy by comparing the recognizer’s
interpretation with the simulator’s ground truth
interpretation.

Figure 1: Our architecture uses a general planning domain
to simulate and recognize multi-agent actions, enabling
reliable performance evaluation.

We position this work with related research in
plan recognition in Section 2. We describe our
recognizer in Section 3, and our evaluation approach
in Section 4. Section 5 provides baseline results for
efficiency and recognition performance. This is
followed by future work and conclusions.

2 RELATED RESEARCH

Multi-agent Plan Recognition (MAPR) solutions
attempt to make sense of a temporal stream of
observables generated by a set of agents. The
recognizer’s goal is to infer both the organization of
agents that are collaborating on a plan, and the plan
each team is pursuing. (While not addressed here,
some have also included identifying dynamic teams
that change over time (e.g., Banerjee, Kraemer, and
Lyle 2010; Sukthankar and Sycara, 2006, 2013).) To
accomplish this goal, solutions must address two
challenges noted by Intille and Bobick (2001). First,
the combination of agents significantly inflates state
and feature spaces making exhaustive comparisons
infeasible. Second, detecting coordination patterns in
temporal relationships of actions is critical for
complex multi-agent activities.

One approach is to use domain knowledge to
identify activities indicative of team relationships.
For example, Sadilek and Kautz (2010) recognized
tagging events in a capture-the-flag game by
detecting co-location followed by an expected effect
(tagged player must remain stationary until tagged
again). Sukthankar and Sycara (2006) detected
physical formations in a tactical game domain and
inferred cooperation to prune the search space.
While practical and effective for the given domains,
discovering exploitable characteristics has been a
human process and similar patterns may not exist in
other domains.

Generalized MAPR solutions use domain-
independent recognition algorithms along with a
description of the domain. Most commonly, a plan
library is created that provides patterns for which a
recognizer searches. For example, Banerjee,
Kraemer, and Lyle (2010) matched patterns in
synchronized observables, for all combination of
agents, to a flattened plan library. Sukthankar and
Sycara (2008) detected coordinated actions and used
them to prune the multi-agent plan library using a
hash table that mapped key observerable sequences
for distinguishing sub-plans (i.e., last action of
parent and first of sub-plan). However, it may be
difficult to build a full plan library for complex
domains, so others use a planning domain to guide
the recognizer. Zhuo, Yang, and Kambhampati
(2012) used MAX-SAT to solve hard (observed or
causal) and soft (likelihood of various activities)
constraints derived from the domain (action-model).
In an effort to replicate the spirit of general game
playing and IPC planning competitions where the
algorithm is only given a general description of the

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

142

problem at run-time, we use no a priori domain-
specific knowledge or manually tuned libraries.

Plan Recognition as planning (PRAP) was
introduced by Ramirez and Geffner in (2009) as a
generative approach to single agent plan recognition
that uses off the shelf planners and does not require
a plan library. They convert observations to interim
subgoals that the observed agent has accomplished.
They synthesize plans for each goal with and
without the observed subgoals, if the costs are equal
then observations could be interpreted as pursuing
that goal. In (Ramirez and Geffner 2010), they
extended PRAP to probabilistic recognition. In the
case of uniform priors, the most likely goals are
those that minimize the cost difference for achieving
the goal with and without explicitly meeting the
observed subgoals. This research builds on PRAP
for creating a generalized MAPR given a planning
domain.

3 MULTI-AGENT PLAN
RECOGNITION AS PLANNING

We had three key objectives for MAPRAP:
1) Perform recognition from a standardized planning

domain (in PDDL) and action trace, vice a plan
library. This removes the quality of the plan
library as a factor in recognition performance.

2) Prune the search space intelligently for any
generalized domain (without domain-specific
tricks) and scale efficiently (i.e., closer to a single
agent solution).

3) Accuracy of MAPR as characterized by precision,
recall, and accuracy measures over time and
across a wide range of randomly generated
recognition instances. This provides a baseline for
performance comparison.

3.1 Recognizing Multi-agent Plans

We consider a set of ݊ agents, ܣ ,଴ܣ}= ,ଵܣ …	, ௡ିଵ} partitioned into ݉ teams from aܣ
set ܶ = { ଴ܶ, ଵܶ, … , ௠ܶିଵ} possible teams such that
each | ௫ܶ| ≥ 1. Agents perform actions in pursuit of a
team goal ܩ௫ ∈ is the set of all ܩ for all ܶ, where ܩ
possible goals. In this paper, each team has one goal.
Agents perform actions over time, (1, … , to (ݐ
achieve goals. These actions, M, and environment
state, E, are defined in PDDL. We define the
planning domain as a tuple ܦ = ,ܣ} ,ܯ,ܩ We .{ܧ
define a scenario as a set of team assignments {(ܣ௫, ௫ܶ) … ,௭ܣ) ௭ܶ)} and team goals

,௫ܩ)} ௫ܶ) … ,௭ܩ) ௭ܶ)} with each agent assigned to a
single team and each team having a unique goal.

Our simulation component accepts both the
domain and scenario, plans actions for teams, and
generates a trace file. A trace consists of time-
stamped observations ܱ = { ଵܱ, … , ܱ௧} where each
includes a grounded action from ܦ parameterized by
the acting agent ܽ ∈ We refer to observable .ܣ
actions performed by a specific agent ܽ at time ݐ as ܱ௧௔. Actions that can take place concurrently (same ݐ) are randomly ordered in the serial trace.

Our keyhole observer component interleaves the
actions of all agents while maintaining action
dependencies within the teams. This is also where
adding noise and observation filtering can be
performed, if desired. In this paper, all actions in the
domain are observable, such that ଵܱ…௧௔ includes all
actions performed by the agent from time 1 to time ݐ, but this is not a requirement. Our system does not
add “noop” actions when no action is observed for
an agent at any time unless this is an action explicit
in the PDDL.

The recognition component takes the domain as
input and accepts a stream of observables. For each
observable (alternatively each simulation time step)
the recognition component outputs a set of
interpretations. An interpretation is the tuple ܫ ,ݐ)= ,௫ܣ ௬ܶ, ,,௭ܩ ,݌ ்ܲೡ) where p is the probability (in
this discrete case 0 or 1) that at time ݐ the scenario {(ܣ௫, ௩ܶ), (௩ܶ, ௭)} is true and ்ܲೡ is the team planܩ
trace on which the interpretation is based. ்ܲೡ
includes observerables ଵܱ…௧஺ೣ , and predicts future
actions necessary to achieve the goal ܩ௭

Finally, the evaluation component compares the
ground truth scenario against each of the
recognizer’s interpretations. It scores accuracy,
precision, and recall of each agent/goal combination
for interpretation at each time step. We do not
penalize interpretations for agents that with no
observed actions up to that time step.

3.2 Extending PRAP to Teams

The single agent PRAP method of plan recognition
compares the utility cost ܥ (e.g., number of actions)
of two plans for each possible goal ܩ௫ ∈ The first .ܩ
reflects only the goal ܩ௫, the second incorporates a
sequence of observations ଵܱ…௧ (from initial to the
current time step	ݐ) expressed as subgoals that are
achieved by performing the observed actions, ܩ௫ ∩ଵܱ…௧. When ܥ(ܩ௫) < ௫ܩ)ܥ ∩ ଵܱ…௧), the goal ܩ௫ is
not supported by the observations because the
observed actions increased the cost of achieving the

Multi-Agent Plan Recognition as Planning (MAPRAP)

143

goal. See Ramirez and Geffner’s (2009) single agent
PRAP for complete explanation and implementation.

We summarize performance simply as the
number of plans synthesized, because CPU and
clock time for planning varies greatly with domain
and planner used. The worst-case number of plans
synthesized for a single agent scenario (|A|=1) with
interpretations at every time step is |ܩ| ∙ ݐ) + 1). If
we directly apply this to any partitioning of agents
into teams, the worst case is |ܩ| ∙ ݐ) + 1) (|ܣ|)ܾ∙ ∙ is the Bell number (web 	(|ܣ|)ܾ	where	ଶ|ܣ|
2015) of number of agents (representing an
exponential number of possible team combinations).
By accepting the domain assumption that team
activities are independent of other team
compositions, we can reduce the worst case to |ܩ| ݐ)∙ + 1) ∙ (2|஺| − 1). In either case, considerable
pruning is required to contain this explosion in the
number of plans synthesized and make this approach
tractable.

MAPRAP manages the potential agent to team
assignments ߪ for each goal ܩ௫ఙ. We start by
hypothesizing all teams compositions are pursuing
all goals, until observations indicate otherwise. We
then synthesize multi-agent plans using team
compositions to get a base utility cost ܥ(ܩ௫ఙ)
without observations. At each time step, ܥ(ܩ௫ఙ) ௫ఙܩ)ܥ	>	 ∩ ଵܱ…௧ఙ) identifies that the last observed
action is inconsistent with the plan and MAPRAP
then prunes the search space. Two variants of this
algorithm (A and B) are outlined below, where an
off-the-shelf planner is called to compute ܩ)ܥ௫௔ ∩ଵܱ…௧௔) by the function “plan	 (goal,	 previously	observed	 actions,	 hypothesized	 team	 composition)”.
The plan function internally prunes cases where no
agents are hypothesized for a particular team/goal
combination. The “obs	 (step,	 goal,	 team)” function
returns the appropriate previously observed actions
of the hypothesized team as subgoals. The function
“report(step)” outputs the inferred agent/goal
interpretations for external scoring.

In the discrete MAPRAP case, we can prune
planning instances that cannot effect the
interpretation. These include: any hypothesized team
in time steps with no new observables for agents on
the team (i.e., no explaining away alternatives), and
all team/goal combinations that have been
previously eliminated. MAPRAPA implements this
as outlined in Code 1.

MAPRAPB further reduces the worst-case
bounds by starting with a single team (composed of
all agents) for each goal, and removing agents from
compositions when their individual actions cause the
utility cost to increase. While this will not work for

all domains (there is a requirement for independence
between the actions of agents on separate teams), the
worst-case performance for MAPRAPB (in terms of

//Step 1: Initialize all possible
// interpretations are feasible
#comps=2^#agents // all agent combos
hyps[#comps][#goals]=true

//Step 2: Baseline cost of plans
// for goals given no observables
for each goal in all goals
 for each team composition
 baseCost[team] goal]=
 plan(goal, null, team)

//Step 3: Process observations
// comparing costs to baseline
step=0
for each new observable action
 step++
 agent=agentFromAction(observable)
 for each goal in all goals
 for each team composition
 if(hyps[team][goal]==true)
 cost=plan(goal, obs(step,goal,
 team), team)

//Step 4: Prune compositions when
// observed actions counter plan
 if(cost > baseCost[team][goal])
 hyps[team][goal]=false

//Step 5: report metrics for time
step
 report(step)

Code 1: MAPRAPA prunes team composition/goal
combinations when plan given observables has a higher
cost than without observables.

plans synthesized) is bound by |ܩ| ∙ ݐ) + 1) + |ܩ| The second term counts updating the .(1-|ܣ|)∙
baseline plan after eliminating an agent from a
goal/team combination. In Code 2 the baseline cost
never goes down, if reducing the number of agents
in a domain could reduce cost, this strategy would
fail. However, MAPRAPB effectively reduces the
number of planning jobs run closer to single agent
PRAP speed.

3.3 Assumptions and Limitations

There are several aspects of MAPRAP that are not
addressed in this paper, for example, alternative
domains and planners, probabilistic recognition, and
imperfect observer models. These will be addressed
in future papers.

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

144

The given initial and discrete implementation of
MAPRAP relies on two assumptions about the
domain that we will resolve in future research. The
first assumption is that every agent is performing
towards a goal optimally and is never impeded by
//Step 1: Initialize all possible
// interpretations are feasible
#teams=#agents // worst case
comps[#teams][#agents]=true
hyps[#teams][#goals]=true

//Step 2: Baseline cost of plans
// for goals given no observables
for each goal in all goals
 for each team composition
 baseCost[team][goal]=
 plan(goal, null, team)

//Step 3: Process observations
// comparing costs to baseline
step=0
for each new observable action
 step++
 agent=agentFromAction(observable)
 for each goal in all goals
 for each team composition
 if (hyps[team][goal]==true)
 cost=plan(goal,obs(step,goal,
 team),team)

//Step 4: Prune agents from teams
when
// their actions reduce performance
 if (cost > baseCost[team][goal])
 comps[team][agent]=false
 baseCost[team][goal]=
 plan(goal, null, team)

//Step 5: report metrics for time
step
 report(step)

Code 2: MAPRAPB prunes agents from teams when their
actions increase the utility cost.

agents on other teams. Since team plans are
synthesized independently, this also requires that the
actions of different teams be independent of each
other. This assumption excludes competitive
domains, which is important for many applications.

A second assumption, is that more agents on a
team achieve a goal at least as efficiently as fewer
agents, even if this means some agents simply do
nothing. This may not be true for domains with
communication or sequential action requirements
that burden larger teams. MAPRAP relies on this
condition when comparing its initial hypothesis (all
agents are on the same team for all goals) to
alternatives.

Other PRAP assumptions, such as finite and
enumerable goals, and purposeful actions are also
true of MAPRAP.

4 MAPRAP EVALUATION

MAPRAP is designed to be independent of any
particular domain or planner. For this evaluation, we
selected the Team Blocks domain because it is
simple multi-agent adaption is well established
within the MAPR community. Similarly, we chose
an open source implementation of GraphPlan
because it is well known and we wished to
emphasize the use of an off-the-shelf planner.

4.1 A Team Blocks Domain

Team Blocks is a multi-agent adaptation of the
Blocks World domain. In this domain there are a
series of lettered blocks randomly stacked on a table.
Each agent operates a robot gripper that can pick up
one block at a time as shown in Figure 2. Teams are
composed of 1 to |A| agents that are planning
together and act collaboratively towards the same
goal. Actions are atomic and include: pickup,
unstack (pickup from atop another block), put down
(on table), stack (put down atop another block); each
action is parameterized by the block(s) acted on and
agent performing the action.

We added several domain predicates to prevent
agents from picking up blocks held by other agents.
Since we plan teams independently, we also
partitioned the blocks and goals to avoid conflicting
plans. However, no information about teams (count
or sizes), partitioning of blocks, or goals
assignments are accessible to the recognizer.

The goal of Team Blocks is for each team to
rearrange blocks into a stack in a specified sequence.
Goals are random letter sequences of various lengths
interpreted from bottom (on table) to up (clear).
Letters are not repeated in a goal. For example, (and
(ontable A) (on B A) (on C B) (clear C)) specifies the
goal “ABC” pursued by Team0 in Figure 2.

4.2 Multi-agent Plan Synthesis

We used PDDL to specify our plan domain, which
enables the use of a wide range of off-the-shelf
planners (e.g., those used in the IPC Planning
Competitions). For this research we used an instance
of GraphPlan (Pellier, 2014) with post-planning
multi-agent scheduling logic. Because PDDL was

Multi-Agent Plan Recognition as Planning (MAPRAP)

145

Figure 2: In Team Blocks, agents (grippers) are controlled
by a team to achieve a stacking. Elements in blue are
inferred by the recognizer.

not designed for multi-agent planning, every action
in our domain includes a parameter of type “agent”
which allows the planner to treat all available agents
as a resource (i.e., it plans for the entire team). We
synthesize plans for each team independently,
including only agents on, or hypothesized to be on,
that team. The trace outputs for all teams are
interleaved by time step, and concurrent actions are
shuffled to mitigate ordering effects.

We randomly generated 5180 different Team
Blocks scenarios (280 were used to evaluate the less
efficient MAPRAPA) with stacks of 6-8 blocks per
team (μ=6.5). We generated 1-2 teams with 1-5
agents that did not need to be balanced, but had at
least one agent per team. Goals were all
permutations of selected stacking orders of 4-7
blocks (μ=4.5). The number of potential goals
averaged 64 for single team and 873 for two team
scenarios. In the two team case, each team’s
partition was full sized, and possible goals included
permutations across the partitions. During the
generation process, we stored the ground truth team
and goal assignments as a key for evaluation, but
these were not available to the recognizer.

We simulated each scenario and recorded an
action trace. Each trace consists of a serialized
sequence of observerables identifying time step (1 to
t), agent, and action. Traces ranged from 5 to 16
actions (μ=9.2 for single and μ=8.6 for two team
scenarios). The average action parallelism (multiple
agents acting in the same time step) for multi-agent
scenarios was 1.4 concurrent actions. We used the
action trace from initial simulation as the
observables for plan recognition.

5 RESULTS

Efficiency of MAPRAP pruning is measured in
terms of the count of plans synthesized, which we
normalized to average number of runs per goal per
time step. (Figure 3).

Figure 3: MAPRAPA effectively prunes the multi-agent
search space well below the exponential worst case.
MAPRAPB reduces the average runs/goal/time for
scenarios to near the single agent worst-case (1.0).

Precision at each time step indicates how well
recognition eliminates interpretations of the scenario
that do not match ground truth. In MAPRAP, all
interpretations are hypothesized correct until
demonstrated to be incorrect by conflicting
observations. As shown in Figure 4, single agent
scenarios require fewer observations to converge on
interpretations than multi-agent scenarios.

We observed that reduced precision in the multi-
agent cases reflects both fewer observations per
individual agent at any time, and a large number of
potential team compositions. In essence, the
explanatory power of each observation is diluted
across the pool of agents. As a result, it takes more
observations to rule-out all feasible, but ultimately
incorrect, interpretations. In fact, unlike the single
agent case, most multi-agent traces ended before the
recognizer converged to a single correct
interpretation. We did not reduce the goal count or
ensure goals diversity, which would improve

3

B
F I

C

H G
J

E A D

0

Team0

2

1

Team1 B
C

A
G
F

I

4

0.
56

0.
91

1.
14

0.
86

1.
09

1.
19

1.
24

0.
73

1.
72

 3.
76

1.
67

3.
71

6.
31

14
.0

7

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1 t
eam

 / 1
 ag

ent

1 t
eam

 / 2
 ag

ents

1 t
eam

 / 3
 age

nts

2 t
eam

s /
 2

ag
ents

2 t
eam

s /
 3

ag
ents

2 t
eams /

 4
ag

ents

2 t
eam

s /
 5

ag
ents

M
ea
n
nu

m
be

r o
f r
un

s/
go

al
/
m
e
st
ep

MAPRAP B

MAPRAP A

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

146

precision. Since MAPRAP is an online recognizer, it
is not aware does not observe the ending of a trace.
Accuracy is the ratio of correct classifications to

total classifications. As shown in Figure 5, the mean
accuracy of MAPRAP trails the single agent case,
but demonstrates correct classifications of potential
interpretations for observerables over time.

Figure 4: Precision plots show multi-agent scenarios have
significantly more possible interpretations, so many more
observations are required to eliminate interpretations that
are consistent with observations up to that time, but
incorrect.

Overall, performance of MAPRAP performance
for multi-agent scenarios trailed single agent.
MAPRAPA averaged 4.38 plans synthesized for
each goal and time step for multi-agent, and 0.73 for
single agents. MAPRAPB averaged 1.05 plans
synthesized for each goal and time step for multi-
agent, compared to an exponential worst case at the
high end and 0.56 for single agents as a lower
bound. MAPRAP recognizes multi-agent scenarios a
accurately, which is driven by the ability to quickly
eliminate many incorrect interpretations. However,
the magnitude difference in precision between single
and multi-agent scenarios reflects the large number
of team composition possibilities. This indicates that
few multi-agent recognition jobs converged to a
single interpretation.
Recall is the measure of how well the recognizer

positively classifies correct interpretations. Discrete
MAPRAP, when pruning assumptions are met, has
complete recall (value of 1) at every time step
because it only eliminates candidate interpretations

Figure 5: Accuracy metric shows single agent scenarios
converge on correct interpretation faster than multi-agent
scenarios.

when contradicted by observables. This results in no
false negative interpretations. This was expected
given that we did not implement erroneous
observations, suboptimal agent action, or
probabilistic recognition in this experiment.

6 FUTURE WORK

These discrete implementations of MAPRAP expose
several potential areas for improvement. We are
adapting additional planning domains for multi-
agent benchmarking. New domains challenge the
limitations of the current approach and enforce
generality. One key consideration is to select/build
domains that sample the relevant domain
characteristic space. Also, the ability to scale from 1
agent on 1 team to n agents on n teams, ensures we
the domain does not artificially limit the team
composition search space, and allows us to compare
performance. Similarly, Ramirez and Geffner (2009)
demonstrated that satisficing and specialized
planners improved speed at little cost to PRAP
accuracy, making it useful for investigating larger
parameter spaces. We intend to examine the use of
other planners as well.

Secondly, we have implemented discrete
MAPRAP. Like Ramirez and Geffner (2010), we
can extend this to a probabilistic solution. Moving
away from discrete decisions will introduce new
efficiency challenges for which we are developing

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

10%
20%

30%
40%

50%
60%

70%
80%

90%

100%

Pr
ec
is
io
n
of

 R
ec
og
ni

on

% Time Into Trace

1 team / 1 agent
1 team / 2 agents
1 team / 3 agents
2 teams / 2 agents
2 teams / 3 agents
2 teams / 4 agents
2 teams / 5 agents

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

10%
20%

30%
40%

50%
60%

70%
80%

90%

100%

Ac
cu
ra
cy

 o
f R

ec
og
ni

on

% of Time Intro Trace

1 team / 1 agent
1 team / 2 agents
1 team / 3 agents
2 teams / 2 agents
2 teams / 3 agents
2 teams / 4 agents
2 teams / 5 agents

Multi-Agent Plan Recognition as Planning (MAPRAP)

147

new pruning strategies. Critically, this will also
better enable recognition of less optimal action
traces, not currently addressed in the discrete
version. We expect probabilistic interpretations will
also improve precision and accuracy, but vary recall.

In addition we intend to reduce our current
limitations, show the effects of observation
error/loss, and reduce restrictions on inter-team
interaction (e.g., competition) in future research.

7 CONCLUSIONS

In this paper we introduce a discrete version of
MAPRAP, our MAPR system based on an extension
to PRAP. It meets our key objective for working
from a planning domain vice plan library. This
enforces generalization and eliminates the
dependency on human expertise in designating what
actions to watch in a domain.

We show that recognizing team compositions
from an online action sequence, without domain-
specific tricks, greatly extends the search space. We
evaluated the efficiency and performance of two
MAPRAP pruning strategies on a range of Team
Blocks scenarios, and established (with stated
domain limitations) efficiencies nearing single agent
solutions. We found we can effectively prune the
search space to improve run-time independent of the
planner used.

We evaluated recognition performance on a
multi-agent version of the well-known Blocks World
domain. We assessed precision, recall, and accuracy
measures over time. This is particularly relevant as
observations in multi-agent scenarios have many
more possible valid interpretations than the single
agent case. This in turn requires more observations
to limit potential interpretations down to the single
correct interpretation. Our precision and accuracy
measures over time help quantify this difference.

REFERENCES

Banerjee B, Kraemer L, and Lyle J (2010) “Multi-Agent
Plan Recognition: Formalization and Algorithms,”
AAAI 2010.

Banerjee B, Lyle J, and Kraemer L (2011) “New
Algorithms and Hardness Results for Multi-Agent
Plan Recognition,” AAAI 2011.

Cohen P R, Perrault C R, and Allen J F (1981) “Beyond
Question Answering,” in Strategies for Natural
Language Processing, NJ: Hillsdale, pp. 245-274.

Genersereth M and Love N (2005) “General Game
Playing: Overview of the AAAI Competition,” AI
Magazine, vol. 26, no. 2.

Intille S S and Bobick A F (2001) “Recognizing planned,
multi-person action,” Computer Vision and Image
Understanding, vol. 81, pp. 414-445.

Kovacs D (2012) “A Multi-Agent Extension of
PDDL3.1,” WS-IPC 2012:19.

McDermott D and AIPS-98 Planning Competition
Committee (1998) “PDDL–the planning domain
definition language”

Muise C, Lipovetzky N, Ramirez M (2014) “MAP-
LAPKT: Omnipotent Multi-Agent Planning via
Compilation to Classical Planning,” Competition of
Distributed and Multi-Agent Planners (CoDMAP-15).

Pellier D (2014) “PDDL4J and GraphPlan open source
implementation,” http://sourceforge.net/projects/pdd4j.

Ramirez M and Geffner H, (2009) “Plan recognition as
planning,” in Proceedings of the 21st international
joint conference on Artificial intelligence.

Ramirez M and Geffner H (2010) “Probabilistic Plan
Recognition using off-the-shelf Classical Planners,”
Proc. AAAI-10.

Sadilek A and Kautz H (2010) “Recognizing Multi-Agent
Activities from GPS Data,” in Twenty-Fourth AAAI
Conference on Artificial Intelligence.

Sukthankar G, Goldman R P, Geib C, Pynadath D V, Bui
H H (2014) “Plan, Activity, and Intent Recognition
Theory and Practice.” Morgan Kaufmann.

Sukthankar G and Sycara K (2006) “Simultaneous Team
Assignment and Behavior Recognition from Spatio-
temporal Agent Traces,” Proceedings of the Twenty-
First National Conference on Artificial Intelligence
(AAAI-06).

Sukthankar G and Sycara K (2008) “Efficient Plan
Recognition for Dynamic Multi-agent Teams,”
Proceedings of 7th International Conference on
Autonomous Agents and Multi-agent Systems (AAMAS
2008).

web (2014) "Bell Numbers" Wikipedia, The Free
Encyclopedia. Wikimedia Foundation, Inc.

Zhuo H H, Yang Q, and Kambhampati S (2012) "Action-
model based multi-agent plan recognition." Advances
in Neural Information Processing Systems 25.

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

148

