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Abstract: This paper proposes a hybrid model which combines state-space representation and back-propagation neural 
network to describe the aircraft unsteady aerodynamic characteristics. Firstly, the state-space model is 
analysed and evaluated using wind-tunnel experimental data. Subsequently, back-propagation neural 
network is introduced and combined with state-space representation to form a hybrid model. In this hybrid 
model, the separation point model in state-space representation is reserved to describe the time delay of the 
unsteady aerodynamic responses, while the conventional polynomial model is replaced by back-propagation 
neural network to improve accuracy and universality. Finally, lift coefficient and pitch moment coefficient 
data from the wind-tunnel experiments are used to estimate the hybrid model. With high similarity to the 
wind-tunnel data, the hybrid model presented in this paper is proved to be accurate and effective for aircraft 
unsteady aerodynamic modeling. 

1 INTRODUCTION 

The increasing agility requirements of modern 
aircrafts have invoked the development of the 
unsteady aerodynamic models. When flights are 
limited within a certain envelope of angle of attack, 
the traditional linear aerodynamic model is effective 
enough due to the incoherence between aerodynamic 
characteristics and the movement process. However, 
as the high angles of attack region becomes more 
accessible for modern aircrafts, the problem of 
adequate mathematical modeling of aerodynamic 
characteristics at separated and vortex breakdown 
flow conditions arises (Goman et al., 1994). 
Considering the significant role that unsteady 
aerodynamic forces and moments play in aircraft 
stability and maneuver control, efficient and 
universal unsteady aerodynamic modeling methods 
are in urgent demand. 

According to (Greenwel et al., 2004), a wide 
range of nonlinear unsteady aerodynamic modeling 
techniques have been developed in recent years. For 
instance, in (Goman et al., 1994), the authors put 
forward the state-space representation of 
aerodynamic characteristics of an aircraft at high 
angles of attack. Thereafter, state-space model and 

modified state-space model are also adopted by 
(Zakaria et a., 2015) and (Williams et al., 2015) to 
model two-dimensional airfoils and lift hysteresis 
separately. Analogously, (Kumar et al., 2012) adopts 
steady-state stall model for nonlinear modeling. In 
(Chen et al., 2004), Volterra series model is used in 
nonlinear unsteady aerodynamics investigation.  

Development of neural network has recently led 
to significant progress in the unsteady aerodynamic 
modeling field (Wang et al., 2010). With high 
modeling accuracy and expandability to multiple 
variables, neural networks have become a hot topic 
in unsteady aerodynamic modeling field. Several 
studies have been conducted recently in unsteady 
aerodynamic neural network modeling. The 
researchers in (Kumar et al., 2011) use neural 
Gauss–Newton method to study longitudinal 
aerodynamic modeling.  Support vector machines 
model is adopted for unsteady aerodynamic 
modeling in (Wang et al., 2015). Feed-forward and 
recurrent architectures neural networks are studied 
and compared in (Ignatyev et al., 2015).  

Although unsteady aerodynamic modeling has 
been studied for many years, there is still no 
universal solution for different aircrafts due to 
limited understanding of the flow mechanism. At the 
time of this writing, there is still no standard 
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unsteady aerodynamic model. However, some 
attempts are still proved to be of great value. For 
example, the state-space model can represent time 
delay characteristics, which reasonably describes 
actual physical mechanism of wing flow separation 
and reattachment. Relatively, neural network model 
can serve as universal approximators for unknown 
aircraft systems and be easily extended to multi-axis 
motions modeling. Therefore, an intuitive and 
meaningful attempt is to combine these two models 
and get an unsteady aerodynamic hybrid model with 
all these advantages.  

This paper is organized as follows: In Section 2, 
aircraft unsteady aerodynamic mechanism is 
discussed. Subsequently, state-space model is 
introduced and evaluated using the wind-tunnel 
experimental data. Section 3 describes the back-
propagation neural network and the hybrid unsteady 
aerodynamic model. Nested parameter optimization 
algorithm for the hybrid model is also given in this 
section. In Section 4, the hybrid model is finally 
validated with lift coefficient and pitch moment 
coefficient data which come from the wind-tunnel 
experiments. 

2 STATE-SPACE PRESENTATION 

2.1 Unsteady Aerodynamic Mechanism 

As a key factor of unsteady aerodynamic modeling, 
mechanism research has a significant impact on 
model validation. According to (Sun et al., 2015), 
unsteady flow separation vortices at the trailing edge 
are the causes of the unsteady aerodynamic 
characteristics.  During maneuvers, the wing flow 
separates and reattaches. As adjustment process of 
the surface vortex has dynamic time delay 
characteristic, the aerodynamic forces and moments 
show obvious unsteady phenomena. For example, 
pneumatic  hysteresis  loop  can  be  seen   from   the 

 
Figure 1: Linear aerodynamic model. 

wind-tunnel data of the longitudinal forced pitch 
oscillations in Fig. 1. 

Linear model is a conventional aerodynamic 
model. In many practical cases, the aerodynamic 
forces and moments are approximated by linear 
terms in their Taylor series expansions. In the case 
of lift coefficient, the function is defined as follows: 

( ) ( ) ( )
2 2L Ls Lq L
qc cC C C C
V Vα

αα α α= + + �
�  (1)

Where LC is the total lift coefficient, LsC  
denotes the static lift coefficient. , qα are angle of 
attack and pitch angle rate separately. ,Lq LC C α� are 
corresponding dynamic factors. V presents air speed, 
c is the wing mean geometric chord. Linear model 
assumes that aerodynamic forces and moments 
depend only on the instantaneous values of the flight 
states. Due to lacking the considerations of unsteady 
aerodynamic effects, the outputs of linear model 
often contain notable error at high angles of attack 
comparing to the wind-tunnel data (Fig. 1). 

2.2 State-space Model  

The state-space model takes time delay of flow 
separation and reattachment into account. An 
internal variable which describes the flow state is 
introduced by (Goman et al., 1994) to express time 
delay of unsteady aerodynamics at high angles of 
attack. This internal state variable is called the 
longitudinal position of the separation point x . The 
movement of the separation point for unsteady flow 
conditions is defined as follows: 
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 (2)

Function 0 ( )x α  is the static variation which 
depends on the instantaneous angle of attackα . *α  
is defined as the angle of attack when separation 
point reaches the middle of airfoil chord, σ is slope 
factor.  

The unsteady fluid mechanics processes are 
divided into two groups. The first group is the quasi-
steady effects such as circulation and boundary-layer 
convection lags, which tend to delay flow separation 
or burst onset by an amount roughly proportional to 
the pitch rate. This combined effect is expressed as 
an argument shift 0 2( )x α τ α− � . Where the parameter 

2τ  defines the total time delay associated with the 
above effects. The second group of flow phenomena 
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define the transient aerodynamic effects, in which 
any disturbance of the separated flow is followed by 
an adjustment or relaxation back to the steady-state.   
The adjustment process is governed by a first-order 
ordinary differential equation (Formula 2) with 
relaxation time constant 1τ .     

The solid line and dashed lines show the 
variations of the separation point position for steady 
and unsteady conditions separately in Fig. 2. The 
difference between solid line and dashed lines 
causes the pneumatic hysteresis of unsteady 
aerodynamics. 

 
Figure 2: Instantaneous separation point variations. 

In state-space model, aerodynamic forces and 
moments depend on not only the instantaneous 
values of the flight states, but also the instantaneous 
separation point position that can differ considerably 
from its stationary value. Since the pitch oscillations 
are considered with q α= � , the effects of α� are no 
longer included in the subsequent longitudinal 
unsteady aerodynamic coefficient expressions. The 
corresponding unsteady lift coefficient state-space 
representation is： 

( ) ( , , )L Ls LdC C C q xα α= +  (3)

The static coefficient LsC is conventionally 
approximated with the first three items in its Taylor 
series expansion, while the dynamic coefficient LdC
is approximated with the first five items in its Taylor 
series expansion. 

2

2

2

2
0 0 0

2

2

( ) ( )

( ) ( ) ( )
2

( ) ( )
2 2

Ls Ls Ls Ls

Ld L Lq L

L qLq

C C C x C x

qcC C x C x C x
V

q c qcC x C x
V V

α α

α α

α

α α

α α

α

= + +

= + + +

+

 
(4)

All the corresponding factors in both the static 
coefficient and the dynamic coefficient can be 
expressed with second-order polynomial functions, 
like LsC α and LC α  in the lower formula. 
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Where 0 1 2, ,Ls Ls Lsk k kα α α  and 0 1 2, ,L L Lk k kα α α are 
unknown parameters in the polynomial aerodynamic 
model. Totally, 26 parameters should be determined 
for the lift coefficient state-space representation, 
including four parameters *

1 2, , ,σ α τ τ in the 
separation point model (Formula 2) and all the 
relevant factors in the polynomial model (Formula 
5). 

2.3 State-space Model Evaluation 

Suitable simulations of the maneuvers in the wind 
tunnels are important for understanding the physics 
of complex flow phenomena (Hosder et al., 2007). 
These maneuvers should allow the physical 
simulation of aircraft dynamic behavior, which is 
subject to the dynamic similarity of the aircraft 
model, and identification of the aircraft aerodynamic 
model structure and its parameters (Pattinson et al., 
2013). For the case of symmetrical motion of the 
wing in the longitudinal plane, pitch-only oscillation 
has been successfully used to characterize unsteady 
aerodynamics at high angles of attack (Pattinson et 
al., 2012). In this paper, Forced large-amplitude 
pitch oscillations are executed in the wind tunnel. 
The corresponding experimental data of 
aerodynamic forces and moments are collected and 
used to estimate the aerodynamic models. 

Harmonic motions in pitch oscillations with a 
fixed center of gravity are implemented: 

0 sin(2 )
2 cos(2 )
A ft

q fA ft
α α π
α π π

= −
= = −�

 (6)

Oscillations were carried out with amplitude
40A ο= and different pitching frequencies f  . The 

initial angle of attack 0α  is set to 40ο , so the angle 
of attack α varies from 0ο to 80ο . Lift coefficient 
and pitch moment coefficient data at 0.4f Hz= , 

0.6f Hz= and 0.8f Hz= are used to testify the 
validity of the state-space model. After a proper 
parameter optimization for lift and pitch moment 
state-space models with Nelder-Mead method and 
particle swarm optimization method, the 
comparisons between optimized state-space model 
and corresponding wind-tunnel data are partly 
shown in the following figures:  
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Figure 3: Lift coefficient response at f=0.6Hz. 

 
Figure 4: Static lift coefficient response.  

 
Figure 5: Lift coefficient response at f=0.4Hz. 

 
Figure 6: Pitch moment coefficient response at f=0.6Hz. 

The figures above reveal that state-space model 
can approximate the wind-tunnel experimental data 
to a certain extent. Fig. 5 and Fig. 6 show that 
though state-space model can effectively reflect time 
delay characteristics of unsteady aerodynamics at 

high angles of attack, the model responses are not 
always in good agreement with the wind-tunnel data. 
The polynomial model is not accurate enough to 
describe the nonlinear static aerodynamic coefficient, 
like the static lift coefficient in Fig. 4.  

Goman’s nonlinear differential equation concept 
provides the most promising combination of relative 
simplicity, retention of physical significance in its 
parameters, and ability to model a wide range of 
common flow features (Greenwel et al., 2004). 
However, modifications should be added to state-
space model to capture more accurate and reliable 
unsteady aerodynamic responses.  

3 HYBRID MODEL 

Neural networks (NN) have recently been shown to 
be an effective tool for modeling nonlinear unsteady 
aerodynamics regardless of the aircraft 
configurations. In previous studies, a simple time 
delay is generally added to the flight states 
instantaneous values as the input signals in unsteady 
aerodynamic NN model. Though sometimes these 
NN models can achieve good accuracy due to the 
excellent approximating performance, actual 
physical mechanism of unsteady aerodynamics is 
not clearly reflected and the NN models are usually 
oversized with redundant neurons. As a meaningful 
attempt in this paper, a hybrid model which 
combines state-space representation and back-
propagation neural network is presented to integrate 
respective advantages in these two models. 

3.1 Back-propagation Neural Network 

Back-propagation neural networks (BPNN) are the 
most widely applied neural network models. The 
structure of generalized three-layer neural network 
consists of the input layer, the hidden layer and the 
output layer (Fig. 7). The node in the neural network 
is called the neuron. Each neuron receives signals 
from the neurons in the previous layer, and 
calculates its output through a specific transfer 
function.  

Fig. 8 shows the typical neuron transfer model. 
For nodes in the hidden layer, input signals are

( 1, 2,..., )jx j n= . These signals are summed with 
weight values jw  corresponding to the signal 
connections. Bias value s is added to the weighted 
sum of the input signals to generate a summed value
net . The final output g of the node is mapped 
through a commonly used hyperbolic tangent 
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sigmoid transfer function as the nonlinear activation 
function. The nodes in the output layer share the 
same scheme as the nodes in the hidden layer. 
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Figure 7: Generalized neural network structure. 
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Figure 8: Typical neuron transfer model. 

To minimize the mean-squared error E between 
BPNN model response Bjy and the actual response

Rjy , the error value je  is propagated backwards 
through the network for weight values and bias 
values updates. 

2 2

1 1

min ( ) / /
N N

Bj Rj j
j j

E y y N e N
= =

= − =∑ ∑  (8)

Gradient descent method is used in the back-
propagation neural network for parameter learning. 
When the mean-squared error decreases and reaches 
a given threshold range, parameter optimization 
stops and the BPNN model is regarded as an 
acceptable approximator to the actual model.  

3.2 Hybrid Model Structure 

To obtain a more accurate and reliable unsteady 
aerodynamic model and reflect actual flow 
separation characteristics, the unsteady aerodynamic 
hybrid model is proposed in this paper. As the 
differential equation of the separation point can be 
used to simulate time delay of unsteady aerodynamic 

responses, the separation point model is reserved in 
the hybrid model. As far as model accuracy and 
output response approximation are concerned, back-
propagation neural network is introduced to replace 
the conventional polynomial model. The structure of 
unsteady aerodynamic hybrid model is shown in the 
following figure. 

( )tα ( )LsC t

( )x t

*
1 2, , ,σ α τ τ

( )LdC t

*( )LC t

( ) ( )t tα α�

( )LC t

 
Figure 9: Unsteady aerodynamic hybrid model structure. 

Fig. 9 shows that in lift coefficient unsteady 
hybrid model, the static lift coefficient and the 
dynamic lift coefficient are identified separately. As 
the static coefficient only depends on the angle of 
attack, a simple BPNN model A is adopted to 
describe the nonlinear steady mapping between 
these two variables. For the dynamic lift coefficient, 
the separation point model is firstly used to generate 
the separation point x from α andα� . Subsequently, 
BPNN model B is introduced with ,α α� and x as 
input signals to simulate the unsteady lift component.  
The dynamic lift coefficient LdC is added to the 
static lift coefficient LsC to form the total lift 
coefficient response LC . Finally, LC is compared to 
the wind-tunnel lift coefficient data to optimize the 
relevant parameters in the hybrid model.  

3.3 Hybrid Model Optimization 

Two sets of unknown parameters exist in the 
unsteady aerodynamic hybrid model. Four 
parameters *

1 2, , ,σ α τ τ in the separation point model 
decide the separation point dynamic characteristics, 
while all the relevant weight values and bias values 
in BPNN model reveal the nonlinear mapping 
function of the unsteady aerodynamic forces and 
moments. All of the above unknown parameters 
should be identified and optimized to realize the best 
model response. 
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For the unknown values in BPNN model A, a 
direct gradient descent method is taken to optimize 
the corresponding parameters. When it comes to the 
dynamic aerodynamic component identification, a 
nested parameter optimization algorithm is used. 
The four parameters *

1 2, , ,σ α τ τ are optimized as the 
outside loop of the nested optimization structure, the 
corresponding optimization algorithms are Nelder-
Mead method and particle swarm optimization 
method. The relevant weight values and bias values 
in BPNN model B are identified with gradient 
descent method as the inner loop. The nested 
parameter optimization structure is as follows: 

( )LsC t

( )x t

*
1 2, , ,σ α τ τ

( )LdC t

*( )LC t

( ) ( )t tα α�

( )LC t

J

 
Figure 10: Nested parameter optimization structure. 

In the case of dynamic lift coefficient 
identification, the optimal objective function is 
defined as the mean-squared error between the 
hybrid model response and the wind-tunnel data, as 
shown in the following formula.  

* 2

1

min ( ) /
N

Lj Lj
j

J C C N
=

= −∑  (9)

As far as the number of the hidden layer neurons 
is concerned, an oversized network could overfit and 
overlearn for a special data set. Conversely, an 
undersized network with too few hidden layer 
neurons could significantly reduce the results 
accuracy (Boëly et al., 2010). For the parameter 
identification of the hybrid model, a large enough 
integer value is chosen as the number of the hidden 
layer neurons to ensure the model response accuracy. 
After the parameters *

1 2, , ,σ α τ τ are determined with 
the oversized BPNN model B, a model 
simplification process is executed to reduce the 
redundant neurons. Useless and redundant neurons 
are deleted one-by-one and the parameters in BPNN 
model B are readjusted until the mean-squared error 
J exceeds the pre-determined threshold. Finally, a 

simplified hybrid model is achieved without 
lowering model accuracy criterion.  

4 SIMULATION RESULTS 

The considered unsteady aerodynamic hybrid model 
is tested using the wind-tunnel experimental data. As 
it is mentioned in Section 2, the lift coefficient and 
pitch moment coefficient data come from the forced 
large-amplitude pitch oscillations at 0.4f Hz= , 

0.6f Hz= and 0.8f Hz= . Two thirds of the 
experimental data are used to train the neural 
networks in the hybrid model, and one third of the 
experimental data are used to evaluate the hybrid 
model performance.  

For the hidden layer in BPNN model A, 6 
neurons are enough to create a more accurate static 
aerodynamic model comparing to state-space model. 
The responses of the static BPNN models are 
illustrated in Fig. 11 and Fig. 12. 

 
Figure 11: Static lift coefficient response. 

 
Figure 12: Static pitch moment coefficient response. 

As for the identifications of the dynamic 
aerodynamic component, 30 hidden layer neurons 
are set as the initial size of BPNN model B.  The 
four parameters *

1 2, , ,σ α τ τ are firstly identified 
using the nested optimization algorithm mentioned 
in Section 3. 

Table 1: Identification results in separation point model. 

σ  * / degα  1 / sτ  2 / sτ  

0.11 41.2 0.042 0.047 
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Subsequently, model simplification process is 
carried out to reduce the redundant neurons. The 
simplification results indicate that 6 hidden layer 
neurons are accurate enough to represent the 
nonlinear mapping relation in BPNN model B for 
lift coefficient modeling. As for the pitch moment 
coefficient, 7 hidden layer neurons are necessary to 
guarantee model accuracy. The optimized unsteady 
aerodynamic hybrid models are compared with the 
conventional state-space models. The mean-squared 
errors J are listed in Table 2. SS-M is short for 
state-space model, CH-M denotes the complicated 
hybrid model with 30 hidden layer neurons, SH-M 
represents the simplified hybrid model. 

Table 2: Mean-squared error comparisons. 
2/10J −  f=4Hz f=6Hz f=8Hz 

Lift 
coefficient 

SS-M 7.87 4.58 8.66 
CH-M 3.05 1.34 2.47 
SH-M 3.32 1.61 3.46 

Pitch 
moment 

coefficient 

SS-M 4.79 4.12 11.1 
CH-M 0.42 0.35 0.40 
SH-M 1.05 0.56 0.57 

Comparing to conventional state-space model, 
the hybrid model can achieve obvious accuracy 
improvement in approximating the unsteady 
aerodynamic response. The response results of the 
simplified hybrid models achieve good agreements 
with different wind-tunnel experimental data, which 
are illustrated in the following figures. 

 
Figure 13: Lift coefficient response at f=0.4Hz. 

 
Figure 14: Pitch moment coefficient response at f=0.4Hz. 

 
Figure 15: Lift coefficient response at f=0.6Hz. 

 
Figure 16: Pitch moment coefficient response at f=0.6Hz.  

 
Figure 17: Lift coefficient response at f=0.8Hz. 

 
Figure 18: Pitch moment coefficient response at f=0.8Hz. 

5 CONCLUSIONS 

A hybrid model which combines state-space 
representation and back-propagation neural network 
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is proposed in this paper to describe the aircraft 
unsteady aerodynamic characteristics. According to 
the simulation results, the conventional state-space 
model has limited approximation quality in 
modeling unsteady aerodynamics. For the purpose of 
improving model accuracy and universality, back-
propagation neural network is introduced and 
replaces the polynomial model in state-space 
representation.  The unsteady aerodynamic hybrid 
model is identified and optimized with nested 
optimization algorithm using the wind-tunnel data in 
forced large-amplitude pitch oscillation experiments. 
With satisfactory similarity to the wind-tunnel data, 
the hybrid model presented in this paper is validated 
to be effective in both reflecting unsteady time delay 
characteristics and representing complex nonlinear 
mapping relation for unsteady aerodynamics at high 
angles of attack. 
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