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Abstract:

The native app development is increased in Android systems to implement CPU-intensive applications such

as game engines, signal processing, and physics simulation. However, native code analysis is very difficult
and requires a lot of time which explains the limited number of systems that track information flow in native
libraries. But, none of them detects the sensitive information leakage through control flows at native level. In
this paper, we combine dynamic and static taint analysis to propagate taint along control dependencies. Our
approach has proven to be effective in analyzing several malicious Android applications that invoke native

librairies with reasonable performance overheads.

1 INTRODUCTION

Mobile devices have become a necessity for many
people throughout the world. The ability for commu-
nication, GPS navigation, web browsing and multi-
media entertainment are only a few of the reasons for
the increasing use of mobile devices. According to
a recent Gartner report (Rob van der Meulen, 2013),
455.6 million of worldwide mobile phones were sold
in the third quarter of 2013, which corresponds to
5.7% increase from the same period last year. Sales
of smartphones accounted for 55% of overall mobile
phone sales in the third quarter of 2013. In particu-
lar, Android surpassed 80% market share in the same
period.

In order to satisfy Android users’ requirements,
the development of Android applications have been
growing at a high rate. In May 2013, 48 billion
apps have been installed from the Google Play store
(Warren, 2013). Most of these applications use na-
tive libraries to improve performance. Table 1 shows

Table 1: Increase in the number of Android apps using na-
tive libraries.

Period Percentage of apps using native libraries
May-Jun 2011 4.2% (Zhou et al., 2012)

Sep-Oct 2011 9.42% (Grace et al., 2012)

Jun 2012-Jun 2013 16.46% (Qian et al., 2014)

2013. These applications can invoke System.load()
or System.loadLibrary() to load native libraries such
as game, music and audio and communication apps,
or can contain native libraries without calling these
methods or can be written in pure native code. Note
that the restricted number of applications in pure na-
tive code is due to the limitations of the NDK (Native
Developpement Kit) APIs.

The native libraries can contain sensitive data such
as phone identity, user contacts, pictures and loca-
tions. An attacker can exploit this native code to get
private information.

Dynamic taint analysis can be used for checking
information flows through JNI (Java Native Interface)
and to control the handling of private data in Android
systems (Qian et al., 2014). This technique assigns
taint to sensitive data. Then, it tracks propagation of
tainted data to detect leakage of private information
by malicious applications. This, can be detected when
sensitive data are used in a taint sink (network inter-
face).

boolean x;

char c[256];

if ( gets(c) != user_location )
x=false;

else
x=true;

NetworkTransfer (x);

July 2013-Dec 2013 24% (Spreitzenbarth et al., 2013)

the increase in the number of Android apps employ-
ing native libraries from 4.2% in 2011 to 24% in
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Listing 1: Control flow example.

Two types of flows are defined: explicit flows such
as x =y, where we observe an explicit transfer of a
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value from x to y, and control flows shown in List-
ing 1 that occur in the control flow structure of the
program. In this example, the attacker tries to get the
user location by exploiting control flows. The value of
the variable x depends on the condition and it informs
the attacker about the value of user location. When
the test was positive, x is modified and it is leaked to
the network without being detected because the dy-
namic taint analysis approach implemented in the An-
droid native code does not propagate taint along con-
trol dependencies. Thus, malicious applications can
get privacy sensitive data through control flows in na-
tive code. Our objective is to detect private informa-
tion leakage by untrusted smartphone applications ex-
ploiting control flows in native code. In this context,
many challenges need to be addressed:

o The resource constrained nature of Smartphones:
the limited processing and memory capacity of
smartphones make it difficult to use information
flow tracking systems (Yin et al., 2007), (Clause
et al., 2007), (Kang et al., 2011), (Song et al.,
2008). Thus, it is necessary to design a resource
efficient security mechanism.

e The unavailable application source code: the
source code of smartphone applications is often
unavailable.

e False negatives: while the most used information
flow tracking systems (Enck et al., 2010), (Horny-
ack et al., 2011), (Qian et al., 2014), (Yan and Yin,
2012) do not track control flows, false negatives
could occur and cause security flaws.

The approach cited in (Graa et al., 2014) proposed
an enhancement of dynamic taint analysis that prop-
agates taint along control dependencies in Java An-
droid applications’ code. In this paper, we improve
this approach by considering also the native code and
combining dynamic taint analysis and static analysis
to control the manipulation of private data by third-
party apps that exploit control flows in native libraries
to leak sensitive information. To the best of our
knowledge, this is the first paper that tracks control
flows in native Android code to detect the leakage of
private data. Analysis of applications’ behavior at na-
tive level is very difficult and requires a lot of time. To
be practical, the performance overhead of our system
runtime must be reasonable. In addition, sufficient
contextual information about propagation of private
data in Java and native levels is needed. Thus, we
use the data tainting technique and we assign taint to
sensitive information. Also, it is not trivial to track
control flow in native code. So, we use static analysis
to detect control dependencies.

This paper is organized as follows: section 2 de-
fines the problem statement. Related works about ex-
isting systems that consider native libraries invoked
by Android applications and existing approaches that
detect control flows are discussed in section 3. We
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give an overview of our solution based on a hybrid
approach that improves the functionality of NDroid
by considering the control dependencies in section 4.
Section 5 describes implementation details of our ap-
proach. We test the effectiveness of our approach by
analysing several Android applications and we study
our approach taint tracking overhead in section 6. We
discuss the limitations of our work in section 7. Fi-
nally, section 8 concludes.

2 PROBLEM STATEMENT

We present in this section the problem that our ap-
proach solves.

The under-tainting problem occurs when some
values should be marked as tainted, but are not. The
dynamic taint analysis approaches implemented in
Android native code do not propagate taint in con-
trol flows which can cause an under-tainting problem.
Consider the example in Listing 3 that presents an
under tainting problem in Android native code. The
malicious program written in Java code (see Listing
2) gets the device id and passes it as argument to
a native function (written in C). In the native code
presented in Listing 3, the attacker compares each
character of private data with symbols in AsciiTable
(TabAsc). Then, he stores the sequence of charac-
ters found in the string Z. The variable Z contains
the value of the private data but it is not tainted using
existing dynamic analysis taint systems. TaintDroid
taints the returned value of a JNI function if one argu-
ment is tainted. In this case, the native function does
not return a value.

package com. tuto.attackndk;
public class MainActivity extends Activity {
static {
System.loadLibrary (7attackndk™);
}
public static native void invokeNativeFunction
(String IMEI);
@Override
protected void onCreate(Bundle
savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R. layout.activity_main);
String device.id = GetDeviceld () ;
invokeNativeFunction (device_id);

}

Listing 2: Attack exploiting native code based on control
dependencies.

The approach presented in (Graa et al., 2014) does not
propagate taint in native code. NDroid under-taints
the control flows of native code. Thus, variable Z is
leaked through JNI without any warning reports. In
this example, the taint sink (network interface) is de-
fined in the native code. So, the variable Z is leaked
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through the network connection (Send _Data(Z)). The
approaches cited in (Enck et al., 2010), (Graa et al.,
2014) do not implement taint sink in the native code.
But, NDroid instruments native libraries to define the
taint sink. As the variable Z sent through the network
connection is not tainted, the leakage of this data can-
not be detected.

#include <string.h>

#include <jni.h>

void Java_com_tuto_attackndk_MainActivity._

invokeNativeFunction (JNIEnv env, jobject thiz,
jstring IMEI)

{
String Private_Data;
String Z;
strcpy (Private_Data , IMEI);
for(int i = 0; i < sizeof(Private_Data); i
++)
{
char s;
sprintf (s, "%d”, i);
for(int j = 1; j < sizeof(TabAsc); j++)
if (stremp(s,TabAsc[j]) == 0)
strcat (Z,TabAsc[j]);
}

Send_Data(Z);

Listing 3: Native malicious function.

The taint sink can be defined in the Java code. In
this case, another Java program searches the sensi-
tive information from the native code, or the native
method calls and passes the sensitive information to
Java code. Then, the Java code leaks the private data.
As it is not tainted, it will be sent without any warning
reports.

As the dynamic taint analysis approaches cannot
detect a leakage of sensitive information caused by
the under-tainting problem. We aim to enhance these
approaches by tracking control flow in the Android
native code. To do so, we also use static analysis to
detect control dependencies. The dynamic analysis
allows tainting variables to which a value is assigned
in the conditional instruction exploiting information
provided by the static analysis.

We present existing systems that track informa-
tion flows in native libraries invoked by Android
applications and existing approaches that detect
control flows in the next section.

3 RELATED WORK

Static Analysis Approaches. Static analysis is used
to detect leakage of sensitive data. ComDroid (Chin
et al., 2011), SCANDROID (Fuchs et al., 2009), Ded
(Enck et al., 2011) and FLOWDROID (Arzt et al.,
2014) allow a static analysis of third party Android
applications’ code. One of the limits of these static

analysis approaches is that they cannot capture all
runtime configurations and inputs.

Dynamic Analysis Approaches. TaintDroid (Enck
et al., 2010) implements dynamic taint analysis to
determine when privacy sensitive information leaves
the phone. TaintDroid defines taint propagation logic
only for explicit (direct) flows and does not track
indirect flows (control flows). For native code, Taint-
Droid adds an additional propagation heuristic patch
that assigns the union of the native method argument
taint tags to the taint tag of the return value. This,
does not reflect the exact taint propagation in native
code, because it under-taints explicit information
flows from native code to Dalvik virtual machine
(DVM). AppFence (Hornyack et al., 2011) extends
Taintdroid to implement policy enforcement. A
significant limitation of these dynamic taint analysis
approaches implemented in Android systems is that
they track only explicit flows in Java code level and
they do not consider native libraries.

Native Libraries Approaches. Fedler et al. (Fedler
et al., 2013) assert that all current local root exploits
are exclusively implemented as native code and
can be dynamically downloaded and runned by
any app. Since, the lack of control mechanisms
for the execution of native code poses a major
threat to the security of Android devices, Fedler
et al. propose mechanisms to control native code
execution. Some works have been undertaken to
consider native libraries in Android applications.
DroidRanger (Zhou et al., 2012) records any calls
to the Android framework APIs for the dynamically
loaded Java code and their arguments to provide
rich semantic information about an app’s behavior.
For the dynamically-loaded native code, it collects
system calls made by the native code using a kernel
module that catches the system calls table in the
(Linux) kernel. RiskRanker (Grace et al., 2012)
compares native code of apps with the signatures of
known root exploits. To analyze potential harmful
applications for the Android platform, AASandbox
(Blasing et al., 2010) realizes system and library call
monitoring. Paranoid (Portokalidis et al., 2010) and
Crowdroid (Burguera et al., 2011) intercept system
calls and signals of processes. The dynamic analyzer
presented in (Spreitzenbarth et al., 2013) traces code
included in native shared objects, those included
with the app through the NDK as well as those
shipped with Android by intercepting library calls of
a monitored application. CopperDroid (Reina et al.,
2013) instruments the Android emulator to enable
system call tracking and support an out-of-the-box
system call-centric analysis. DroidScope (Yan and
Yin, 2012), an emulation-based Android malware
analysis engine, used to analyze the Java and native
components of Android Applications. It implements
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several analysis tools to collect detailed native and
Dalvik instruction traces, profile API-level activity,
and track information leakage through both the Java
and native components using taint analysis. One
of the limits of DroidScope is that it incurs high
overhead. DROIT (WANG and SHIEH, 2015) is an
emulation-based taint tracking system. It tracks data
flow at Java object level and switches to instruction
level instrumentation when native code starts to take
over. DROIT is designed to profile the program
behavior. So the program is considered as the taint
source. On the contrary, in TaintDroid the data in the
program presents the taint sources. NDroid (Qian
et al., 2014) extends TaintDroid to track explicit
flow in native code. The major disadvantage of all
approaches that consider native libraries is that they
do not propagate taint in control flows.

Control Flows Approaches. Cavallaro ef al. (Caval-
laro et al., 2008) describe the evasion techniques that
can easily defeat dynamic information flow analysis
using control dependencies. They show that it is nec-
essary to reason about assignments that take place on
the program branches. We implement the same idea
in our taint propagation rules.

Some approaches exist in the literature to track con-
trol flows (Clause et al., 2007), (Egele et al., 2007),
(Song et al., 2008), (Kang et al., 2011), (Nair et al.,
2008). They combine static and dynamic taint analy-
sis techniques to correctly identify control flows and
to detect a leak of sensitive information. Fenton (Fen-
ton, 1974) defined a Data Mark Machine, an abstract
model, to handle control flows. Fenton assigns a se-
curity class to data and defines an interaction ma-
trix to manipulate information in the system. Aries
(Brown and Knight Jr, 2001) considers that writing
to a particular location within a branch is disallowed
when the security class associated with that location
is equal to or less restrictive than the security class
of the program counter. The Aries approach is based
only on high and low security classes. Denning (Den-
ning, 1975) enhances the run time mechanism used
by Fenton with a compile time mechanism to han-
dle all branches in the conditional structure. Den-
ning inserts updating instructions whether the branch
is taken or not. This reflects clearly the information
flow. Furthermore, these approaches are not imple-
mented in smartphones application. Our approach is
inspired from these prior works, but addresses differ-
ent challenges specific to mobile phones like resource
limitations.

The approach cited in (Graa et al., 2014), (Graa
et al.,, 2012) extended TaintDroid and combined
dynamic taint analysis and static analysis to track
control flows at Java level in Android operating
system. A proof of the correctness and completeness
of this approach is presented in (Graa et al., 2013).
However, this approach does not consider native
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libraries.

We draw our inspiration from the prior works and
we enhance the approach presented in (Graa et al.,
2014) by propagating taint along control flow in na-
tive code. We describe our approach in more details
in the following section.

4 SYSTEM DESIGN

The approach presented in (Graa et al.,, 2014) al-
lows tracking information flows (explicit and control
flows) in Java Android applications to detect leakage
of sensitive data. It enhances the TaintDroid system
based on dynamic taint analysis to control the manip-
ulation of private data by third party Android appli-
cations. First, authors assign taint to sensitive data.
Then, they track propagation of tainted data in the
Java components. They issue warning reports when
the tainted data are leaked by malicious applications.

QEMU

Android OS
Dalvik VM

Dex Verfier ——) metrp

Static analysis U Dynamic analysis

| Java components |

Java taint
sink

[ Java Libs |

Context Switching
Functions

[ Native K

Native
Taintsink

Native Taint
instruction
Tracer

| i |

Kernel
informations

Explicit flow Control Flow

Figure 1: Modified architecture to handle control flow in
native code.

As TaintDroid cannot detect control flows, they
combine the static and dynamic taint analyses to solve
the under tainting problem. The static analysis is
used to detect control dependencies and to have an
overview of all conditional branches in the program.
They use information provided by static analysis to
propagate taint along all control dependencies in the
dynamic analysis phase.

Components colored in gray (see Figure 1) present
the Java Taint Instruction Tracer module of this ap-
proach (Graa et al., 2014), (Graa et al., 2012) im-
plemented in the Dalvik VM for tracking information
flows at Java level. Authors modify the Dex verifier to
statically analyze the Java Android app’s code and the
interpreter for the dynamic analysis. The Java taint
sink is defined by instrumenting the Java framework
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libraries. For more implementation details of the Java
Taint Instruction Tracer module, please refer to (Graa
et al., 2012), (Graa et al., 2014).

For JNI methods, authors patched the call bridge
to provide taint propagation. In addition, they defined
a method profile that is a list of (from; to) pairs indi-
cating flows between variables for tag propagation in
JNI methods. It will be used to update taints when a
JNI method returns. Authors add an additional propa-
gation heuristic patch that assigns taint to the returned
value of a JNI function if one parameter is tainted.
This, does not reflect the exact taint propagation in
native libraries.

Thus, to ensure the proper propagation of the na-
tive code, we implement the Native Taint Instruction
Tracer module (see Figure 1) that instruments the AR-
M/Thumb instructions. Also, we use static analysis to
enumerate the information flows (control flows) for
all INI methods.

In addition, when a native function is invoked in
(Graa et al., 2014), the corresponding taint is not
stored in the native runtime stack. So, they do not
get and set taints correctly when the context (Java
and native) switches. Therefore, we define the Con-
text Switching Functions module (see Figure 1). This
module instruments JNI-related functions, through
which information flows cross the boundary between
the Java context and the native context to maintain
taints between the two contexts.

Moreover, we implement the Native Taint sink
module (see Figure 1) which hooks a selected sys-
tem call. Finally, we get Android Linux kernel infor-
mation of processes and memory maps (Information
Kernel module). We detail these modules in the fol-
lowing section.

S HANDLING CONTROL FLOW
IN NATIVE LIBRAIRIES

The architecture of our approach is presented in Fig-
ure 1. The Android system runs on top of an emula-
tor QEMU (Wiki, 2015) which provides information
about all generated ARM/Thumb Android instruc-
tions. Thus, we made a number of modifications to
QEMU to implement our proposed approach. We de-
fine four modules: (1) Native Taint Instruction Tracer
module that handles explicit and control flows at na-
tive level; (2) Context Switching Functions module;
(3) Native Taint sink module and (4) Information Ker-
nel module.

5.1 Native Taint Instruction Tracer

The Native Taint Instruction Tracer module is com-
posed of (1) Explicit flow component that tracks di-
rect flows and (2) Control flow component that tracks

indirect flows at native level.

We instrument the ARM/Thumb instructions of
native libraries invoked by Android applications to
propagate taint in explicit flow. We handle unary, bi-
nary, move operations. For these operations, we add
taint propagation instructions that assign to the des-
tination register (R;) the combination of all taints of
source registers (R,,R,,). We propagate taint tags in
explicit flow referencing data flow rules presented in
Table 2. #imm represents the immediate number with
a null value of taint. The #(M|addr]) is the taint of
memory at address addr that is calculated using R,
and #imm (Cal(R,,,#imm)). LDM and ST M represent
the load and store instructions. The operator “®” is
used to combine taints of objects. The operator “®”
indicates a binary operation between two registers.
Listing 4 and Listing 5 present the instrumentation
code to handle explicit flow of respectively move and
binary operations.

It is more difficult to handle control flows be-
cause it is necessary to detect all conditional branches.
Thus, to track control flow at native level, we use
a static analysis which checks instructions of native
methods at load time. This analysis is based on the
control flow graphs (Aho et al., 1986; Allen, 1970)
which are analyzed to determine branches in the con-
ditional structure. The control flow graph is com-
posed of nodes that represent basic blocks and di-
rected edges that represent jumps in the control flow.
A basic block is assigned to each control flow branch.
We detect the flow of the condition-dependencies
from blocks in the graph using the BitmapBits which
is an array of bits. Setting all bits indicates that the
flow of control is merged and the basic block does not
depend on control condition.

case I.MOV:

d—>Rd = (w>> 8) & blll;
/« CONTROL FLOWS START =/
if (context_cond)

{

setRegTaint (d—>Rd,( getRegTaint(d—>Rn) | taint_cond
)

}

/+ CONTROL FLOWS END x/

else

/x EXPLICIT FLOWS START x/

{

setRegToReg (d—>Rd, d—>Rn);

}

/% EXPLICIT FLOWS END x/

return 0;

Listing 4: Instrumenting I MOV instruction to propagate
taint in control flows.

When one bit is set, the basic block depends on
the control condition. The basic block represents the
conditional instruction when no bit is set. Also, we
detect variable assignment in a basic block of the con-
trol flow graph. When we run the native methods,
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Table 2: Explicit Flow Propagation Logic.

Instruction Format

Instruction Semantics

Taint Propagation

mov Ry, #imm Ry « #imm Taint(Ry) < 0

mov Ry, Ry, Ry < Ry Taint(Ry) < Taint(R,;)

unary-op Ry, Ry, Ri < ®Ry, Taint(Ry) < Taint(R,,)

binary-op Ry, Ry, R Ri < R, @Ry Taint(Ry) < Taint(R,) ® Taint(R,,)

binary-op Ry, R Ri < Ri @R, ) ) ® Taint(Ry)
)

binary-op Ry, Ry, #imm

Ry < R, @ #imm

Taint(Ry) < Taint(R,,)

STR R4, R, #imm

addr < Cal (R, #imm), M[addr] < Ry

Taint(M[addr|) < Taint(Ry)

LDR R4,R,,#imm

addr < Cal (R, #imm), Ry < M[addr]

(R,
(
(
Taint(Ry) < Taint(Ry
(
(
(

Taint(Ry) < Taint(M[addr]) & Taint(R,)

STM(PUSH) regList, R, #imm

startAddress/endAddress —

{M(startAddress|,M|endAddress]} < {R;,R;}

Cal (R, #imm), | Taint({M|startAddress),M[endAddress]})

< Taint({R;i,R;})

LDM(POP) regList, R,,, #imm
{M[startAddress),M[endAddress|}

startAddress/endAddress < Cal(R,,#imm),{R;,R;} <+

Taint({R;,R;}) - Taint(R,) @
Taint({M|startAddress|,M[endAddress]})

we taint these variables if the condition is tainted.
To do this, we use dynamic analysis and we instru-
ment third-party native libraries conditional instruc-
tions (see Listing 4 and Listing 5 for move and binary
instruction in a conditional statement). This analysis
uses information provided by the static analysis such
as the BitmapBits to detect condition-dependencies
from block in the graph and variable assignment.
Then, we define a context taint as condition taint.
We taint modified variables that exist in the condi-
tional instruction according to rules of taint propa-
gation defined and proven in (Graa et al., 2013). If
the branch is taken then Taint(x) = ContextTaint ®
Taint (explicit flowstatement ).

case T-THUMB_3REG:
d—>Rd = (w>> 0) & blll;
d—>Rn = (w>> 3) & blll;
d—>Rm = (w >> 6) & blll;

/+ CONTROL FLOWS START =/

if (context_cond)

{

setRegTaint (d—>Rd,( getRegTaint(d—>Rn) |
getRegTaint (d—>d—>Rm) | taint_cond))

}

/% CONTROL FLOWS END x/
else

/% EXPLICIT FLOWS START =/
{

setRegTaint (d—>Rd,( getRegTaint (d—>Rn) |
getRegTaint (d—>d—>Rm)));

}

/+ EXPLICIT FLOWS END x/

return 0;

Listing 5: Instrumenting T_-THUMB_3REG instruction
to propagate taint in control flows.

5.2 Context Switching Functions

When the context switches from Java to native, we
store the taint in native runtime stack for tracking in-
formation flow at native level. The Context Switching
Functions module instruments JNI-related functions
that ensure switching between the two contexts.
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These functions allow Java code to invoke na-
tive code. We hook the JNI call bridge (dvm-
CallJNIMethod) to detect native invoked methods.
Then, we assign to each invoked native method a
SourcePolicy structure where arguments taints of this
method are stored. Finally, we add taints to the corre-
sponding native context registers and memories.

Moreover, these functions allow native code to
call Java methods through the dvmCallMethod func-
tion. We save taints in shadow registers and mem-
ory at native level and we use them to set taints in
the Dalvik virtual machine stack when native codes
invoke Java codes by instrumenting the dvmInterpret
method. In addition, we maintain taint of a new Java
object that can be created in the native codes through
JNI functions. Furthermore, we instrument functions
that allow native code to access to the Java objects’
fields to assign taint to these object fields. Finally,
we taint exceptions thrown by native code to com-
municate with Java code by instrumenting functions
including “ThrowNew”, “initException”, “dvmCall-
Method” and “dvmInterpret”.

5.3 Information Kernel

The Information Kernel module provides Android
Linux kernel information of processes and memory
maps. We use the virtual machine introspection [16,
21, 24] technique described in Droidscope for recon-
structing the OS-level view. The QEMU emulator
disassembles and translates a basic block of guest in-
structions into an intermediate representation called
TCG (Tiny Code Generator). Then, it compiles the
TCG code block down to a block of host instruc-
tions and stores it in a code cache. To extract OS-
level information (running processes, and the memory
map) we instrument translated code blocks and we
add TCG instructions at the code translation phase.
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Table 3: Third party analysed applications.

Third party applications

The Weather Channel; Cestos; Solitaire; Babble; Manga Browser; Box2D*; Libgdx*;
Knocking; Coupons; QQPhoneBook*; Fruit Ninja*; Bump; Traffic Jam; Find It*;
Hearts; Blackjack; Alchemy; Horoscope; Bubble Burst Free; Wisdom Quotes Lite;
Paper Toss*; ePhone*; Classic Simon Free; Astrid; Angry Birds*; Subway Surfer®; Layar;
Cocos2D*; Unity*; Trapster; ProBasketBall; Grindr*; HeyWire*; Wertago;
Dastelefonbuch*; RingTones; Yellow Pages; Contact Analyser; Hike*; TextPlus*

5.4 Native Taint Sink

The sensitive data can be leaked through native code.
Thus, it is necessary to implement taint sink at na-
tive level. The Native Taint sink module hooks a
selected system call to detect the leakage of pri-
vate information. To make system calls, we use
the service zero instruction svc#0. Thus, we in-
strument this instruction to get system call informa-
tion. We hook file open (fopen), close (fclose),
read (fread), write (fwrite, fputc, fputs) and con-
nect (send, sendto) system calls to implement the na-
tive sinks. Our approach can be proved complete
by following the same formal proof of complete-
ness (soundness and compactness) described in (Graa
etal., 2013).

6 EVALUATION

In this section, we evaluate effectiveness and perfor-
mance of our approach. First, we analyse real popu-
lar Android applications using our system. Then, we
evaluate our taint tracking approach overhead using
CF-Bench. We use a Dell laptop (Latitude E6420)
with a core i5 @ 2.6 GHz and 4GiB of RAM run-
ning Debian 7. Experiments were performed on an
Android emulator version 4.1 that runs on our lap-
top. We enhance the approach implemented in (Graa
et al., 2014) for tracking information flows (explicit
and control flows) in native libraries.

6.1 Effectiveness

We download and analyse 40 free frequently used An-
droid applications from the Google Play store (see
Table 3). These applications access and handle pri-
vate data such as location, contacts, phone state, cam-
era and SMS. As shown in Table 3, 16 applications
(marked with *) invoke native libraries.

We use dex2jar tool (Google, 2015) to translate
dex files of different applications to jar files. Then, we
use jd-gui (Java, 2015) to obtain the Java source code
that will be analysed. For native code, we disassem-
ble the libraries object code and we get the assembler
mnemonics for the machine instructions by execut-
ing objdump (part of the GNU Binutils) (sourceware,
2015).

Table 4: Third party applications leaking sensitive data (L:
location, Ca: camera, Co: contacts, P: phone state, SMS:
messages) through information flows.

Application Java context Native Context Type of
leaked
data

Explicit | Control | Explicit | Control
flow flow flow flow

Wisdom X L,P

Quotes Lite

The Weather X L

Channel

Knocking X L, Ca,
P

Coupons X L, Ca,
P

QQPhoneBook X Co,
SMS

Fruit Ninja X Co

Find It X X L,P

Horoscope X L,P

Paper Toss X X L P

ePhone X Co

Astrid X L, P

Angry Birds X L

Subway X L

Surfer

Layar X L, Ca,
P

Trapster X L, Ca,
P

Grindr X L,
SMS

HeyWire X L,
SMS

Wertago X L, Co,
P

Dastelefonbuch X X L, Co,
P

RingTones X L, Co,
P

Yellow Pages X L, Co,
P

Hike X L,
SMS

TextPlus X L,
SMS

We found that 23 Android applications (see Table
4) leak private data through information flows:
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e Six applications use explicit flow in Java context
and cause the leakage of sensitive information like
location, phone state, contact and camera.

e FEight applications use control flow in Java context
and cause the leakage of sensitive information like
location, phone state, contact and camera.

e Two applications use explicit flow in native con-
text and cause the leakage of sensitive information
like contact and SMS.

e Ten applications use control flow in native con-
text and cause the leakage of sensitive information
like location, phone state, contact and SMS. Most
of these applications belong to Game category
(Fruit Ninja, Angry Birds, Subway Surfer) and to
communication category (Grindr; HeyWire, Hike,
TextPlus). These ten applications are detected
only by our approach.

TaintDroid detects 26% of malicious applications that
cause leakage of sensitive data, NDroid and Droid-
scope 35%, Graa et al. implementation 61% and our
approach detects all applications. So, our approach
identifies more malicious applications that existing
approaches in Android systems are unable to detect.

6.2 False Negatives

TaintDroid using its simple JNI tainting policy gener-
ates 74%, NDroid 65%, Droidscope 65% and Graa et
al. approach 39% of false negatives. Our approach
solves the under tainting problem. It has successfully
propagated taint in control instructions at Java and na-
tive levels and detected leakage of tainted sensitive
data that is reported in the alert messages.

6.3 Performance

To evaluate the performance of our approach, we
study our static and dynamic analysis overhead. We
perform the static analysis at load and verification
time. Our approach adds 37%, and 30% overhead
with respect to the unmodified system respectively at
load and verification time. This, is due to the verifica-
tion of method instructions and the construction of the
control flow graphs used to detect the control flows.

We use CF-Bench (Bench, 2011) which is a CPU
and memory benchmark tool to study our taint track-
ing approach overhead. We choose CF-Bench be-
cause it produces a fairly stable score, and tests both
native as well managed code performance.

As shown in Figure 2, our approach incurs in av-
erage a slowdown of 14.9 times. This time of over-
head is greater than the result of NDroid (5.45 times
slowdown) because we propagate taint in the condi-
tional branches at Java and native levels. This time of
overhead is greater than the result of Droidscope (11
times slowdown) performed in a real machine and not
in a Google Android Emulator that is prohibitively
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Figure 2: CF-Bench results of our taint tracking approach
overhead.

slow. Despite the proposed approach having addi-
tional speed loss, it gives more accurate detection re-
sults than NDroid and Droidscope.

6.4 False Positives

Our approach generates 30% of false positives. We
detected leakage of IMSI and IMEI that was really
used as a configuration parameter in the smartphone.
So, we cannot consider these applications as mali-
cious.

7 DISCUSSION

In this paper, we are interested in solving the under
tainting problem because the false negatives can lead
to a flaw in security. So, we taint all variables on
conditional branches to reflect the control dependen-
cies. Our approach generates false alarms that oc-
cured through incorrect interpretation of tainted data.
To balance (trade-off) between over-tainting and leak-
age of private information, we can apply expert rules
(ad hoc rules). These rules can be configured to spec-
ify what sensitive data are allowed to be sent with-
out warnning message. They depend on the sources
of the sensitive data to be sent and their transmission
contexts.
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8 CONCLUSIONS

The untrusted applications installed on Android sys-
tem can provoke the leakage of private data by ex-
ploiting control flows at native level. In this paper,
we have proposed a hybrid approach that propagates
taint along control dependencies in native librairies.
We use static analysis to detect branches in the condi-
tional structure and we complete with dynamic anal-
ysis to taint variables that depend on sensitive condi-
tion. Our approach is considered a complete work be-
cause it ensures tracking information flows (explicit
and control flows) at Java and native levels in the
Google Android operating system. It is a new ap-
proach for protecting private data from being leaked
through control flows in native libraries. We eval-
uate our work through third party Android applica-
tions and we show that our approach detects effec-
tively leakages of sensitive information by exploiting
control flows in native librairies with reasonable per-
formance overheads.
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