
Experimental Evaluation of Password Recovery in Encrypted Documents

Radek Hranický, Petr Matoušek, Ondřej Ryšavý and Vladimı́r Veselý
Faculty of Information Technology, Brno University of Technology, Božetěchova 2, 61266, Brno, Czech Republic

Keywords: Password Recovery, GPU Acceleration, Privacy, Digital Forensics, Encrypted Documents.

Abstract: Many document formats and archiving tools (PDF, DOC, ZIP) support encryption to protect the privacy of
sensitive contents of the documents. The encryption is based on standard cryptographic algorithms as AES,
SHA, and RC4. For forensic purposes, investigators are often challenged to analyze these encrypted docu-
ments. The task of password recovery can be solved using exhaustive state space search using dictionaries
or password generators augmented with heuristic rules to speed up recovery. In our experimental study, we
focus on the password recovery of the common document and archiving formats using parallel computation on
conventional hardware with multi-core CPUs or accelerated by GPU processors. We show how recovery time
can be estimated based on the alphabet, maximal password length and the performance of a given hardware.
Our results are demonstrated on Wrathion, a tool developed by our research team.

1 INTRODUCTION

File protection is often realized by encrypting the file
contents protected by a user-created password. The
legitimate use of file protection is to avoid unautho-
rized access and misuse of the file contents. If the
document encryption is a traditional method of pro-
tecting and sharing documents with sensitive informa-
tion, contradicting requirements appear: passwords
have to be strong enough in terms of length and a set
of chosen characters. On the other hand, it should be
easy to be remembered for everyday use. The sim-
plest recovery method is a brute force attack that can
eventually find a correct password by generating an
exhaustive set of all possible character permutations.
Since most of the passwords are human generated,
dictionary attacks and rule-based attacks can speed up
password recovery significantly.

User habits with respect to password strength
were studied mostly in the Internet environment. The
results of research by Florencio and Herley presented
in (Florêncio and Herley, 2007) give an estimation of
the character of passwords utilized for Web sites. The
authors considered over a half of million users dur-
ing three months. The average observed password bit
strength was around 40 bits1. Users also share their
passwords with different sites. In average, a user uses
a single password for 5.67 sites. According to another

1Quantized bit strength is computed as log2(|A|n),
where A is an alphabet and n is a password length.

study focused on password habits among American
consumers performed by CSID2, the average pass-
word length is about nine characters. In average, 76%
of users also reuse their passwords between different
sites. Based on this fact, we suppose, plenty of users
use their web account passwords to secure documents
as well.

How easy it is recover encrypted documents was
demonstrated by a study of security measures applied
to medical files during clinical trials (Emam et al.,
2011). Eman et al. were able to recover 93% of
passwords using available commercial tools. In an-
other study (Al-Wehaibi et al., 2011), Al-Wehaibi et
al. summarize user behavior towards password us-
age and conduct a new experiment that coincide with
previous observations. According to their data, 65%
of passwords are at most eight-character long and ap-
proximately 8 out of 10 passwords consist only of al-
phanumerical characters. Our study reveals how pass-
word recovery using brute force attack can be imple-
mented on conventional hardware and with the use of
GPU acceleration.

1.1 Contribution

This paper evaluates the resilience of password pro-
tected documents and archives against password re-
covery attacks. It shows statistical distribution of

2See http://www.csid.com/wp-content/uploads/2012/
09/CS PasswordSurvey FullReport FINAL.pdf

Hranický, R., Matoušek, P., Ryšavý, O. and Veselý, V.
Experimental Evaluation of Password Recovery in Encrypted Documents.
DOI: 10.5220/0005685802990306
In Proceedings of the 2nd International Conference on Information Systems Security and Privacy (ICISSP 2016), pages 299-306
ISBN: 978-989-758-167-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

299

characters in available user password datasets and the-
oretical values of password recovery using massive
parallelism. We show experimental results of pass-
word recovery on DOC, PDF and ZIP formats. Our
approach is to show possible ways of password re-
covery parallelization and underline the potential of
GPU-based computation. Our experiments prove the
advantage of a GPU accelerated approach in compar-
ison to a single CPU computation. Experimental re-
sults were obtained by our tool Wrathion and other
available tools.

1.2 Structure of the Paper

The paper is organized as follows. The related re-
search is summarized in section 2. Section 3 discusses
the statistical analysis of characters in user passwords
and estimation of password recovery time for differ-
ent password lengths. Section 4 describes the ways of
password recovery acceleration using GPUs. Section
5 describes a process of password recovery on a tool
we developed with our team. Finally, section 6 brings
experimental results of password recovery using dif-
ferent tools and discusses the resilience of documents
and archives against brute force recovery techniques.

2 RELATED WORK

Since cryptographic algorithms consist of simple in-
teger and binary operations, they can be implemented
in the multi-processor environment using OpenCL
or CUDA programming as shown in (Marks and
Niewiadomska-Szynkiewicz, 2014). Some encryp-
tion algorithms can limit parallelism if synchroniza-
tion is needed as discussed in (An et al., 2015) where
a combination of SHA-1 hashing and AES decryp-
tion on RAR files is presented. This can be overcome
by careful division of password database as shown in
(Apostal et al., 2012). For another speed up of pass-
word recovery, it is possible to use tables with pre-
computed hash function tables, e.g., rainbow tables
(Thing and Ying, 2003).

There are also advanced automated techniques
which consider users to choose easily memorable
passwords containing existing words as discussed
in (Yampolskiy, 2006). Thus, we can use com-
plex heuristics for generating most-likely passwords,
e.g. by using a probabilistic grammar as described
in (Weir et al., 2009). Probability-based techniques
are used, e.g. by John the Ripper3, and oclHash-
cat 4 tools. However, as we have experimentally

3See http://www.openwall.com/john/
4See http://hashcat.net/oclhashcat/

proven (see section 6), even this approach is not ro-
bust enough to deal with randomly-generated pass-
words.

Non-automated approaches include mathematical
analysis, the study of side-channels, and other tech-
niques allowing to exploit the weaknesses of a given
algorithm. As shown in (Bergen and Caelli, 1990),
on WordPerfect 5.0 documents, the ciphertext-only
attack was successfully performed due to the weak de-
sign of the document format, which contained enough
known plaintext to guess the encryption key in a short
period of time.

3 STATISTICAL PASSWORD
ANALYSIS

The complexity of an attack highly depends on
a password length, and alphabet used. An ideal
password should have sufficient length and include
non-alphanumerical characters. Strongest passwords
have a uniform distribution of probability in the oc-
currence of characters of the source alphabet. How-
ever, users tend to create passwords that expose some
characteristics in order to ease their memorization.
In this section, we present the results of our statisti-
cal analysis of passwords used. Such analysis cannot
be considered complete since it relies on published
datasets of leaked passwords from various services
only. For objectivity, we also consider machine gener-
ated passwords by pwgen5. This tool generates secure
but easily memorizable passwords.

Statistical analysis of user passwords was created
over following datasets6: Myspace is a password list
consisting of 37,000 items obtained from a MySpace
phishing attack in 2006; phpbb consists of 184,000
passwords stolen from phpbb.com website in 2009;
rockyou is a list of 14,000,000 of user passwords from
RockYou in-game video platform leaked in 2009; sin-
gles consists of more than 12,000 passwords from sin-
gles.org website leaked in 2010; facebook comprise
of 2,441 passwords stolen by a Facebook phishing at-
tack in 2010; pwgen1 represents a list of 1,000,000
passwords generated by pwgen; and pwgen2 con-
tains 1,000,000 passwords generated by pwgen -s
that generates passwords with uniform distribution.

Table 1 shows basic statistics about passwords
from different datasets. Interestingly, most of the
passwords consists of lower case letters with numer-
als (lc+nm). Lower case only passwords (lc) build the
second most common group regardless of the dataset.

5See http://sourceforge.net/projects/pwgen/.
6See http://wiki.skullsecurity.org/Passwords

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

300

Table 1: Statistical analysis of password characters, sizes and lengths.

Distribution of character classes in passwords Dataset statistics
Dataset nm lc lc+nm uc uc+nm bc bc+sc bc+nm bc+nm+sc other |A| φ length φ strength
myspace 0.72 6.47 75.92 0.24 2.87 0.16 8.42 2.38 2.8 0.02 98 8.59 41.36
phpbb 11.24 41.24 35.70 0.93 1.19 2.68 1.02 4.82 1.16 0.02 96 7.54 36.19
rockyou 16.36 25.98 42.35 1.60 2.84 1.11 3.16 2.66 3.83 0.10 711 8.75 41.36
singles 8.37 55.11 26.48 2.26 0.82 4.37 0.15 2.34 0.11 0.00 63 6.74 32.90
facebook 16.35 38.47 34.29 0.66 0.53 0.70 3.24 1.52 4.1 0.16 90 9.523 41.36
pwgen1 0 0 0 0 0 0 0 100 0 0 62 8 47.63
pwgen2 0 0 0 0 1.6 0 0 98.4 0 0 62 8 47.53

nm:numerical only passwords; lc/uc/bc:lower/upper/both case only password; sc:special characters.

Not so many passwords includes special or non-ascii
characters (bc+nm+sp), although, as many as 711
different characters were found in rockyou dataset.
An average length of passwords does not exceed ten
characters. Average bit strength is around 41 what
corresponds to (Florêncio and Herley, 2007). Un-
like to (Al-Wehaibi et al., 2011), the usage of non-
alphanumerical passwords is about 90-97%. This is
higher than Al Wehaibi’s results. (Mazurek et al.,
2013) shows an average length of CMU students’ and
employee’s password to be 10.7 characters with the
higher occurence of nm, uc, and sc. We assume uni-
versity students and staff to be more familiar with se-
curity issues than average users of websites denoted
above. The CMU research also underlined the sig-
nificance of positions in password where nm/uc/sc
are placed, the more predictable position is chosen,
the weaker the password is. (Florêncio et al., 2014)
states, that users still frequently use weak passwords
like ’password’, or ’monkey’. About 1% of RockYou
users use ’123456’ as a password. However, as we
mentioned in section 1, 76% of users reuse passwords
between different sites, thus we assume there is a high
probability that they use the same passwords for doc-
ument protection.

Table 2 shows how much time it takes to check all
possible combinations of alphanumerical passwords
(|A| = 62) with different lengths. Speed is measured
as a number of passwords generated and verified per
second. The lowest value (verification of 10,000 pass-
words per sec) can be easily achieved by a common
desktop computer. The highest presented speed (1 bil-
lion passwords per sec) can be achieved by medium
to large scale distributed computing platforms or su-
percomputers. The presented values show that for
lengths ≥ 9 the problem becomes intractable. For re-
duced alphabet, e.g., lc+nm class (|A|= 36), it is pos-
sible to recover passwords up to the length of 10.

Password search time can be reduced if we have
additional knowledge of password characteristics. To
gain such knowledge, various analyses are possible.
Table 3 shows top password characters from analyzed
datasets. Each value represents a percentage of the

total occurrence in passwords from the given dataset.
Although datasets employ different password policies
and various kinds of users they have a similar distribu-
tion of characters. For example, the letters ’a’ and ’i’
are the most used pair of letters in all of them, except
those generated by pwgen. To refine the analysis, oc-
currences of letters in different positions in passwords
can also provide useful information. From this analy-
sis, it can be seen that some letters have a significantly
lower probability of occurrence at certain positions.

The presented statistical evaluation gives informa-
tion usable for adjusting password recovery methods.
Once, we know the approximate characteristics of
common passwords the search method can be focused
to a subspace of the complete password name-space in
order to reduce the password recovery time. It means
that combinations of characters that are more proba-
ble to occur in a password are tested first. However,
this does not work for all passwords. Nevertheless,
there is a significant amount of passwords that exhibit
these properties and can be found faster.

4 GPU ACCELERATION

Fortunately, the password recovery process can be
parallelized easily. We can divide the set of posssi-
ble passwords to subsets, while the passwords from
each subset may be generated on a different compu-
tation unit. Also the password verification process
could be parallelized. For a single computation unit
with the knowledge of the verification value, there is
no direct dependency on other passwords generated.
This means different passwords can be verified inde-
pendently of each other. Even some encryption algo-
rithms like AES can be computed parallely (Apostal
et al., 2012). This makes the password recovery pro-
cess an ideal candidate for a parellel and/or distributed
environment.

The acceleration method we focus on in this pa-
per is the usage of GPU devices. A GPU is present
in every PC, which means no special hardware is re-
quired. With a bit of exaggeration, we can state,

Experimental Evaluation of Password Recovery in Encrypted Documents

301

Table 2: Speed of exhaustive password search.

Passwords of alphabet with |A|= 63 Number of passwords generated and verified per second
length bit strength no. of combinations 104 105 106 107 108 109

5 29.77 916 ·106 1 day 2.5 hours 15.25 mins 1.5 mins 9 secs 1 sec
6 35.72 57 ·109 66 days 6.5 days 16 hours 1.5 hours 9.5 mins 56 secs
7 41.68 3.5 ·1012 11 years 1 year 41 days 4 days 10 hours 58 mins
8 47.63 218 ·1012 692 years 69.25 years 7 years 253 days 25.25 days 60.5 hours
9 53.59 13.5 ·1015 42 808 years 4 280 years 428 years 42 years 4.2 years 156 days

Table 3: Most used password characters (in %).

dataset a e i o 1 r n s l h 2 0 t m 3 c
myspace 6.70 7.18 4.57 4.83 5.79 4.28 3.94 4.19 4.07 2.54 3.11 2.43 3.39 2.69 2.15 2.82
phpbb 7.00 6.37 4.49 4.71 4.38 4.46 4.25 4.12 3.55 2.32 3.26 3.26 3.58 2.87 2.49 2.49

rockyou 7.05 5.75 4.44 4.13 5.37 3.66 3.86 3.32 3.56 1.87 4.18 4.58 2.74 2.56 3.00 2.08
singles 8.17 8.19 5.15 5.73 3.36 4.74 4.91 4.71 4.54 2.41 2.35 2.12 3.53 3.17 1.60 2.52

facebook 8.39 5.60 4.96 4.49 5.32 4.27 4.15 3.87 3.40 2.33 3.84 3.60 2.98 2.61 2.94 2.27
pwgen1 8.28 12.58 8.92 8.59 1.46 0.77 1.06 1.28 0.77 8.72 1.45 1.44 1.28 0.77 1.45 1.28
pwgen2 0.19 0.19 0.19 0.19 0.27 0.19 0.19 0.19 0.19 0.19 0.27 0.27 0.19 0.19 0.27 0.19

all 7.83 7.61 5.42 5.41 4.28 3.57 3.52 3.37 3.19 3.05 3.03 2.90 2.70 2.32 2.01 1.90

that every GPU is, in fact, a little but ”highly-parallel
supercomputer”. For example AMD(R) Tri-X R9
290X card contains 2816 stream processors7. Us-
ing OpenCL (Advanced Micro Devices Inc., 2010)
or CUDA (NVIDIA Corporation, 2012) to implement
algorithms for GPU, we can perform the password re-
covery process in a highly-parallel environment.

Independent of AMD or NVIDIA architecture, the
computation on GPU is divided into so called work-
items, while each work-item has its own private mem-
ory. A workgroup is a collection of work-items with
a collective local memory. There is also a global
memory on each GPU device which can be accessed
from the host machine (Advanced Micro Devices Inc.,
2010; NVIDIA Corporation, 2012).

GPU Accelerated computation can be used for
both password generation and password verification.
It is also possible to perform a hybrid CPU/GPU pass-
word recovery process. The scalability potential is
high - a single host machine may contain multiple
GPU units while multiple host machines may be con-
nected together creating a computation cluster. In
such cluster, host machines can communicate by us-
ing OpenMPI8 or another technique.

5 PASSWORD RECOVERY

A typical architecture of a password recovery tool as
implemented in our tool Wrathion is shown in Fig-
ure 1. This architecture includes a core module with
password generators and specific modules (crackers)

7See http://www.sapphiretech.com/
8See http://www.open-mpi.org/

for password recovery of each file format (e.g., DOC,
PDF, ZIP). Generation of possible passwords should
be independent on recovery file format. Both recovery
modules and password generators can support com-
putation on CPU and/or GPU.

The password recovery process is composed of
the following steps: (i) document identification and
detection of cryptographic algorithm(s), (ii) password
generation, and (iii) password verification.

Figure 1: Architecture of Wrathion.

5.1 Identification of File Format

Identification of a file format is the first task that has to
be performed. Usually, the file format can be identi-
fied from within the file by a signature. The signature
is a unique string9 that is mostly specified at the be-
ginning of the file. When the file format identified, it
is necessary to parse the document to obtain metadata
related to encryption (algorithms used, etc.).

9See http://www.filesignatures.net/

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

302

5.2 Password Generation

Password generation is an essential function of any
password recovery tool. The generator creates differ-
ent combinations of strings that are tested (verified) as
a functional password. It is necessary for generators
to support national alphabets, since some document
types may be encrypted with passwords consisting of
non-ASCII symbols. Based on observations from pre-
vious sections, following types of generators can be
employed for password recovery of user documents:

5.2.1 Dictionary Password Generator

The dictionary generator takes a given dictionary as a
source of possible passwords. Such approach is of-
ten successful, since many users use popular pass-
words like ”123456” or ”qwerty”, as mentioned in
(Florêncio et al., 2014). Usage of dictionaries can
substantially reduce the password name space.

5.2.2 Brute Force Password Generator

In the case of complicated passwords, brute force
password generator has to be used. This generator
creates every possible permutation of a given alpha-
bet limited by the maximum length.

5.2.3 Rule-based Generator

As described in section 2, we can use advanced
probability-based techniques to reduce a password
name space. This involves letter prediction, di-
graph/trigraph frequency analysis, letter position
guessing, etc. Such generation may be based on a set
of heuristics or a probabilistic grammar.

5.3 Password Verification

Password verification procedure is usually defined by
the document format inventor, and is unique to each
document format and its version. In this phase, we
use metadata obtained by the first phase (identifica-
tion). Such metadata usually include a part called
password verification value. The verification method
usually consists of one or more hash algorithms, pos-
sibly combined with one or more encryption algo-
rithms. The result is then compared with a verifica-
tion value. When matched, the password is consid-
ered correct. In some cases, an input password has to
be combined with a salt, which is usually a particular
string located inside the document.

5.3.1 Microsoft Office

The encryption technique in Office 95 documents is
XOR of the cascaded password with the document
content. Based on the fact that only 16-bit key was
used, modern password recovery software can find the
password instantly.

In Office 97/2000 documents, password verifica-
tion is performed by using 40-bit RC4 stream cipher
in combination with the MD5 hash algorithm. How-
ever, when the document gets modified and saved,
the initialization vector remains the same, which al-
lows the use of known-plaintext attack, as described
in (Wu, 2005).

In Office XP and 2003, the default protection re-
mained the same, but an opportunity to use a custom
protection algorithm was added. Starting with Office
200710 , AES is used for encryption, and the pass-
word verification algorithm consists of 50,000 rounds
of SHA-1.

5.3.2 Portable Document Format

PDF documents can be secured by two passwords:
user password, and owner password. Owner pass-
word is only used to restrict selected operations within
the file, and can be ignored. User password is used for
encryption of the document.

Like Office 97/2000, for password verification,
PDF security revisions from 1 to 4 use the combi-
nation of RC4 and MD5. In revision 3, the MD5 is
performed 50 times, as described in (Adobe Systems
Incorporated, 2008b).

In security revision 5, password in UTF-8 encod-
ing is combined with salt and processed with a single
round of SHA-256 as described in (Adobe Systems
Incorporated, 2008a). As we have proven in section
6, this approach is weaker than in revision 4.

Security revision 6 (PDF 2.0) uses strong pass-
word verification algorithm described by ISO 32000-
2, but this specification is not yet publicly available.
However, a pseudocode of the algorithm has leaked11.

5.3.3 ZIP

The original Zip 2.0 (PKZIP) uses a very simple ci-
pher, which is also vulnerable to known-plaintext at-
tack. Password verification is done by comparing the
8-bit value obtained in the initialization phase of the

10See https://msdn.microsoft.com/en-us/library/cc31310
5.aspx

11See http://esec-lab.sogeti.com/posts/2011/09/14/the-un
documented-password-validation-algorithm-of-adobe-
reader-x.html

Experimental Evaluation of Password Recovery in Encrypted Documents

303

algorithm with the lowest 8 bits of file CRC check-
sum.

Modern ZIP formats12 use AES encryption mostly
with 128/192/256 bit key. Password verification is
performed by using PBKDF2 and HMAC-SHA1 al-
gorithms.

6 PRELIMINARY RESULTS

In this section, we present experimental results of
Wrathion. For each module, we performed a mea-
surement of performance and time, and calculated the
achieved GPU acceleration in comparison with the
CPU-only method. The testing machine contained In-
tel(R) Core i7 CPU 920 @ 2.67Ghz processor, 16 GB
of DDR3 RAM, and two AMD Tri-X R9 290x GPU
cards.

We also compared Wrathion with other password
recovery tools: oclHashcat, John the Ripper 1.8.0 -
jumbo 1 (John), Elcomsoft13 Advanced Office Pass-
word Recovery 6.10 (AOPR), Elcomsoft Advanced
PDF Password Recovery 5.06 (APPR), and Elcomsoft
Advanced Archive Password Recovery 4.54 (AAPR).
Since AAPR has only CUDA-based acceleration, for
this case, we used NVIDIA GeForce GTX 660Ti in-
stead. Since oclHashcat is GPU-only, and its prede-
cessor Hashcat does not support any of the formats
analyzed, we could not determine the acceleration of
GPU.

6.1 Performance of Wrathion

First three lines of Table 4 show the performance
(perf.) in passwords per second, and GPU acceler-
ation (acc.) of Wrathion. The highest acceleration
was achieved on ZIP archives encrypted with AES.
A single-GPU recovery was 30.28 times faster than
using CPU method. With dual-GPU deployment, the
recovery was 60.56 times faster than with CPU. ZIP-
AES uses PBKDF2 for key generation in combination
with SHA-1 hash function. These algorithms offer
plenty of space for parallelization, which was utilized
efficiently in our OpenCL kernels. There is almost no
time difference between the password recovery of ZIP
encrypted with AES-128 and AES-256 since AES is
only the encryption algorithm, but for password veri-
fication, PBKDF2 and SHA-1 algorithms are used.

DOC and PDF revisions 3 and 4 use RC4 ci-
pher with MD5 hash function repeated multiple times.

12See https://pkware.cachefly.net/webdocs/APPNOTE/
APPNOTE-6.3.3.TXT

13See http://www.elcomsoft.com/

Since RC4 has high memory requirements, we made
our kernels faster by putting the whole S-BOX inside
a GPU local memory. Another 12% of speedup was
achieved by storing the key in a vector inside a stan-
dard array.

In PDF revisions 3 and 4, the MD5 hash is com-
puted from the array of values for key alignment
concatenated with an ID from the document footer.
This gives Wrathion the opportunity to calculate the
hash on CPU before the password recovery process is
started and then send it to the GPU since this value
does not change during the recovery process.

6.2 Performance Comparison

Table 4 also shows the performance and GPU acceler-
ation of other tools. For each of the document formats
we selected one encryption method for chart illustra-
tion.

Figure 2 shows the performance of oclHashcat,
AOPR, John, and Wrathion. The document type cho-
sen was MS Office DOC 97/2000. Within this old
document format, AOPR and John evinced rather a
poor performance. OclHashcat seemed to be much
more efficient than AOPR, but is behind Wrathion,
possibly because its creators considered DOC format
obsolete and have not optimized their tool much for
it.

Figure 2: Performance of tools (DOC 97/2000).

Figure 3 shows the performance of AOPR, oclHash-
cat, and Wrathion on PDF 1.7 revision 4. Within
CPU password recovery, the performance difference
between AOPR and Wrathon was not excessively rad-
ical. However, with GPU acceleration, Wrathion and
oclHashcat turned out to be much more efficient. For
revision 4, Wrathion and oclHashcat have similar per-
formance. However, for revision 5 (See Table 4.),
oclHashcat turned out to be faster than Wrathion.
Figure 4 compares AAPR, John, and Wrathion on
ZIP encrypted by AES-256. Unfortunately, oclHash-

Figure 3: Performance of tools (PDF R4).

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

304

Table 4: Performance (pass./s) and GPU acceleration using different tools on document formats.

ZIP AES-128 ZIP AES-256 DOC 97/2000 PDF Rev 4 PDF Rev 5
Tool perf. acc. perf. acc. perf. acc. perf. acc. perf. acc.
Wrathion (CPU) 4.3k - 4,329 - 2,985k - 143k - 7,425k -
Wrathion (1x GPU) 131k 30.34 131k 30.28 18,548k 6.21 2,622k 18.36 82,735k 11.14
Wrathion (2x GPU) 262k 60.69 262k 60.56 35,262k 11.81 4,522k 31.67 136,913k 18.44
oclHashcat (1x GPU) n/a - n/a - 7,766k - 2,596k - 144,074k -
oclHashcat (2x GPU) n/a - n/a - 15,377k - 5,121k - 286,340k -
John (CPU) 649 - 376 - 115k - n/a - n/a -
John (1x GPU) 28.7k 44.28 14.8k 39.38 861k 7.5 n/a - n/a -
Elcomsoft (CPU) 8.1k - 8.1k - 20k - 33k - 28,861k -
Elcomsoft (1x GPU) n/a - n/a - 26k 1.31 69k 2.1 n/a -

cat does not support ZIP format, and AAPR is CPU-
only. However, for CPU, AAPR showed the best per-
formance within all tools tested.

Figure 4: Performance of tools (ZIP AES-256).

6.3 Time Comparison

We also measured the real recovery times of Wrathion
and other tools. In this experiment, all tools were in
brute-force mode with the lowercase Latin alphabet
(a-z). The results for lengths from 4 to 7 characters
(from ’acz’ to ’aczqfbi’) are denoted in table 5. It is
worth to compare these results with theoretical esti-
mations from Table 2. The recovery time of shorter
passwords oscillated around 1 second while recovery
of longer passwords would take even days. In cells
marked with ’app.’ the time was approximated due to
a long duration. Cells marked with ’err’ show cases
where we were not able to succesfully recover the cor-
rect password (after many attempts) due to a possible
bug in the program leading to an error.

The results shown in Table 5 relatively correspond
to previously measured performances. Wrathion
needs at least 1 seconds since it is the interval for
communication with working threads. For encrypted
DOC, AOPR has shown an anomaly when generating
a password of 6 and more characters. Even though
we defined the alphabet as lowercase Latin letters,
for some reason, the passwords were generated from
numbers, etc. As mentioned above, AAPR supports
only CUDA-based acceleration. However, even with
NVIDIA card with CUDA support, the recovery of
PDF Revision 5 always ended with a program error.

We also encountered another anomaly connected
with ZIP-AES. Using Wrathion and Elcomsoft tools,
recovery times of 128-bit and 256-bit AES were fairly

Table 5: Measurement of password recovery time using dif-
ferent tools.

DOC 97/2000
tool 4 5 6 7
Wrathion (CPU) 1.00s 1.00s 5.02s 1m 52s
Wrathion (GPU) 1.00s 1.00s 1.00s 17.00s
oclHashcat (GPU) < 1s < 1s 2.36s 40.6s
John (CPU) 0.87s 5.07s 1m 52s 40m 50s
John (GPU) 3.06s 3.61s 14.92s 4m 4s
Elcomsoft (CPU) 6.12s 25.41s err err
Elcomsoft (GPU) 5.40s 19.35s err err

ZIP AES 128-bit
tool 4 5 6 7
Wrathion (CPU) 5.06s 1m 55s 49m 40s 21h 29m
Wrathion (GPU) 2.01s 5.27s 1m 40s 42m 35s
John (CPU) 29.28s 11m 27s 4h 47m app. 6d
John (GPU) 6.05s 22.23s 7m 27s 3h 12m
Elcomsoft (CPU) 2.33s 59.77s 26m 24s 10h 23m

ZIP AES 256-bit
tool 4 5 6 7
Wrathion (CPU) 5.03s 1m 55s 49m 41s 21h 29m
Wrathion (GPU) 2.01s 6.24s 1m 41s 43m 22s
John (CPU) 54.76s 21m 54s 9h 29m app. 10d
John (GPU) 6.75s 38.01s 14m 28s 6h 17m
Elcomsoft (CPU) 2.30s 1m 1s 26m 5s 10h 27m

PDF Revision 4
tool 4 5 6 7
Wrathion (CPU) 1.03s 4.03 s 1m 30s 38m 50s
Wrathion (GPU) 1.00s 1.00s 6.00s 2m 10s
oclHashcat (GPU) < 1s < 1s 26.68s 2m 11s
Elcomsoft (CPU) 0.42s 7.66 s 3m 17s 2h 49m
Elcomsoft (GPU) 0.49s 7.12 s 3m 15s 1h 23m

PDF Revision 5
tool 4 5 6 7
Wrathion (CPU) 1.00s 1.00s 2.00s 45.04s
Wrathion (GPU) 1.00s 1.04s 1.03s 4.04s
oclHashcat (GPU) <1s <1s < 1s 2.32s
Elcomsoft (CPU) 0.67s 0.62s 0.95s 12.37s
Elcomsoft (GPU) err err err err

comparable (due to the password verification method
used). However, with John, the recovery of 256-bit
AES took about a double time period than with 128-
bit version of AES. We do not yet know the cause of
this behavior.

Experimental Evaluation of Password Recovery in Encrypted Documents

305

7 CONCLUSION

The basic method of password recovery is an exhaus-
tive search. Despite a huge number of all permuta-
tions, currently available hardware and the strength of
common passwords make this method still relevant.

With the support of high-end GPUs, the password
recovery process can be performed in a fraction of
time in comparison with CPU-only computation. In
the area of password recovery, there is also a lot of
space for parallelization and the scalability potential
of the process is high.

In the future, we want to focus mainly on pass-
word recovery in distributed environment. We also
plan to extend Wrathion with modules for another file
formats, and with more sophisticated password gen-
erators. Finally, we want to compare our tool with
another software, e.g. AccessData Password Recov-
ery Toolkit14.

ACKNOWLEDGEMENTS

Research presented in this paper is supported by
project ”Modern Tools for Detection and Mitigation
of Cyber Criminality on the New Generation Inter-
net”, no. VG20102015022 granted by Ministry of
the Interior of the Czech Republic and a project ”Re-
search and application of advanced methods in ICT”,
no. FIT-S-14-2299 granted by Brno University of
Technology.

REFERENCES

Adobe Systems Incorporated (2008a). Adobe Supplement
to the ISO 32000, BaseVersion: 1.7, ExtensionLevel:
3. Adobe Systems Incorporated.

Adobe Systems Incorporated (2008b). Document manage-
ment Portable document format Part 1: PDF 1.7.
Number 32000-1:2008. International Organization for
Standardization, Geneva, Switzerland.

Advanced Micro Devices Inc. (2010). Introduction to
OpenCL programming - Training guide. Number 137-
41768-10. Advanced Micro Devices Inc.

Al-Wehaibi, K., Storer, T., and Glisson, W. B. (2011).
Augmenting password recovery with online profiling.
Digit. Investig, 8:S25–S33.

An, X., Zhao, H., Ding, L., Fan, Z., and Wang, H. (2015).
Optimized password recovery for encrypted RAR on
GPUs. CoRR.

Apostal, D., Foerster, K., Chatterjee, A., and Desell, T.
(2012). Password recovery using MPI and CUDA. In
Proc. of HiPS 2012, pages 1–9.

14http://accessdata.com

Bergen, H. A. and Caelli, W. J. (1990). File Security in
WordPerfect 5.0.

Emam, K. E., Moreau, K., and Jonker, E. (2011). How
strong are passwords used to protect personal health
information in clinical trials? Journal of Medical In-
ternet Research, 13(1).

Florêncio, D. and Herley, C. (2007). A large-scale study of
web password habits. In Proc. of the 16th Int. Confer-
ence on WWW, pages 657–666.

Florêncio, D., Herley, C., and Oorschot, P. C. V. (2014). An
Administrator’s Guide to Internet Password Research.
In Proceedings of the 28th USENIX Conference on
Large Installation System Administration, LISA’14,
pages 35–52. USENIX Association.

Marks, M. and Niewiadomska-Szynkiewicz, E. (2014). Hy-
brid cpu/gpu platform for high performance comput-
ing. In Proc. of the 28th ECMS, pages 523–537.

Mazurek, M. L., Komanduri, S., Vidas, T., Bauer, L.,
Christin, N., Cranor, L. F., Kelley, P. G., Shay, R., and
Ur, B. (2013). Measuring Password Guessability for
an Entire University. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications
Security, CCS ’13, pages 173–186. ACM.

NVIDIA Corporation (2012). NVIDIA CUDA C Program-
ming Guide. NVIDIA Corporation.

Thing, V. L. and Ying, H.-M. (2003). Making a faster crypt-
analytic time-memory trade-off. Advances in Cryptol-
ogy, pages 617–630.

Weir, M., Aggarwal, S., de Medeiros, B., and Glodek,
B. (2009). Password Cracking Using Probabilistic
Context-Free Grammars. In Security and Privacy,
2009 30th IEEE Symposium on, pages 391–405.

Wu, H. (2005). The misuse of rc4 in microsoft word and
excel.

Yampolskiy, R. (2006). Analyzing user password selection
behavior for reduction of password space. In Car-
nahan Conferences Security Technology, Proceedings
2006 40th Annual IEEE International, pages 109–
115.

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

306

