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Abstract: Respiratory complications are common in patients after the general anaesthesia. Respiratory depression often 
occurs in association with postoperative opioid analgesia. Currently, there is a need for a continuous non-
invasive respiratory monitoring of spontaneously breathing postoperative patients. We used calibrated 
respiratory effort belts for the respiratory monitoring pre- and postoperatively. Used calibration method 
enables accurate estimates of the respiratory airflow waveforms. Five different patients were measured with 
the spirometer and respiratory effort belts at the same time. Preoperative measurements were done in the 
operating room just before the operation, whereas postoperative measurements were done in the recovery 
room after the operation. We compared three calibration models pre- and postoperatively. Postoperative 
calibration produced more accurate respiratory airflows. Results show that not only the tidal volume, minute 
volume and respiratory rate can be computed precisely from the estimated respiratory airflow, but also the 
respiratory airflow waveforms are very accurate. The method produced accurate estimates even from the 
following challenging respiratory signals: low airflows, COPD, hypopneic events and thoracoabdominal 
asynchrony. The presented method is able to produce estimates of postoperative respiratory airflow 
waveforms to enable accurate, continuous, non-invasive respiratory monitoring postoperatively.  

1 INTRODUCTION 

Respiratory complications are common in patients 
after the general anaesthesia. Respiratory depression 
often occurs in association with postoperative opioid 
analgesia (Etches, 1994; Gamil and Fanning, 1991; 
Taylor et al., 2005). Adequate respiration monitoring 
postoperatively is important, so that respiratory 
depression can be identified as early as possible 
(George et al., 2010; Lynn and Curry, 2011). 

During general anaesthesia, mechanical 
ventilation is used and, consequently, monitoring of 
gas exchange and respiration can be done accurately. 
During postoperative care, respiratory status can be 
assessed with oxygen saturation (SpO2) 
measurements, blood gas measurements, subjective 
clinical assessment and intermittent, manual 
measurements of respiratory rate (Lynn and Curry, 
2011; Ramsay et al., 2013). The problems with these 

methods are that they are slow and, in addition, 
subjective methods are also unreliable and give 
inconsistent results (Lovett, 2005). There is a need for 
a continuous non-invasive respiratory monitoring of 
spontaneously breathing postoperative patients. 
Respiratory depression and subsequent adverse 
outcomes can arise from pain, residual operating 
room anaesthetics and administration of opioids for 
pain management (Cepeda et al., 2003). Inadequate 
respiration can result in respiratory complications, 
morbidity, mortality and excessive costs.  

A few studies have been recently published on 
monitoring postoperative respiration continuously 
and non-invasively. Drummond et al., (2013) have 
studied respiratory rate and breathing patterns of 
postoperative subjects using encapsulated tri-axial 
accelometer taped to a subject’s body. They found 
that abnormal breathing patterns are extremely 
common. Voscopoulos et al., (2015; 2014a; 2014b) 
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have studied minute ventilation, tidal volume and 
respiratory rate of postoperative subjects using 
impedance-based electrodes placed to a subject’s 
body. 

Recently, we published a novel calibration 
method to produce accurate estimates of respiratory 
airflow signals from respiratory effort belt signals 
(Seppänen, 2013). Here, the method is used in order 
to produce estimates of postoperative respiratory 
airflow waveforms to enable accurate, continuous, 
non-invasive respiratory monitoring postoperatively. 
Pre- and postoperative measurement data of different 
patients are used to demonstrate the performance of 
the method. 

2 MATERIALS AND METHODS 

2.1 Materials 

The study protocol was approved by the Regional 
Ethics Committee of the Northern Ostrobothnia 
Hospital District. Five patients who had lumbar back 
surgery and were expected to need opioid analgesia 
postoperatively were recruited to the study. Exclusion 
criteria were BMI (Body Mass Index) over 40 and the 
planned surgical wound being in the area where 
respiratory effort belts were placed. The 
characteristics of the volunteers are given in Table 1. 

Table 1: Characteristics of volunteers. 

Patient Gender 
Age 

[years] 
BMI 

[kg/m2] 
Disease 

1 M 68 21.8 None 
2 M 41 30.3 None 
3 F 77 22.4 None 
4 M 64 28.1 COPD 
5 M 67 27.4 Sleep apnea 

 

Respiratory effort belt signals were recorded with 
the polygraphic recorder (Embletta Gold, Denver, 
Colorado, USA). The recorder had inductive 
respiratory effort belts for rib cage and abdomen with 
the sampling rate of 50 Hz. For calibrating the 
respiratory effort belt signals, simultaneous 
respiratory airflow signal was recorded with a 
spirometer (Medikro Pro M915, Medikro Oy, 
Kuopio, Finland), which had a sampling rate of 100 
Hz. Mask (Cortex Personal-Use-Mask, Leipzig, 
Germany) was attached to the mouthpiece of the 
spirometer. The spirometer could record at most 1 
min long signals. 

2.2 Measurement Protocol 

The measurements for each patient were done in two 
parts: 1) short measurement session (5 min) 
preoperatively; and 2) longer measurement session (3 
h) postoperatively. 

The first measurements were done in the 
operating room just before the operation without any 
sedative premedication. The rib cage respiratory 
effort belt was placed on the xyphoid process and the 
abdominal belt was placed above the umbilicus. The 
mask of the spirometer was put to the volunteer’s face 
and its airtightness was secured. The signals were 
recorded until two successful recordings of the 1 min 
were obtained. The places of respiratory effort belts 
were marked with drawing ink on the skin, so that it 
was possible to place the belts to the same places 
postoperatively. The mask and respiratory effort belts 
were removed. 

As soon as it was possible, measurements were 
continued postoperatively in the recovery room. The 
rib cage respiratory effort belt and the abdominal 
respiratory effort belt were placed to the previously 
marked places. They recorded the signals during the 
whole 3 hour measurement period. Every 10 min, the 
mask of the spirometer was put to the volunteer’s 
face, its airtightness was secured and 1 min 
measurement with the spirometer was recorded. 
Participation to the study did not affect the routine 
management of the patients. 

2.3 Calculation of Respiratory Airflow 
Estimates 

In this study, we applied our recently published 
respiratory effort belt calibration method (Seppänen, 
2013). The method was therein tested against various 
breathing style changes and body position changes, 
and compared with the state-of-the-art methods. Our 
method outperformed the other methods showing 
high robustness to the breathing style changes and 
body position changes. 

Our method is an extension to conventional 
multiple linear regression method so that 1) it uses 
number N of consecutive input signal samples and 
linear filtering for estimation of each output signal 
sample and 2) it is based on polynomial regression to 
model different transfer functions between the input 
and output. The method is based on optimally trained 
FIR (Finite Impulse Response) filter bank constructed 
as a MISO (Multiple-Input Single-Output) system 
between the respiratory effort belt signals and the 
spirometer signal. Three polynomial transfer 
functions were tested: linear terms only (M1), linear 
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terms and cross-product term (M2), and linear terms 
with second order terms (M3). 

Figure 1 and equation 1 show the realization of the 
filter bank for model M2.  Similar realizations can be 
derived also for models M1 and M3. 

ሾ݇ሿݕ ൌ ଵሾ݇ሿ࢞ଵ்ࢇ ൅ ଶࢇ
ଶሾ݇ሿ்࢞ ൅

ଷࢇ
்ሺ࢞ଵሾ݇ሿ࢞ଶሾ݇ሿሻ ൅  ,  ሾ݇ሿߝ

(1)

where ࢇଵ், ࢇଶ
் and ࢇଷ

் denote the N tap coefficients of 
filters FIR1, FIR2 and FIR3, respectively: ࢇ௜

் ൌ
	ൣܽ௜ሾ1ሿ, ܽ௜ሾ2ሿ, … , ܽ௜ሾܰሿ൧, i = 1,2,3. Superscript T 
denotes matrix transpose. Parameter ݕ denotes 
respiratory airflow from spirometer and ߝ is zero-
mean Gaussian error. Vectors ࢞ଵ and ࢞ଶ include N 
consecutive signal samples from the rib cage 
respiratory effort belt signal and abdominal 
respiratory effort belt signal, respectively: ࢞௝ሾ݇ሿ ൌ

	ቂݔ௝ሾ݇ሿ, ௝ሾ݇ݔ െ 1ሿ, … , ௝ሾ݇ݔ െ ܰ ൅ 1ሿቃ
்
, j = 1,2 and k 

= N,…,n. Variable n is the number of observations 
used in the calibration. 

 

Figure 1: Extended calibration method of respiratory effort 
belt signals. 

 is an (n-N+1) × (3 × N) matrix formed from the ࢄ
vectors ࢞ଵ and ࢞ଶ: 

்ࢄ ൌ ቎
ଵሾܰሿ࢞ … ଵሾ݊ሿ࢞
ଶሾܰሿ࢞ … ଶሾ݊ሿ࢞

ଶሾܰሿ࢞ଵሾܰሿ࢞ … ଶሾ݊ሿ࢞ଵሾ݊ሿ࢞
቏	.  (2)

During the calibration, tap coefficients	ࢇଵ், ࢇଶ
் and ࢇଷ

் 
are estimated with the method of least-squares. The 
least-squares estimator of the parameter vector ࢇ ൌ
	ሾࢇଵ், ଶࢇ

், ଷࢇ
்ሿ் is given by 

ෝࢇ ൌ ሺࢄ்ࢄሻିଵ(3) . ்࢟ࢄ

The length of the vector ࢇෝ is 3 × N. Finally, the 
respiratory airflow signal estimated from the rib cage 
and abdominal respiratory effort belt signals through 
the FIR filter bank is  

ෝ࢟ ൌ ෝࢇࢄ . (4)

In Figure 1, there is the delay element z-D included at 
the output. There is always a small delay between the 
spirometer signal and respiratory effort belt signals 

due to the physiological reasons and internal delays 
of measuring devices. Thus, the signals have to be 
time-synchronized by searching for a proper value for 
D (Seppänen, 2013). 

We made two different test setups: 1) the data of 
the second preoperative measurement minute were 
used to train the estimation model and the data of all 
the postoperative measurement minutes were used to 
test the estimation model (PRE setup); and 2) the data 
of the first postoperative measurement minute were 
used to train the estimation model and data of the rest 
postoperative measurement minutes were used to test 
the estimation model (POST setup). 

The similarity of spirometer signals and estimated 
respiratory airflow signals were assessed by 
computing R2 (coefficient of determination) values. 
Tidal volumes, minute volumes and BPM (Breaths 
per Minute, respiratory rate) were calculated from the 
spirometer signals and estimated respiratory airflow 
signals. Relative errors were calculated. 

3 RESULTS AND DISCUSSION 

Signals were recorded according to the protocol 
described in Section 2.2. There were altogether 93 
simultaneous measurement minutes with spirometer 
and respiratory effort belts. Five of these had to be 
discarded due to a malfunction of the spirometer. One 
of them had to be discarded due to a malfunction of 
the polygraphic recorder. In addition to that, five 
postoperative measurement minutes of patient 5 had 
to be discarded, because he had serious difficulties to 
wake up and stay awake in the recovery room. During 
the measurements patients received opioid analgesia 
as many times as they needed: 3, 2, 1, 7 and 4 times 
for patients 1-5, respectively.  

During the measurements a number of problems 
related to PRE setup were observed. Firstly, places of 
respiratory effort belts can interchange before POST 
setup by mistake. Secondly, there may be a need to 
tighten or loosen the respiratory effort belts after the 
operation, because fluids can accumulate in the body 
or can leave from the body during the operation. This 
leads to a situation where the estimation model 
trained with a preoperative data is not valid anymore. 
Thirdly, if there are complications during the 
operation or if the operation is prolonged otherwise, 
the estimation model trained with a preoperative data 
can be erroneous for the postoperative data. With the 
POST setup, no problems were observed. 
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3.1 Accuracy of Airflow Estimates 

The selection of the best model and FIR filter length 
(N value) depended on whether waveform accuracy 
(R2), tidal volume (VT) error, minute volume (Vminute) 
error or BPM error values were studied. Table 2 
summarizes the results when PRE setup was used for 
training and testing all estimation models. It is seen in 
Table 2 that model M1 produced the best results. 

Table 2: Results (average value ± SD) with the best models 
when PRE setup was used for training and testing all 
estimation models. 

Best model M1 M1 M1 M1 
FIR size N = 8 N = 8 N = 8 N = 16 

Patient R2 Abs (VT 
error) [%] 

Abs 
(Vminute 

error) [%] 
BPM error

1 0.88 ± 0.05 12.8 ± 10.7 12.5 ± 9.5 0.03 ± 0.07 
2 0.87 ± 0.06 26.7 ± 7.7 25.1 ± 8.2 0.01 ± 0.01 
3 0.94 ± 0.02 10.9 ± 2.9 14.2 ± 5.0 0.09 ± 0.30 
4 0.87 ± 0.06 15.9 ± 6.0 21.7 ± 8.6 0.09 ± 1.14 
5 0.43 ± 0.17 70.2 ± 14.1 72.4 ± 12.3 0.48 ± 0.79 

Average 0.82 ± 0.18 24.1 ± 21.4 26.0 ± 21.3 0.29 ± 0.70 
 

Table 3 summarizes the results when POST setup 
was used for training and testing all estimation 
models. In this case, it is seen that model M2 
produced the best results with this data. As an 
important difference to the preceding results in Table 
2, more accurate waveforms were received since R2 
values were higher and BPM error values lower. 
Also, the volume error values decreased to the 
fractions. 

Table 3: Results (average value ± SD) with the best model 
when POST setup was used for training and testing all 
estimation models. 

Best model M2 M2 M2 M2 
FIR size N = 8 N = 16 N = 16 N = 8 

Patient R2 Abs (VT 
error) [%] 

Abs 
(Vminute 

error) [%] 
BPM error

1 0.90 ± 0.04 11.4 ± 7.9 9.9 ± 6.8 0.01 ± 0.01 
2 0.95 ± 0.01 5.9 ± 4.5 5.8 ± 5.0 0.01 ± 0.01 
3 0.94 ± 0.04 5.4 ± 4.7 6.3 ± 4.2 0.10 ± 0.30 
4 0.88 ± 0.09 8.7 ± 6.0 11.9 ± 10.2 0.83 ± 1.13 
5 0.91 ± 0.02 10.5 ± 9.3  8.2 ± 6.3 0.01 ± 0.00 

Average 0.91 ± 0.06 5.8 ± 6.3 8.5 ± 7.1 0.21 ± 0.63 
 

It can be seen from Table 2 and Table 3, that if the 
smallest error results are sought, then there is a need 
to use several models. However, if there is, for 
example, a need to get accurate respiratory rate only, 
then one should choose POST setup and model M2 
with N value 8. On the other hand, one may wish to 
use only one model with good overall performance. 

The results for that are presented next. Model M3 
(including linear and 2nd order terms) produced 
clearly worse results than the other models, thus only 
the results of using models M1 and M2 are presented 
here. Table 4 and Table 5 present the results when the 
estimation model M1 with N value 8 was used with 
PRE and POST setups, respectively. 

Table 4: Results (average value ± SD) of the calibration 
when estimation model M1 (N = 8) was used with PRE 
setup. 

Patient R2 Abs (VT 
error) [%] 

Abs (Vminute 
error) [%] 

BPM error

1 0.88 ± 0.05 12.8 ± 10.7 12.5 ± 9.5 0.09 ± 0.27 
2 0.87 ± 0.06 26.7 ± 7.7 25.1 ± 8.2 0.01 ± 0.01 
3 0.94 ± 0.02 10.9 ± 2.9 14.2 ± 5.0 0.09 ± 0.29 
4 0.87 ± 0.06 15.9 ± 6.0 21.7 ± 8.6 1.00 ± 1.06 
5 0.43 ± 0.17 70.2 ± 14.1 72.4 ± 12.3 0.37 ± 0.55 

Average 0.78 ± 0.20 24.1 ± 21.4 26.0 ± 21.3 0.32 ± 0.68 

Table 6 and Table 7 present the results when the 
estimation model M2 with N value 8 was used with 
PRE and POST setups, respectively. 

It is clearly seen from Tables 4-7 that POST setup 
produced superior results. Respiratory airflow 
waveforms are much more accurate, average R2 
increased from 0.78 to 0.91 with both models M1 and 
M2. In addition to that, tidal volume errors, minute 
volume errors and BPM errors are smaller. However, 
when the average results of Table 5 and Table 7 are 
compared, it can be seen that models M1 and M2 with 
N value 8 produced both very good results and that 
there are little differences between the results.  

Table 5: Results (average value ± SD) of the calibration 
when estimation model M1 (N = 8) was used with POST 
setup. 

Patient R2 Abs (VT 
error) [%] 

Abs (Vminute 
error) [%] 

BPM error

1 0.91 ± 0.04 11.6 ± 7.8 8.9 ± 7.1 0.01 ± 0.01 
2 0.94 ± 0.02 6.9 ± 7.0 5.7 ± 5.6 0.01 ± 0.01 
3 0.94 ± 0.04 5.6 ± 4.5 6.0 ± 3.8 0.10 ± 0.30 
4 0.87 ± 0.09 8.4 ± 4.9 11.9 ± 8.9 0.82 ± 1.13 
5 0.90 ± 0.02 9.6 ± 5.3  10.9 ± 4.9 0.12 ± 0.35 

Average 0.91 ± 0.06 8.4 ± 6.1 8.6 ± 6.7 0.23 ± 0.64 

Table 6: Results (average value ± SD) of the calibration 
when estimation model M2 (N = 8) was used with PRE 
setup. 

Patient R2 Abs (VT 
error) [%] 

Abs 
(Vminute 

error) [%] 
BPM error

1 0.82 ± 0.08 17.8 ± 9.8 21.3 ± 8.3 0.10 ± 0.27 
2 0.76 ± 0.09 42.7 ± 8.8 51.7 ± 9.6 0.04 ± 0.12 
3 0.93 ± 0.03 13.3 ± 5.1 15.3 ± 6.4 0.09 ± 0.30 
4 0.87 ± 0.06 15.4 ± 6.7 19.6 ± 8.6 0.91 ± 1.11 
5 0.39 ± 0.21 55.1 ± 9.5 65.5 ± 15.1 1.67 ± 1.47 

Average 0.78 ± 0.20 26.9 ± 17.8  32.4 ± 21.1 0.49 ± 0.96 
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3.2 Example Cases 

Figure 2 depicts short segment of example signals 
with low airflow. Estimation model M2 (N = 16) was 
used with the POST setup for the measurement 
signals of patient 3. In this case, R2 was 0.94, tidal 
volume error 1.5 %, minute volume error 10.9 % and 
BPM error 0.01. The spirometer signal is estimated 
with excellent accuracy. 

Figure 3 depicts an example of apneic event. In 
this case, estimation model M1 (N = 8) was used with 
the POST setup for the measurement signals of 
patient 5. During obstruction, the rib cage ceases to 
move, but abdomen is moving. There is no air 
exchange, so there is no airflow signal either. It can 
be seen from the figure, that during the obstruction 
airflow was zero, but because there was movement in 
respiratory effort belts, the estimated respiratory 
airflow signal also showed activity. The same 
phenomenon was also encountered by Drummond et 
al., (2013) and Voscopoulos et al., (2013). However, 
apneic events can be detected from the changed 
pattern of movements from respiratory effort belt 
signals. Both of them have lower amplitudes than 
before or after the apneic event. Especially the rib 
cage respiratory effort belt is almost motionless 
during the apneic event. Detected parts of the 
respiratory airflow estimate could then be replaced 
with zero airflow. 

Table 7: Results (average value ± SD) of the calibration 
when estimation model M2 (N = 8 was used with POST 
setup. 

Patient R2 Abs (VT 
error) [%] 

Abs (Vminute 
error) [%] 

BPM error

1 0.90 ± 0.04 11.4 ± 7.6 10.0 ± 7.0 0.01 ± 0.01 
2 0.95 ± 0.01 6.1 ± 4.8 6.2 ± 5.3 0.01 ± 0.01 
3 0.94 ± 0.04 5.3 ± 4.5 6.2 ± 4.0 0.10 ± 0.30 
4 0.88 ± 0.09 8.8 ± 3.9 11.4 ± 10.1 0.83 ± 1.13 
5 0.91 ± 0.02 13.1 ± 8.9  9.6 ± 6.4 0.01 ± 0.00 

Average 0.91 ± 0.06 8.8 ± 6.6 8.7 ± 7.1 0.21 ± 0.63 

 

Figure 2: Short segment of example signals with low 
airflow: spirometer signal (thin line) and the estimated 
respiratory airflow signal (bold line). 

Figure 4 depicts hypopneic event of patient 4 with 
COPD. Here, estimation model M2 (N = 8) was used 
with the POST setup. In this case, R2 was 0.81, tidal 
volume error was 0.8 %, minute volume error was 
3.24 % and BMP error was 1.08. It can be seen, that 
the method was able to estimate respiratory airflow 
very well even in this kind of complicated situations. 

 

Figure 3: Short segment of example signals during apneic 
event. Upper subfigure: spirometer signal (solid line) and 
the estimated respiratory airflow signal (dotted line). Lower 
subfigure: rib cage respiratory effort belt signal (solid line) 
and abdominal respiratory effort belt signal (dotted line). 

 

Figure 4: Example signals of COPD patient. Upper 
subfigure: spirometer signal (solid line) and the estimated 
respiratory airflow signal (dotted line). Lower subfigure: rib 
cage respiratory effort belt signal (solid line) and abdominal 
respiratory effort belt signal (dotted line). 

Measurement data of patient 4 included 
thoracoabdominal asynchrony more or less during the 
whole measurement session. Figure 5 depicts one 
example of this. Estimation model M2 (N = 8) was 
used with the POST setup and the results were the 
following: R2 was 0.94, tidal volume error was 4.7 %, 
minute volume error was 2.6 % and BPM error was 
0.02. These results are consistent with our earlier 
findings indicating that our method produces very 
good results with thoracoabdominal asynchrony 
signals too (Seppänen, 2013). 
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Figure 6 demonstrates the performance difference 
between PRE and POST setups. In this case, 
estimation model M1 (N = 16) was used firstly with 
the PRE setup and secondly with the POST setup. The 
measurement data was from patient 1. It can be seen 
from Figure 6 that there were clear differences with 
the estimated respiratory airflows (PRE setup with 
dotted line and POST setup with bold line). Following 
numerical results demonstrate these differences 
further.  The results for the PRE setup were: R2 was 
0.82, tidal volume error was 34.8 %, minute volume 
error was 35.8 % and BPM error was 0.00. 
Equivalently results for the POST setup were: R2 was 
0.93, tidal volume error was 14.6 %, minute volume 
error was 13.9 % and BPM error was 0.00. Although, 
the PRE setup was otherwise remarkably worse than 
POST setup in this case, BPM was estimated very 
accurately. 

 

 

Figure 5: Example signals of thoracoabdominal 
asynchrony. Upper subfigure: spirometer signal (solid line) 
and the estimated respiratory airflow signal (dotted line). 
Lower subfigure: rib cage respiratory effort belt signal 
(solid line) and abdominal respiratory effort belt signal 
(dotted line). 

 

Figure 6: Short segment of example signals depicting the 
difference of PRE and POST setups: spirometer signal (thin 
line), the first estimated respiratory airflow signal (PRE 
setup, dotted line) and the second estimated respiratory 
airflow (POST setup, bold line). 

3.3 Limitations of Study 

The study included a number of limitations. Firstly, 
the study included only five patients. The study 
should be repeated with a larger data set in order to 
draw more general conclusions. Secondly, respiratory 
effort belts cannot be used if the surgical wound is in 
the area where the belts are placed. However, the 
proposed method could be applied to the 
measurement data acquired with other sensors 
without this kind of restriction, such as acceleration 
sensors. Thirdly, as was pointed out in Section 3.2 
during the apneic event there is no respiratory airflow 
but still estimated respiratory airflow shows 
otherwise. This could be resolved by detecting the 
changed pattern of movements from respiratory effort 
belts and replacing these parts of the respiratory 
airflow estimate with zero airflow. This remains 
future work. 

4 CONCLUSIONS 

Here, a method was proposed to estimate accurate 
continuous respiratory airflow postoperatively. The 
data from respiratory effort belts were calibrated with 
a spirometer using an extended multiple linear 
regression method. The results showed that training 
the estimation model with the postoperative data 
produced much more accurate results than training 
the estimation model with the preoperative data.  

It was demonstrated with data from five different 
patients in postoperative situation that estimated 
respiratory airflow signals have very accurate 
waveforms. In addition, tidal volume, minute volume 
and respiratory rate can be calculated remarkably 
accurately from these signals. The method produced 
very good estimates even from challenging 
respiration signals: low airflows, COPD, hypopneic 
events and thoracoabdominal asynchrony. 

In summary, the presented method is able to 
produce estimates of postoperative respiratory 
airflow waveforms to enable accurate, continuous, 
non-invasive respiratory monitoring postoperatively. 
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