Anomaly Detection using B-spline Control Points as Feature Space in

Annotated Trajectory Data from the Maritime Domain

Mathias Anneken', Yvonne Fischer! and Jiirgen Beyerer'?

! Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (Fraunhofer IOSB), Karlsruhe, Germany

Keywords:

Abstract:

2Vision and Fusion Laboratory, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

B-spline Interpolation, Support Vector Machines, Artificial Neural Networks, Multilayer Perceptron, Gaussian
Mixture Models, Anomaly Detection, Trajectories, Maritime Domain.

The detection of anomalies and outliers is an important task for surveillance applications as it supports oper-
ators in their decision making process. One major challenge for the operators is to keep focus and not to be
overwhelmed by the amount of information supplied by different sensor systems. Therefore, helping an op-
erator to identify important details in the incoming data stream is one possibility to strengthen their situation
awareness. In order to achieve this aim, the operator needs a detection system with high accuracy and low
false alarm rates, because only then the system can be trusted. Thus, a fast and reliable detection system based
on b-spline representation is introduced. Each trajectory is estimated by its cubic b-spline representation. The
normal behavior is then learned by different machine learning algorithm like support vector machines and
artificial neural networks, and evaluated by using an annotated real dataset from the maritime domain. The

results are compared to other algorithms.

1 INTRODUCTION

As technology progresses, the amount of sensors and
their recorded data in surveillance applications in-
creases. Therefore, operators of such systems need
to be supported to maintain an overview about all im-
portant object movements and their impact. In order
to help the operators, anomaly detection systems are
introduced into the surveillance systems. The aim is
to identify patterns that reveal an unexpected behavior
of objects, which significantly differs from normal be-
havior prior recorded or modeled by domain experts.

For an operator to accept the assistance of such
a system, it must be reliable. This means in partic-
ular, that the system must be able to classify the be-
havior with a low false alarm rate and high accuracy.
Else, the operator loses his faith in the system and
might start to ignore it. Another important aspect is
the method of displaying the unusual behavior. Only
if the operator is able to clearly identify the reason for
the alarm, he will be able to take the correct further
steps.

Therefore, an algorithm with high precision and
recall is introduced. First, related work regarding the
anomaly detection, the algorithm and the application
domain (here, the maritime domain) is described. Af-
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terwards, the main idea of the algorithm is explained
and an empirical evaluation with annotated real tra-
jectory data is conducted. At the end, a conclusion
and insight into future work are given.

2 RELATED WORK

The overview of general anomaly detection algo-
rithms by Chandola et al. (2009) gives a first im-
pression about the versatility of different approaches
and domains of outlier and novelty detection algo-
rithms. The field ranges from surveillance applica-
tion to computer security and fraud detection. Morris
and Trivedi (2008) give an overview about anomaly
detection specially by using optical sensors. They
divide the surveyed works into different applications
like traffic surveillance and interactions between mul-
tiple objects, and cluster these works by the used tech-
niques and the method of information retrieval from
the optical inputs.

The idea of the proposed algorithm is to reduce the
complexity of a trajectory by using b-splines. Similar
to this approach, Naftel and Khalid (2006) use poly-
nomials and other functions to approximate the trajec-
tories, while assuming normal distribution in the co-
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efficient feature space for the clusters. Further, they
propose a Mahalanobis classifier to detect anomalies
in the data. A self-organizing map is used to estimate
the similarities between trajectories. The algorithm is
validated by using different datasets, i.e. identifica-
tion of sign language and video surveillance footage.

Melo et al. (2006) propose a feature space using
low-degree polynomials for the detection and classifi-
cation of road lanes. For the clustering of similar tra-
jectories a K-Means algorithm is used. The different
lanes are further classified into different categories.
The proposed algorithm is tested with real data.

Dahlbom and Niklasson (2007) use splines to rep-
resent the main trajectory of a cluster. Therefore, the
underlying data is clustered using the mean of the nor-
malized distances between each trajectory point and
its nearest cluster point. Afterwards, the clusters are
estimated by using splines in order to reduce the com-
plexity of the representation.

Especially in the maritime domain, anomaly de-
tection is an active field of research in itself, e.g.,
de Vries and van Someren (2012) use piecewise lin-
ear segmentation methods to compress trajectories of
maritime vessels. These compressed trajectories are
then clustered and anomaly detection is performed by
using kernel methods. Furthermore, expert domain
knowledge is incorporated. The algorithms are vali-
dated with a dataset from the Netherlands’ coast near
Rotterdam.

An algorithm that estimates a mean path for nor-
mal routes is proposed by Rosen and Medvedev
(2012). The mean path is defined as the trajectory
which minimizes the euclidean distance to every other
trajectory in the same cluster. Anomalies are then de-
tected by comparing a new trajectory with this mean
path and an anomaly score is calculated. The algo-
rithm is evaluated by using simulated data as well as
a real dataset.

Guillarme and Lerouvreur (2013) propose an un-
supervised algorithm for modeling routes by using
data from a satellite based Automatic Identification
System (AIS). First, the recorded trajectories are par-
titioned by using a stops and moves of trajectories al-
gorithm. The move parts of the trajectories are further
divided by using a piecewise linear segmentation or a
sliding window approach. This results in segments of
similar movement. These segments are clustered us-
ing the OPTICS algorithm. Afterwards, hand-picked
clusters are used for modeling the vessels’ motion-
patterns. First results for this algorithm using real data
are illustrated in the paper.

Shao et al. (2014) use a fuzzy k-nearest neighbors
and fuzzy c-means approach to conduct trajectory
correlation and clustering. Therefore, fuzzy logic is

utilized to model uncertainties in the tracks. The pro-
posed algorithms are evaluated using different types
of sensing systems.

Fischer et al. (2014) present a method to model
specific situations based on dynamic Bayesian net-
works. The main idea is to utilize expert knowledge
to describe situations of interest. For the evaluation
a specific situation, namely an incoming suspicious
smuggling vessel, is modeled and the results for dif-
ferent parameters are shown. The described situation
is translated from a situational dependency network
to a dynamic Bayesian network. Therefore, several
parameters must be chosen. Fischer et al. present a
possible approach to automatically specify these pa-
rameters.

3 ALGORITHM

A trajectory recorded by a surveillance system cannot
easily be compared to another due to

e different lengths,
e different sample rates, and
o different numbers of points.

In order to compare different trajectories several ap-
proaches are possible. E.g., dynamic time warping
is used by Vakanski et al. (2012) to learn trajectories
demonstrated by human in order to program a robot.
Laxhammar and Falkman (2011) use the Hausdorff
metric to compare two trajectories. Here, a trajectory
will be represented in a way, that its complexity will
be reduced and direct comparison between itself and
other trajectories will be possible.

A trajectory has a specific length n and consists of
multiple points p; = (Pijons Pitar)’ Withi=1,...,n,
where p; j,, is the longitude and p; ,, is the latitude
position of the i-th point. Therefore, a trajectory ¢ is
given by t = {p; | i = 1,...,n}. The idea is now to
reduce the number of points, in such a way, that the
resulting trajectory can be compared by using e.g. the
euclidean distance.

Therefore, the trajectory is estimated by using a
b-spline representation. A b-spline interpolation con-
nects several (cubic) functions to interpolate a given
set of points. To assess a new trajectory, it has to be
compared with recorded normal trajectories. Hence,
a normal model of the trajectory in the observed area
will be generated by using machine learning algo-
rithms.
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3.1 B-spline Interpolation

In order to estimate the b-spline representation of
a trajectory, the FORTRAN routine parcur from the
FITPACK is used with the Python bindings provided
by SciPy (Jones et al., 2001). The estimated b-
spline consists of cubic functions with a prior de-
fined amount of sections. Thus, each trajectory has
the same amount of control points. Each b-spline
is defined by its control points. Therefore, a trajec-
tory with n points is reduced to the number of con-
trol points n. resulting in a feature space of dimension
2-ne.

The resulting control points are used as feature
vector to train the machine learning algorithms. Em-
pirical investigation have shown, that for the used
dataset 4 control points are enough to represent the
trajectories. Therefore, the feature space is set to

x=(c1,c2,¢3,¢4)" (1)
with the control point
¢i = (CigonsCigar)' > i=1,...,4. (2)

Figure 1 shows an example for a spline interpo-
lation. The red line and dots are the recorded data.
The idea is now to find a spline, representing the line.
Therefore, the SciPy algorithms is used, to estimate
the control points for the given input data. The re-
sults are the green control points and the interpolated
blue line. As described by Gallier (1999), a spline is
uniquely determined by its control points.

e—e recorded points
e -e control points
— b-spline interpolation

Figure 1: Example spline with control points.

3.2 Machine Learning Methods

The control points as feature vector are used to train
different machine learning algorithms:

e Gaussian Mixture Models (GMM),
e Support Vector Machines (SVM), and

e Artificial Neural Networks (ANN) in form of
feedforward Multilayer Perceptrons (MLP)
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3.2.1 Gaussian Mixture Models

A GMM estimates the underlying probability den-
sity function of the data by using an expectation-
maximization (EM) algorithm. It consists of the sum
of n normal distributions with the mean vector y; of
the dimension k and the covariance matrix X; for each
component given by the parameter set 0; = {¥;,u;}.
The whole probability density function is then given
by

£ =Y fo(x.6) 3)
i=1

with the normal distribution for each component

given by

exp (=5 (=) "% (x — )
(2m)* |z

Jo(x,0i) = “
The GMM and the EM-algorithm are implemented
in the scikit-learn machine learning framework for
Python (Pedregosa et al., 2011).

A GMM is learned unsupervised. Thus, no la-
bels are necessary, but the algorithms will not yield
an anomaly as a specific class. Therefore in order to
detect an anomaly, a threshold g, is set. If the eval-
uated log-likelihood of a new trajectory is below this
threshold, the trajectory will be marked as anomaly.
Anomalies are defined as occurring only sparsely;
therefore, the threshold will be estimated by using
a specific percentile of the trained log-likelihood re-
sults. Here, this kind of learning algorithm is called
unsup-GMM.

Additionally as another approach, the GMM is
trained by using only the normal trajectories. The
threshold is then chosen as the lowest log-likelihood
predicted for the training data. This algorithm will
be identified as sup-GMM. Further information on
GMMs and the learning algorithm is, e.g., given by
Barber (2014).

3.2.2 Support Vector Machines

A SVM used as a classifier will divide a set of objects
into classes. Therefore, the border in the feature space
between the classes should be optimized, i.e. the mar-
gin between the border and each object in the train-
ing set should be as large as possible. In general, the
classes need to be linear separable by a hyperplane,
while the feature space may be of high dimensional-
ity. To counter this problem, different kernels can be
used for the SVM. Here, a radial basis function with
the parameter 7y is used. Furthermore, a penalty pa-
rameter C is available for optimizing the results of the
classifier.
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The parameter C balances between a simple and
smooth decision surface and the misclassification of
training examples, i.e., a low C results in a smooth
surface a high C in mostly correctly classified exam-
ples. The influence of a single data point of the train-
ing set is regulated by the parameter y. A high value
for ¥ means, that training examples need to be close
to each other to affect each other.

These parameters are chosen by using a grid
search. Further details on SVMs are, e.g., available
by Kung (2014). The implementation provided by
the framework scikit-learn (Pedregosa et al., 2011) is
used.

3.2.3 Multilayer Perceptron

As a non-deterministic machine learning method, a
multilayer perceptron with a truncated Newton algo-
rithm for the backpropagation based training provided
by the implementation FFNET framework for Python
(Wojciechowski, 2011) is used. The neural network
consists of 3 layers, one input, one output and one
hidden layer. As input, the control points are used.
The output is the label normal or anomaly. The layers
are connected as seen in Figure 2. The hidden layer
consists of n; units.

As activation function the input layer uses the
identity function, whereas all other units use a sig-
moid activation function. Due to its non-deterministic
nature, the training is performed several times and the
best model is used. Further details on ANN are, e.g.,
available by Shalev-Shwartz and Ben-David (2014).

3.2.4 Estimation of Optimal Parameters

For all algorithms, the optimal parameters are esti-
mated by using a grid search with a 10-fold cross-
validation. For the GMM the number of components
n and the threshold g, for the SVM the parameters
C and v, and for the MLP the number of units in the
hidden layer ny, are estimated.

4 EMPIRICAL EVALUATION

In order to validate the algorithm, an annotated real
dataset from the maritime domain is used. First, the
dataset and the test setup are explained. Afterwards,
the results for the different algorithms are given.

4.1 Dataset and Test Setup

As dataset for the evaluation, real ship traffic between
Lolland and Fehmarn in the Baltic Sea is chosen. The

output
layer

Cl,lat
Cl,lon
C2lat
C2.lon
C3lat
C3.lon
C4 lat

C4.lon

Figure 2: Structure of the feedforward MLP used for the
training.

Figure 3: Whole dataset of tanker and cargo vessels be-
tween Lolland in the north and Fehmarn and the German
mainland in the south. The grey polygons are landmasses,
the blue lines represent the vessel traffic.

tracks were recorded in a period of 7 days using the
AIS system. For the validation, only the data of the
tanker and cargo vessels is used, as these types have
a similar behavior. All 758 unique tracks (191 tracks
by tankers and 567 by cargo vessels) can be seen in
Figure 3. The dataset is annotated, i.e. each point in
the dataset is either marked as normal or as abnormal.
Therefore, the ground truth is given for calculating the
precision and recall for all algorithms.

For the evaluation a 10-fold stratified cross-vali-
dation is used. This means, that the whole dataset is
divided into 10 folds and each of the folds contains
the same ratio of abnormal trajectories as labeled in
the whole dataset. As described by Witten and Frank
(2005), a 10-fold cross-validation has shown to yield
the best estimate of error. Therefore, the results gen-
erated by the different folds is averaged. The whole
cross-validation is performed 10 times and these re-
sults are averaged in order to get a reliable error esti-
mate.

The results are compared to algorithms used by
Laxhammar et al. (2009). In their investigation a
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Table 1: Optimal parameters for the evaluation.

Algorithm Parameters
unsup-GMM  n = 6; gnin = 35th percentile
sup-GMM n=30
SVM C =10000; y=0.1
MLP n, =25
L-GMM n =175; grid: 5x5
KDE h=0.06

Figure 4: B-spline representations of all trajectories in the
dataset. The blue lines represent the splines, the green dots
represent the control points.

GMM (here named L-GMM) and a Kernel Density
Estimation (KDE) are compared for their ability to
detect anomalies in sea traffic. These algorithms are
used to determine the underlying probability density
function representing the distribution of data points.
Therefore, these algorithms can assess each incoming
data point on its own.

As described by Anneken et al. (2015) in their
quantitative evaluation, the algorithms are trained
with normal data only, which yields a better result for
the overall f1-score as well as for the single precision
and recall scores. For the GMM, the area is divided
by a grid and for each cell in the grid, the anomaly
detection is performed separately. For the KDE, the
bandwidth % has to be chosen. A bandwidth chosen
too high will result in underfitting and too low in over-
fitting.

For all algorithms, the optimal parameters are cho-
sen by using a grid search. The resulting optimal pa-
rameters are shown in Table 1.

4.2 Results

In Figure 4, the b-spline representations for all trajec-
tories are shown. Each blue line represents one tra-
jectory. For the estimation to work properly, the raw
trajectories need to contain at least 4 points. For some
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transformed trajectories, the course can now be seen
to run over islands. This is a result of using only a lim-
ited amount of control points. The resulting trajecto-
ries are smoothed; therefore, the exact course is lost.
The control points for each trajectory are depicted by
green dots. The first and last point indicate the be-
ginning and the end of the trajectory. Thus, there are
clusters of green dots at the border of the figure. Fur-
thermore, several other clusters of green dots can be
seen in the image.

The averaged precision, recall and f1-score for the
whole dataset for the b-spline feature approaches as
well as the point-based approaches is shown in Table
2. These scores are given regarding the detection of
anomalies and not the representation of normal data,
i.e. a correctly detected anomaly is a true positive,
whereas normal data marked as normal data is a true
negative. Furthermore, the ground truth and the re-
sults for one test fold using the different learning al-
gorithms for the b-spline representation is depicted in
Figure 5. The blue trajectories are detected as normal,
whereas the red ones are detected as anomalies.

Each sub-figure in Figure 5 underlines the scores
given in Table 2. The SVM-based and MLP-based
algorithms yield better results than the unsup-GMM
and the sup-GMM. Most anomalies are detected cor-
rectly by the SVM and MLP approach, only a few
are not found and some are detected as anomaly even
though they are not.

The fl-scores for the unsup-GMM is the low-
est for the b-spline feature approaches, followed by
the sup-GMM (12.4% higher), the SVM (16.9%
higher), and the MLP with the highest fl-score
(23.8% higher). The precision and recall differ sig-
nificantly for both GMM approaches. This can also
be seen in Figure 5(b) and Figure 5(c). Here, the
sup-GMM is able to identify the anomalies which
are quite far away from the normal trajectories, but
nearly no abnormal trajectory near the normal ones
is marked as anomaly. Therefore, nearly all detected
anomalies are true positives.

Comparing the b-spline feature methods with the
L-GMM and the KDE approach, it is evident, that
even the unsup-GMM with the worst results is able to
outperform the point-based approaches. The f1-score
for the unsup-GMM is 30.5% higher than the one for
the L-GMM and 18.7% higher than the one for the
KDE. Comparing the MLP approach to the L-GMM,
the MLP’s f1-score is even 61.6% higher than the one
for the L-GMM.

Furthermore, the false positive rate (FP rate) is
given for each algorithm in Table 2. The best FP rate

is achieved with the b-spline approach using a SVM
and a MLP, and the L-GMM. By far the unsup-GMM
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Figure 5: The results for tanker and cargo vessels for one fold. In Figure 5(a), the blue lines are marked as normal trajectories,
whereas the red ones are detected as anomalies. For all other sub-figures, anomalies detected as anomalies are depicted
with green lines, anomalies detected as normal with red lines, normal trajectories detected as anomalies with blue lines, and
normal trajectories detected as normal with grey lines. The grey polygons are landmasses (in the north Lolland and other
Danish islands and in the south Fehmarn and the German mainland), the white background is the Baltic Sea.

has the worst FP rate of the tested algorithms. This
is a result of using all the available data (normal and
abnormal) as training data. The sup-GMM has a FP
rate in between the L-GMM and the KDE.

The results of the unsup-GMM and the sup-GMM
are far worse than the ones for the SVM and the MLP.
The precision for the unsup-GMM is lower than the

one for the sup-GMM, SVM, and MLP, whereas the
recall is as high as the one for the SVM. The preci-
sion for the sup-GMM is 3.9% lower than the SVM
one, but the recall is the lowest of the b-spline fea-
ture methods. For the unsup-GMM, the problem is
founded in the usage of all available training data dur-
ing the learning phase. Even abnormal data is used
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Table 2: Averaged results of the anomaly detection for tanker and cargo vessels.

B-spline features

Laxhammar et al. (2009)

Score " nsup-GMM  sup-GMM ~ SVM ~ MLP  L-GMM KDE
precision 0.6793 0.8923  0.9282 0.9398  0.6547 0.6250

recall 0.7650 0.7401  0.7692 0.8468  0.4763 0.5883
FP rate 0.1643 0.0407  0.0271 0.0248  0.0256 0.0545
f1-score 0.7196 0.8090  0.8412 0.8908 0.5514 0.6061

for learning the underlying distribution, resulting in
lower precision and recall. Comparing the unsup-
GMM results in Figure 5(b) with the ground truth in
Figure 5(a), the false classification of normal and ab-
normal data can be seen. Several trajectory labeled as
normal are classified as anomaly and vice versa.

Comparing Figure 5(d) and Figure 5(e) with each
other, the difference is not that significant. There are
some occasions, where the MLP classifies the data
differently than the SVM, resulting in a better over-
all classification for the MLP (the fl-score is 5.9%
higher for the MLP than for the SVM).

S CONCLUSIONS

Depending on the machine learning methods, the pro-
posed algorithm has a high precision and recall score.
The introduced algorithm, especially based on the
MLP, outperforms the algorithms used by Laxham-
mar et al. (2009) by far.

Nevertheless, the algorithm has some drawbacks.
First, due to the smoothing of the trajectories, small
anomalies cannot be detected by this approach. Sec-
ond, the whole trajectory must be known to use this
algorithms for anomaly detection. Therefore, it can
only be used for post-processing, or in case that the
execution time for each trajectory is rather short and
therefore the assessment will be available near real-
time. Third, the whole trajectory may not be too com-
plicated. This is also a result of the smoothing, as
the estimation for long and complicated trajectories is
rather bad.

6 FUTURE WORK

To improve the shown drawbacks, several solutions
are plausible. In order to make the algorithm usable
for real-time analysis, the possible endpoint of a tra-
jectory can be estimated and by using this estimation,
a b-spline representation can be predicted.
Furthermore, the trajectories can be segmented,
e.g., by dividing the trajectories at turns. These seg-
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ments can be used to build a Markov Chain or simi-
lar to represent the transition between the segments.
This will tackle two problems at once. First, smaller
anomalies might be detectable, as the trajectories are
shorter and therefore the smoothing has less impact.
Second, a real-time prediction for vessels is possible,
as for each vessel a path can be predicted and thus
anomalies can be detected earlier.

ACKNOWLEDGEMENTS

The underlying projects to this article are funded by
the WTD 81 of the German Federal Ministry of De-
fense. The authors are responsible for the content of
this article.

REFERENCES

Anneken, M., Fischer, Y., and Beyerer, J. (2015). Evalua-
tion and comparison of anomaly detection algorithms
in annotated datasets from the maritime domain. In
SAI Intelligent Systems Conference 2015.

Barber, D. (2014). Bayesian Reasoning and Machine
Learning. Cambridge University Press.

Chandola, V., Banerjee, A., and Kumar, V. (2009).
Anomaly detection: A survey. ACM Computing Sur-
veys, 41(3):15:1-15:58.

Dahlbom, A. and Niklasson, L. (2007). Trajectory cluster-
ing for coastal surveillance. In Information Fusion,
2007 10th International Conference on, pages 1-8.

de Vries, G. K. D. and van Someren, M. (2012). Ma-
chine learning for vessel trajectories using compres-
sion, alignments and domain knowledge. Expert Sys-
tems with Applications, 39(18):13426 — 13439.

Fischer, Y., Reiswich, A., and Beyerer, J. (2014). Model-
ing and recognizing situations of interest in surveil-
lance applications. In Cognitive Methods in Situation
Awareness and Decision Support (CogSIMA), 2014
1EEE International Inter-Disciplinary Conference on,
pages 209-215.

Gallier, J. (1999). Curves and Surfaces in Geometric Mod-
eling: Theory and Algorithms. Morgan Kaufmann.

Guillarme, N. L. and Lerouvreur, X. (2013). Unsupervised
extraction of knowledge from s-ais data for maritime



Anomaly Detection using B-spline Control Points as Feature Space in Annotated Trajectory Data from the Maritime Domain

situational awareness. In 16th International Confer-
ence on Information Fusion Istanbul, Turkey, July 9-
12, 2013.

Jones, E., Oliphant, T., Peterson, P, et al. (2001). SciPy:
Open source scientific tools for Python. [Online;
http://www.scipy.org/; accessed 2015-09-01].

Kung, S. Y. (2014). Kernel Methods and Machine Learning.
Cambridge University Press.

Laxhammar, R. and Falkman, G. (2011). Sequential confor-
mal anomaly detection in trajectories based on haus-
dorff distance. In Information Fusion (FUSION),
2011 14th International Conference on, pages 1-8.

Laxhammar, R., Falkman, G., and Sviestins, E. (2009).
Anomaly detection in sea traffic - a comparison of the
gaussian mixture model and the kernel density. In 12th
International Conference on Information Fusion Seat-
tle, WA, USA, July 6-9, 2009.

Melo, J., Naftel, A., Bernardino, A., and Santos-Victor, J.
(2006). Detection and classification of highway lanes
using vehicle motion trajectories. [Intelligent Trans-
portation Systems, IEEE Transactions on, 7(2):188-
200.

Morris, B. and Trivedi, M. (2008). A survey of vision-based
trajectory learning and analysis for surveillance. Cir-
cuits and Systems for Video Technology, IEEE Trans-
actions on, 18(8):1114-1127.

Naftel, A. and Khalid, S. (2006). Classifying spatiotem-
poral object trajectories using unsupervised learning
in the coefficient feature space. Multimedia Systems,
12(3):227-238.

Pedregosa, E., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P, Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825-2830.

Rosen, O. and Medvedev, A. (2012). An on-line algorithm
for anomaly detection in trajectory data. In American
Control Conference (ACC), 2012, pages 1117-1122.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understand-
ing Machine Learning - From Theory to Algorithms.
Cambridge University Press.

Shao, H., Japkowicz, N., Abielmona, R., and Falcon, R.
(2014). Vessel track correlation and association using
fuzzy logic and echo state networks. In Evolutionary
Computation (CEC) 2014, IEEE Conference on.

Vakanski, A., Mantegh, I., Irish, A., and Janabi-Sharifi,
F. (2012). Trajectory learning for robot program-
ming by demonstration using hidden markov model
and dynamic time warping. Systems, Man, and Cy-
bernetics, Part B: Cybernetics, IEEE Transactions on,
42(4):1039-1052.

Witten, I. H. and Frank, E. (2005). Data Minig: Practi-
cal Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann Publishers, 2
edition.

Wojciechowski, M. (2011). Feed-forward neural network
for python. [online; http:/ffnet.sourceforge.net/; ac-
cessed 2015-09-01].

257



