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Abstract: We present a technique to address the new challenge of activity prediction in computer vision field. In ac-
tivity prediction, we infer the next human activity through “classified activities” and “activity data analysis.
Moreover, the prediction should be processed in real-time to avoid dangerous or anomalous activities. The
combination of space–time convolutional neural networks (ST-CNN) and improved dense trajectories (iDT)
are able to effectively understand human activities in image sequences. After categorizing human activities,
we insert activity tags into an activity database in order to sample a distribution of human activity. A naive
Bayes classifier allows us to achieve real-time activity prediction because only three elements are needed for
parameter estimation. The contributions of this paper are: (i) activity prediction within a Bayesian framework
and (ii) ST-CNN and iDT features for activity recognition. Moreover, human activity prediction in real-scenes
is achieved with 81.0% accuracy.

1 INTRODUCTION

In past years, techniques for human sensing have been
studied in the field of computer vision (Moeslund
et al., 2011) (Aggarwal and Ryoo, 2011). Human
tracking, posture estimation, activity recognition, and
face recognition are some examples of these, which
have been applied in real-life environments. How-
ever, computer vision techniques proposed hitherto
have been studied only with respect to “post-event
analysis.” We can improve computer vision applica-
tions if we can predict the next activity, for example,
to help avoid abnormal/dangerous behaviors or rec-
ommend the next activity. Hence, we need to consider
“pre-event analysis.

In this paper, we propose a method for activity
prediction within a space–time convolutional neural
network (ST-CNN) and Bayesian framework. The ap-
proach consists of two steps: activity recognition and
data analysis. Human activities are recognized us-
ing ST-CNN and improved dense trajectories (iDT),
a state-of-the-art motion analysis technique. The
method outputs activity tags such aswalking andsit-
ting at each frame. To construct an activity database,
the temporal activity tag is accumulated. A naive
Bayes classifier analyzes the activity database on a
high level and predicts the next activity in a given
image sequence. At the same time, our framework

combines an activity recognition technique with data
mining. The contributions of this paper are: (i) activ-
ity prediction on a daily living dataset through high-
level recognition and data analysis and (ii) effective
human activity recognition with state-of-the-art ap-
proaches and improved features. Related work on ac-
tivity recognition and prediction is discussed below.

Activity Recognition. Since Laptevet al. pro-
posed space–time interest points (STIP) (Laptev,
2005), we have focused on vision-based classifica-
tion, especially space–time feature analysis. STIP de-
tects space-time Harris corners inx-y-t image space,
then a feature vector is calculated in a bag-of-words
(BoW) framework (Csurka et al., 2004). Klaseret
al. (Klaser et al., 2008) improved the feature descrip-
tor based on space–time histograms of oriented gra-
dients (3D HOG) to achieve a more robust repre-
sentation for human activity recognition. Moreover,
Laptevet al. improved the STIP approach by combin-
ing histograms of oriented gradients (HOG) and his-
tograms of flows (HOF) (Laptev et al., 2008), which
are respectively derived from shape and flow feature
space. Niebleset al. proposed topic representa-
tion in a STIP feature space with statistical model-
ing (Niebles et al., 2006). In this method, the proba-
bilistic latent semantic analysis model is used to cre-
ate model topics at each activity for activity classifi-
cation.
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An effective approach for activity recognition
is dense trajectories (DT), proposed by Wanget
al. (Wang et al., 2011) (Wang et al., 2013), which
is a feature description using dense sampling fea-
ture points in an image sequence. Rohrbachet
al. experimentally demonstrated that DT is better
than other approaches such as the posture-based ap-
proach (Zinnen et al., 2009) on the MPII cooking ac-
tivities dataset (Rohrbach et al., 2012), which con-
sists of fine-grained activities. DT approaches have
also been proposed in (Raptis et al., 2013) (Li et al.,
2012) (Jain et al., 2013) (Peng et al., 2013) (Kataoka
et al., 2014a) (Wang and Schmid, 2013). Raptiset
al. attempted to generate a middle-level represen-
tation, using a simple posture detector with location
clustering (Raptis et al., 2013). Liet al. translated a
feature vector into another feature vector at a differ-
ent angle using the “hankelet” transfer algorithm (Li
et al., 2012). To effectively eliminate extra opti-
cal flows, Jainet al. applied an affine transforma-
tion matrix (Jain et al., 2013) and Penget al. pro-
posed dense optical flows captured in motion bound-
ary space (Peng et al., 2013). Kataokaet al. improved
the DT feature by adding a co-occurrence feature de-
scriptor and dimensional compression. Wanget al.
improved DT (Wang and Schmid, 2013) by adding
camera motion estimation, detection-based noise can-
celling, and Fisher vector (FV) classification (Per-
ronnin et al., 2010). More recently, the combination
of CNN features and iDT has achieved state-of-the-art
performance in activity recognition (Jain et al., 2014).
Jain et al. employed per-frame CNN features from
layers 6, 7, and 8 using AlexNet (Krizhevsky et al.,
2012), which is a well-regarded neural net approach.
The combination of iDT and CNN synergistically im-
prove recognition performance.

Activity Prediction. Here, we review three types
of prediction approaches: trajectory-based prediction,
early activity recognition, and activity prediction.

(i) Trajectory-based Prediction: Pellegriniet al.
proposed local trajectory avoidance (LTA) (Pellegrini
et al., 2009) for prediction systems. LTA estimates
a location in the very near future from the positions
and velocities of tracked people. The authors in (Ki-
tani et al., 2009) achieved scene analysis and estima-
tion using the state-of-the-art inverse optimal control
method. This method dynamically predicts a human’s
position. The approaches introduced here are mainly
used to predict pedestrians trajectories in surveillance
situations.

(ii) Early Activity Recognition: Ryoo recognized
activities in the early part of the activity (Ryoo, 2011).
The framework calculates simple feature descriptions
and accumulates histograms for early activity recog-

nition. This method cannot predict activities perfectly
because the framework is based on recognition in the
early frames of an activity.

(iii) Activity Prediction: Li et al. proposed the lat-
est work in the field of activity prediction (Li et al.,
2014). The approach predicts an activity using the
causal relationship between activities that occur dif-
ferently several times. They accomplished several
seconds prediction as a “long-duration” activity.

However, the related work that we described here
comprise one-by-one activity matching approaches or
learning feature and next state correspondence. We
propose a completely new framework to understand
the context of activity sequences through the activity
data analysis of daily living. The data-driven analysis
allows us to achieve activity prediction with context in
an indoor scene. Therefore, we address and improve
activity prediction with a combination of computer vi-
sion and data analysis techniques.

The rest of the paper is organized as follows. In
Section 2, we present the overall framework for activ-
ity recognition and prediction. In Sections 3 and 4, we
describe detailed activity recognition and prediction,
respectively. In Section 5, we present experimental
results on human activity recognition and prediction
using a daily living dataset. Finally, Section 6 con-
cludes the paper.

2 PROPOSED FRAMEWORK

Figure 1 presents the workflow of the prediction sys-
tem. Three attributes are added to the naive Bayes
classifier. The classifier calculates a likelihood for
each predicted activity. The most likely tag is selected
as the predicted activity.

Figure 2 shows the feature descriptor for human
activity recognition. The representation consists of
ST-CNN and iDT, which is the state-of-the-art ap-
proach to activity recognition (Jain et al., 2014). We
also employ a concatenated representation of these
two feature descriptors.

3 ACTIVITY RECOGNITION

3.1 iDT

We employ Wang’s iDT (Wang and Schmid, 2013)
to create BoW vectors (Csurka et al., 2004) for ac-
tivity recognition. The idea of iDT is to densely
sample an image and extract the spatio-temporal fea-
tures from the trajectories. Feature points at each grid
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Figure 1: Process flow of proposed activity prediction approach.

Figure 2: Concatenation of ST-CNN and iDT for human activityrecognition.

cell are computed and tracked using Farneback op-
tical flow (Farneback, 2003) in the other images of
the video. To address scale changes, the iDT extracts
dense flows at multiple image scales, where the im-
age size increases by a scale factor of 1/

√
2. In iDT,

flow among the frames is formed by concatenating the
corresponding parts of the images. This setup allows
us to grab detailed motion at the specified patch. The
length of a trajectory is set to be 15 frames, therefore,
we record 0.5 s activities at 30 fps video.

In the feature extraction step, the iDT adopts
HOG, HOF, and motion boundary histograms (MBH)
as the local feature descriptors of an image patch. The
size of the patch is 32 pixels, which is divided into 2
× 2 blocks. The number of HOG, HOF, and MBH di-
mensions are 96, 108, and 96, respectively. The size
of HOG and MBH consist of 2 (x)× 2 (y) × 3 (t) ×
8 (directions). HOF is described by a 2 (x)× 2 (y)×
3 (t) × 9 (directions) image quantization.

The iDT features are divided into visual words
in BoW (Csurka et al., 2004) by k-means cluster-
ing. In our implementation, the iDT features are clus-

tered into 4,000 visual words. In this vectorization,
each activity video is represented with the BoW vec-
tor containing the frequency of the visual words in
activity videos.

In daily living activity recognition, fine-grained
categorization is necessary for high-level perfor-
mance. In the case of fine-grained activities, mi-
nor differences frequently occur among human ac-
tivities. This makes visual distinction difficult using
existing feature descriptors. According to Kataoka
et al. (Kataoka et al., 2014a), their approach cat-
egorizes fine-grained activities such ascut and cut
slices in a cooking dataset. The approach captures
co-occurrence feature descriptors in the framework of
iDT to distinguish subtle changes in human activity
areas. Co-occurrence histograms of oriented gradi-
ents (CoHOG) (Watanabe et al., 2009) and Extended
CoHOG (ECoHOG) (Kataoka et al., 2014b) are ap-
plied to vectorize co-occurrence features into BoW
vectors.

CoHOG (Watanabe et al., 2009): CoHOG is
designed to accumulate the co-occurrences of pairs.
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Counting co-occurrences of the image gradients at
different locations and in differently sized neighbor-
hoods reduces false positives. The co-occurrence his-
togram is computed as follows:

g(x,y) = arctan
fy(x,y)

fx(x,y)
(1)

fx(x,y) = I(x+1,y)− I(x−1,y) (2)

fy(x,y) = I(x,y+1)− I(x,y−1) (3)

Cx,y(i, j) =
n

∑
p=1

m

∑
q=1





1,
if d(p,q) = i
andd(x+ p,y+ q) = j

0
otherwise

(4)

whereI(x,y) is the pixel value,g(x,y) is the gra-
dient orientation,C(i, j) denotes the co-occurrence
value of each element of the histogram, coordinates,
(p,q) depict the center of the feature extraction win-
dow, coordinates(p+ x, p+ y) denote the position of
the pixel pair in the feature extraction window, and
d(p,q) is one of eight quantized gradient orientations.

ECoHOG (Kataoka et al., 2014b):Here, we ex-
plain the methods for edge magnitude accumulation
and histogram normalization in ECoHOG. This im-
proved feature descriptor is described below.

Human shape can be described using histograms
of co-occurring gradient orientations. Here, we add
to them the magnitude of the image gradients, which
leads to an improved and more robust description of
human shapes. The sum of edge magnitudes repre-
sents the accumulated gradient magnitude between
two pixel edge magnitudes at different locations in the
image block. In this way, for example, the difference
between human motion and background is strength-
ened. ECoHOG is defined as follows:

Cx,y(i, j) =
n

∑
p=1

m

∑
q=1





‖g1(p,q)‖+‖g2(p+x,q+y)‖
if d(p,q) = i
andd(p+x,q+y) = j

0 otherwise (5)

where‖g(p,q‖ is the gradient magnitude, andC(i, j)
and all the other elements are defined as in Eqs. (2)–
(4).

The brightness of an image changes with respect
to the light sources. The feature histogram should be
normalized to be sufficiently robust for human detec-
tion under various lighting conditions. The range of
normalization is 64 dimensions, that is, the dimension

of the co-occurrence histogram. The equation for nor-
malization is given as:

C
′
x,y(i, j) =

Cx,y(i, j)

∑8
i′=1

∑8
j′=1

Cx,y(i′, j′)
, (6)

whereC andC
′

denote histograms with and without
normalization, respectively.

Vectorization: BoW is an effective vectorization
approach for not only object categorization but also
for activity recognition. The framework is based on
feature vector quantization from a large number of
features extracted from image sequences. However,
co-occurrence features tend to need high-dimensional
space. A low-dimensional feature is generally easier
to divide into the right class. Kataokaet al. (Kataoka
et al., 2014a) applied principal component analy-
sis to compress this high-dimensional space (1,152
dims) into a 70-dimension vector. Finally, the low-
dimensional vector is used to create a BoW vector in
classification. The size of the BoW vector is based on
the original iDT paper (Wang et al., 2013) as 4,000 di-
mensions. The BoW vector is used to carry out learn-
ing and recognition steps.

3.2 ST-CNN

We propose temporal concatenation features for CNN
that are simple but more effective features for space–
time motion analysis. Jainet al. (Jain et al., 2014)
extracted CNN features at each frame. We also ap-
ply CNN features; however, space–time information
should be employed in activity recognition. Here,
we concatenate CNN features with temporal direc-
tion, as shown in Figure 2. We basically apply VGG
Net (Simonyan and Zisserman, 2014), which is a
deeper neural net model of 16 and 19 layers than the
8-layer AlexNet. Recently, researchers have claimed
the depth of the neural net is the most important fac-
tor for classification performance. At the same time,
feature representation has been sophisticated enough
for object classification and detection. The 16-layer
VGG Net is applied in this study.

3.3 Activity Definition based on ICF

The International Classification of Functioning,
Disability, and Health (ICF) was proposed in
2001 ((WHO), 2001). The ICF extended the Interna-
tional Classification of Impairments, Disabilities, and
Handicaps (ICIDH) to apply to all people. Moreover,
the ICF defined certain activities in daily life, from
which we selected the activities for our framework.
The activities and part of their definitions are given
below.
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• d166 Reading:performing activities involved in
the comprehension and interpretation of written
languages.

• d4103 Sitting: getting into and out of a seated
position and changing body position from sitting
down to any other position.d4104 Standing:get-
ting into and out of a standing position or chang-
ing body position from standing to any other po-
sition.

• d4105 Bending:tilting the back downwards or to
the side, at the torso.

• d4452 Reaching:using the hands and arms to ex-
tend outwards and touch or grasp something.

• d450 Walking: moving along a surface on foot,
step by step, so that one foot is always on the
ground.

• d550 Eating: indicating the need for and carry-
ing out the coordinated tasks and actions of eat-
ing food that has been served, bringing it to the
mouth, and consuming it in culturally acceptable
ways.

• d560 Drinking: indicating the need for and tak-
ing hold of a drink, bringing it to the mouth,
and consuming the drink in culturally acceptable
ways.

In this work, we define three prediction activities,
namely d166 Reading, d4452 Reaching (including us-
ing a PC and other activities), and having a meal (in-
cluding d550 Eating and d560 Drinking). The three
activities target indoor scene activities because they
tend to occur as long-term activities compared with
activities such as d4104 Standing and d4105 Bending.

4 ACTIVITY PREDICTION

To predict the next activity, an activity database is an-
alyzed using a data mining algorithm. We explain
the procedure that uses a naive Bayes classifier and
a database of daily living. We investigate what the
system understands and whether it can predict human
activities.

4.1 Activity Database Structure

Figure 3 shows an example of the database structure
for the daily living dataset. From the activity recogni-
tion, we obtain spatio-temporal activity tags that are
accumulated in an activity database. We predict the
next activity by using three input attributes,time of
day, previous activity andcurrent activity. In the ex-
ample in Figure 3, daytime (time of day), walking

(previous activity), and sitting (current activity) are
the input into the naive Bayes classifier, “using a PC”
is recognized as thenext activity by the activity pre-
dictor.

4.2 Naive Bayes Classifier

The Bayes classifier outputs anext activity θ by ana-
lyzing the daily living dataset. Anext activity θ can
be calculated fromtime of day x1, previous activity
x2 andcurrent activity x3. A naive Bayes classifier is
a simple Bayesian model that considers independence
among the attributes. The naive Bayes classifier equa-
tion for activity prediction is given below.

P(θ|xi) = argmaxθ
∏i P(xi|θ)P(θ)

ΣNθ ∏i P(xi|θ)P(θ)
(7)

∝ argmaxθ ∏
i

P(xi|θ)P(θ), (8)

whereNθ (= 3) is the number of predicted activities.
Here, we define three activities that include reading,
reaching, and having a meal. The naive Bayes classi-
fier is frequently employed in the data mining com-
munity because of its simple learning method and
high accuracy.

5 EXPERIMENTS

In this section, we present details of an activity recog-
nition and prediction experiment on a daily living
dataset. Figure 3 shows a part of the daily living
dataset, illustrating the flow of motion for the activ-
ities walk–sit–use a PC. This section consists of the
dataset description as well as the performance results
for the activity recognition experiment and the predic-
tion experiment.

5.1 Daily Living Dataset

We captured more than 20 h of video in an indoor
room. The dataset consists of 640×480 pixels video
at 30 fps.

Four attributes, “time of day, “previous action,
“current action, and “next activity” are stored in the
database (Figure 3). The system predicts the “next ac-
tivity” from the other three attributes. Attribute “time
of day” takes on the value of “morning, “daytime, or
“night; “previous activity” and “current activity” are
extracted by using the activity recognition technique
explained in Section 3. In this scene, the activity
recognition system classifies four different activities:
“bend, “sit, “stand, and “walk. The target activities for
“next activity” are “reading a book, “having a meal,
and “using a PC” after sitting.
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Figure 3: Example of a daily scene and database accumulation.

Figure 4: Distribution of prediction time.

5.2 Activity Recognition Experiment

To investigate the effectiveness of the ST-CNN and
iDT approach on the daily living dataset, we imple-
mented several recognition strategies. The compari-
son approaches include per-frame CNN and improved
iDT features such as co-occurrence features (Kataoka
et al., 2014a). Moreover, we performed activity clas-
sification with all feature descriptors. Scenes were
taken from the daily living dataset to show the effec-
tiveness of the iDT approach for complicated activi-
ties.

Table 1 shows the accuracy of the iDT features
with six descriptors and various CNN features. In the
daily living dataset, four activities (one for both eating
and drinking) are targeted for prediction, and we also
need to recognize four activities: bend, sit, stand, and
walk. The results show that the co-occurrence fea-
tures (CoHOG and ECoHOG) outperform the other
iDT features (HOG, HOF, MBHx, and MBHy) with
respect to classification. Moreover, the method that
integrated all iDT features is a more accurate fea-
ture descriptor. We conclude that the CNN feature
is an effective approach for human activity classifica-
tion. Table 1 indicates the ST-CNN is slightly better
than other single features in iDT and CNN. The de-
scriptor that integrated all features with iDT and CNN
achieved the best performance rate.

Table 1: Accuracy of the ST-CNN and iDT approach on the
daily living dataset.

Feature %
iDT(HOG) (Wang et al., 2013) 65.7
iDT(HOF) (Wang et al., 2013) 60.2
iDT(MBHx) (Wang et al., 2013) 67.6
iDT(MBHy) (Wang et al., 2013) 62.3
iDT(CoHOG) (Kataoka et al., 2014a) 77.3
iDT(ECoHOG) (Kataoka et al., 2014a)78.7
iDT(All features) 84.9
CNN (Simonyan and Zisserman, 2014)99.6
ST-CNN 99.7
ST-CNN+iDT 99.8

5.3 Activity Prediction Experiment

We also carried out an activity prediction experiment
on the daily living dataset. Intention (next activity)
was estimated using the three attributes,time of day,
previous activity, and current activity. We set the
probability threshold of the naive Bayes classifier for
deciding thenext activity at 80%. However, we can
calculate two or more next activity candidates and it
is possible to rank these activities using the Bayesian
framework. The activity recognition method (using
the “integrated iDT feature in the activity recogni-
tion experiment) achieved high performance in real-
time. The feature integration is effective for daily
activity recognition. The dataset includes eight ac-
tivities for recognition and prediction. (d166 Read-
ing, d4103 Sitting, d4104 Standing, d4105 Bending,
d4452 Reaching (including using a PC), d450 Walk-
ing, and d550/d560 Eating/Drinking, i.e., having a
meal). Figure 5 shows the results of activity predic-
tion for the daily scenes. The system predicted the fu-
ture activities in advance. In this example, the series
of activities walking–bending–sitting–having a meal
for the daily scene and walking–reaching–reading for
the laboratory scene were used. Our proposed method
estimated the activity “having a meal” after sitting
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Figure 5: Activity prediction: predicting intention NextActivity = read, PC, meal from given attributes TimeOfDay = morning,
day, night, and PreviousAction/CurrentAction = bend, sit,stand, walk. The calculated probabilities are read = 0.11, meal =
0.89 and PC = 0.0. Based on the ranking, “meal” is the estimated intention.

(Figure 5 row 1) and “reading a book (reaching)” hav-
ing taken a book (Figure 5 row 2). In the case of
Figure 5 row 3, the Bayesian network calculated the
following results for each attribute: “time of day” =
“night, “previous activity” = “walking, “ current ac-
tivity” = “taking. In this case, the performance re-
sults for analysis are 16% (read), 0% (PC) and 84%
(meal). According to these percentages, the system
output “having a meal (drinking)” using the attributes.
The activity “using a PC” is not displayed in Figure
5 because its probability was 0%. The daily scene
dataset includes “reading a book, “having a meal,”
and “using a PC” as thenext activity. Table 2 shows
the accuracy of activity prediction on the daily liv-
ing dataset. The possible activities for prediction
were d166 Reading, d4452 Reaching (including us-
ing a PC), and d550/d560 Eating/Drinking (having a
meal). In total, we achieved an 81.0% performance
accuracy for activity prediction. Thus, activity recog-
nition and data mining allow a human’s next activity
to be predicted. Furthermore, the prediction system
runs at 5.26× 10−8 s because activity prediction us-
ing the naive Bayes classifier can be executed using
only three multiplications.

The distribution of prediction time is shown in
Figure 4. The most frequent time is around 5.0
s because our proposed approach outputs only one
next activity. The temporal gap between activities is
around 5.0 s in the daily living dataset. Moreover, the
proposed approach generally predicts within approx-
imately 5 s, and the maximum it requires is 15–20
s. Although the prediction time depends on the ac-
tivity sequence, the proposed approach accomplishes

Table 2: Accuracy of activity prediction.

Intention Accuracy (%)
d166:reading 73.4
d4452:reaching 82.0
d550&d560:having a meal 88.5
(eating & drinking)
Total 81.0

state-of-the-art prediction. Our method performs bet-
ter than (Ryoo, 2011) and is of the same standard as
(Li et al., 2014) with respect to prediction time. We
believe the most important point is the achievement
of high accuracy prediction using a data mining ap-
proach. The proposed approach understands the pre-
dicted activity from the context in activity sequences,
in contrast to the cause and effect used in (Li et al.,
2014).

To include more varied situations and predict
more long-term activity, we would like to add at-
tributes based on the activity history database (e.g.,
situation, place, more than two activities, and vari-
ous numbers of activities) as well as improve the data
mining technique for activity prediction.

6 CONCLUSION

We proposed an activity prediction approach using ac-
tivity recognition and database analysis. To recog-
nize activities, a concatenated vector consisting of an
ST-CNN and iDT was employed for more effective
human activity recognition. A naive Bayes classi-
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fier effectively predicted human activity from three at-
tributes including two previous activities and time of
day. We believe the combination of computer vision
and data analysis theory is beneficial to both fields.

In the future, we would like to include posture
and object information in activity recognition. With a
good understanding of these elements, activity recog-
nition and prediction can be improved. Moreover, we
would like to improve the approach for fine-grained
activity prediction by using a large number of classi-
fication methods for activity recognition.
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