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Abstract: The Android operating system powers the majority of the world’s mobile devices and has been becoming 
increasingly important in day-to-day digital forensics. Therefore, technicians and analysts are in need of 
reliable methods for extracting and analyzing memory images from live Android systems. This paper takes 
different existing, extraction methods and derives a universal, reproducible, reliably documented method for 
both extraction and analysis. In addition the VOLIX II front-end for the Volatility Framework is extended 
with additional functionality to make the analysis of Android memory images easier for technically non-adept 
users. 

1 INTRODUCTION 

Extraction of information from smartphones is 
becoming progressively more important as the 
ubiquity of mobile devices, such as smartphones and 
tablets, increases ever further. Law enforcement 
agencies, technicians and even end users are in need 
of reliable methods for extracting data from mobile 
devices when extraction of data from nonvolatile 
memory is not possible or insufficient. One possible 
source for data is the RAM (Random Access 
Memory) of such devices.  

Possible scenarios for the analysis of RAM 
extracted from an Android device include typical law 
enforcement situations, such as the forensic analysis 
of devices seized during the course of investigations, 
as well as situations often encountered by IT support 
technicians, such as a first response analysis of a 
malware infestation. The potential applications are 
similar to those of live memory analysis for 
traditional desktop (Windows, Mac, or Linux) 
systems and are important due to the sheer amount of 
personal information stored on a smartphone or 
tablet. 

Android is, in essence, a Linux-based system 
(Begun, 2011). It runs a Linux kernel, generally 
compiled for the mobile processors usually found in 
smartphones, tablets and other low-power devices. 
The lion’s share of mobile processing for Android 
devices takes place on the ARM microprocessor 
architecture, which necessitates cross-compilation of 

any native code for use on these devices. 
The common core with modern Linux distributions 

ensures the existence of software tools for extraction 
and analysis of Android memory images, such as the 
LiME (Linux Memory Extractor) kernel module 
(Sylve, 2015) and the Volatility Framework for 
analysis of memory images from multiple operating 
systems (Hale, 2013a). 

This paper describes the leverage of the 
aforementioned tools LiME and Volatility resulting 
in a reproducible, reliable approach for the extraction 
and analysis of memory images from Android 
devices. 

2 TECHNICAL CHALLENGES 
PRESENTED BY ANDROID 

The Android operating system, while based on a 
Linux core, presents multiple new challenges for 
forensic analysis when compared to traditional 
desktop operating systems. The analysis of data 
stored in RAM on a target device can be very 
beneficial in addressing these problems. 

2.1 Encryption of Non-volatile Storage 
Devices 

The first of these challenges is FDE (Full Disk 
Encryption) as well as general encryption of storage 
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devices on Android systems (cf. Android Open 
Source Project). Starting with Android 4.0 ICS (Ice 
Cream Sandwich), Android has offered an option for 
complete encryption of the device’s file system. 
Activating FDE is a matter of ticking a single 
checkbox in the Android security settings menu: 

 

Figure 1: Activation of FDE on a smartphone running 
Android 5.0 Lollipop. 

After the user has activated FDE, the device 
automatically encrypts internal storage devices using 
128-bit AES (Advanced Encryption Standard) with 
cipher-block chaining (CBC) and an ESSIV 
(Encrypted salt-sector initialization vector) using 
SHA256. Starting from Android 5.0, this encryption 
can optionally be limited to the data partition in order 
to reduce performance penalties during the boot 
process (Android Open Source Project). 

RAM, on the other hand, is generally not 
encrypted, as this is ill-advised from a performance 
standpoint. Therefore, if the data from an encrypted 
device’s RAM were available, it would likely be 
possible to ascertain the encryption type and 
parameters of both standard and user-implemented 
encryption methods (such as LUKS). In some cases it 
may even be possible to circumvent encryption 
measures and decrypt the data on the device’s 
encrypted volumes by obtaining the decryption key 
from within RAM. 

Proofs of concept for the decryption of Android 
devices with storage encrypted by both dm-crypt 
(Elatov, 2015), the default device encryption solution 
used by Android starting from version 4.0, and LUKS 
have been published (Elatov, 2015; Müller and 

Spreitzenbarth, 2013). Both proofs of concept hinge 
upon the extraction of encryption parameters from a 
running device’s RAM. 

2.2 Locker/Vault Apps 

The second challenge presented by Android is the 
ubiquity of locker/vault type apps (short: locker 
apps), which offer password-secured protection of 
sensitive data placed within them. These apps, 
ranging from simple and easy to circumvent to 
absolute state-of-the-art, are easily available from the 
Google Play Store or as downloadable APK files for 
manual installation (Begun, 2011) In addition, ADB 
and terminal emulators make it easy for advanced 
users to script their own security measures for 
sensitive data to be stored on the phone.  

Similarly to attacks on FDE, analysis of RAM from 
devices running Android locker apps can provide 
valuable information as to the type and parameters of 
data protection methods used. In many cases, due to 
the simplicity of the methods used and an unhealthy 
reliance on security through obscurity, extracting data 
protected by locker apps is a simple matter of 
knowing where to look. The locker app’s data in 
RAM often provides hints as to locations of files 
hidden by the app. 

2.3 Android Malware 

For support technicians and first responders, malware 
represents an additional problem in the Android 
ecosystem. Due to the sandboxing of Android 
applications (i.e., by the Dalvik VM used by Android 
for running its Java-based apps (Android 
Developers)) it is difficult to build malware scanning 
and protection apps which are able to analyze running 
code as well as any data apps may write to the 
device’s internal storage. 

Analysis of RAM from devices infected with 
malware can aid in detection, identification and even 
determining the origin of certain malware. 

3 EXTRACTION OF MEMORY 
IMAGES 

Multiple well-documented approaches for the 
extraction of memory images from Linux system 
exist (Caban, 2014). However, these approaches all 
present additional challenges when confronted with 
an Android system. 
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3.1 Android Kernel Version 
Fragmentation 

Unlike desktop Linux distributions, which consist of 
known, largely homogenous quantities (i.e., large 
blocks of users of a single Linux distribution, such as 
Ubuntu LTS (Long Term Support) releases or Debian 
Stable), Android devices are very heterogeneous in 
terms of the kernel versions they run (Linux Profiles, 
2012). 

Android devices are generally updated OTA (Over 
The Air) by their manufacturers or software providers 
(these may include creators of custom ROMs, which 
are customized versions of the Android operating 
system for advanced end users). Any one of these 
updates can bring a minor kernel version change. 
Major kernel version changes, on the other hand, are 
generally reserved for major Android version 
updates, i.e., from Android 4.4 KitKat to Android 5.0 
Lollipop. 

This has led to large levels of fragmentation of the 
Android software ecosystem, due to nearly every 
device running its own custom compiled version of 
the Android kernel. Even two kernels with the same 
version number may not be alike due to custom 
compile flags used by the manufacturer to enable or 
disable functions and tweak the kernel towards the 
System on a Chip (SoC) and other hardware 
components in the device for performance and 
efficiency reasons. 

3.2 Loadable Kernel Modules  
for Memory Extraction 

Most Linux memory extraction strategies, including 
the approach presented here, are implemented 
through the use of LKMs (Loadable Kernel Modules 
(Caban, 2014)). The extraction of RAM from a Linux 
system requires compilation of an LKM specifically 
for the device in question. The LKM version number 
needs to match the kernel version number, the 
toolchain and compiler used to create the LKM need 
to be compatible with those used to compile the 
kernel, and the running kernel’s source code is 
required for compilation of the LKM. 

On desktop Linux systems, this is generally not an 
issue – one would simply install the same distribution, 
running the same kernel, on separate hardware, and 
then use that system to compile an LKM (Tilbury, 
2013). Using the same distribution and kernel version 
as the target device makes compilation simple and 
generally rules out any compatibility issues. If a 
compromise in the level of forensic purity on the target 
system is acceptable, it is also possible to compile the 

LKM directly on the target system, ensuring 
compatibility. Tools which implement this for desktop 
systems automatically already exist – a prime 
example1 is Linux Memory Grabber by Hal Pomeranz 
(Hale, 2013b; Pomeranz, 2014). 

Unfortunately, due to hardware constraints as well 
as a lack of software tools for the compilation 
process, this is not possible on Android devices. 

Instead, when compiling an LKM for Android, 
compilation takes place on a separate system running 
a desktop Linux operating system. The compiler uses 
a cross compilation toolchain for CPU architecture 
compatibility (Hale, 2013a). Due to the availability of 
multiple toolchains and multiple compilers, the 
possibility of building incompatible LKMs exists. In 
general, using the toolchain and compiler used for 
compilation of the running device’s kernel will likely 
lead to a working kernel module. 

Multiple LKMs for the extraction of memory 
images are available, including fmem, pmem and 
LiME. In most cases, these LKMs work by creating a 
device such as /dev/fmem as a parsable entry point for 
memory extraction (Hale, 2013b). 

3.3 General LKM Compilation Process 
for Android Devices 

Summarily, the compilation process consists of the 
following steps: 

1. Initialization of the build environment: This 
step consists of the installation of prerequisites 
such as the required Java version and various 
libraries required for the Android build 
process, as well as the setting of required 
environment variables. ADB (Android Debug 
Bridge) access to devices via USB from within 
a Linux system also requires additional steps. 

2. Procurement of a toolchain, such as the linux-
arm-androideabi-toolchain included in the 
Android NDK. 

3. Procurement of the target device’s kernel 
source code. 

4. Procurement of the LKM source code 
5. Editing the Makefile included in the LKM 

source code to compile against the target 
device’s kernel source code and use the correct 
toolchain 

6. Issuing the make command 
 

3.4 Linux Memory Extractor Lkm 

LiME (Linux Memory Extractor) is a loadable kernel 
module used to extract memory from Linux-based 
systems. It has previously been used to successfully 

Streamlining Extraction and Analysis of Android RAM Images

257



extract the contents of RAM from Android devices 
and generates memory dumps compatible with the 
Volatility Framework (Sylve, 2011). 

LiME was chosen as extraction tool due to the fact 
that it represents the most viable approach for 
Android devices. LiME is a well-documented project 
which is well-known to the developers of the 
Volatility Framework and hence provides a good 
starting point for the extraction of Android RAM 
images (Hale, 2013a). 

During the course of this work, LiME was 
successfully used to extract memory dumps from both 
simulated and physical Android devices running 
Android versions up to 5.1 (Android Lollipop second 
release). 

3.5 Extracting Memory with Lime 

The use of LiME in order to extract memory from 
Android devices is much simpler than the compilation 
of the corresponding kernel module. 

First, the LKM, in form of a .ko file, is copied to 
the device’s internal memory or SD card. Then, from 
a terminal emulator app or an active ADB connection, 
the user executes the insmod command to inject the 
LKM into the running kernel and extract the device’s 
memory to either a local file or over TCP. An 
example insmod command is the following: 

insmod /sdcard/lime.ko 
“path=/sdcard/lime.dump format=lime” 

Here the lime.ko LiME LKM file was placed on the 
device’s internal memory (due to historical reasons, 
the mount point /sdcard/ is used for the user-
accessible part of the internal memory on Android 
devices). The additional parameters path and format 
determine the location of the newly generated 
memory image and its structure, respectively (Sylve, 
2015). 

The process of dumping memory can take 
anywhere between a few seconds and multiple 
minutes, depending on the size of the device’s RAM 
and the speed of the storage device being written to. 
After the memory dump has been generated, it can be 
transferred to the forensic workstation for analysis. 

4 ANALYSIS OF PREVIOUSLY 
EXTRACTED MEMORY 
IMAGES 

The analysis of memory images using Volatility 
requires a Volatility profile. The profile contains 

information about both the memory image as well as 
the system the image was extracted from. This 
includes information about the location of kernel 
debug symbols and the kernel’s data structures (Hale, 
2013b). 

The Volatility Framework includes several 
precompiled profiles for popular operating systems 
(Linux Profiles, 2012) However, these are mostly 
limited to common major versions of Windows. The 
Volatility foundation also provides several optional 
profiles for Mac and Linux systems, available for 
download and manual installation. These optional 
profiles come in the form of a ZIP archive containing 
a precompiled Dwarfdump file, which contains the 
kernel data structure information, and the system.map 
file, which contains the kernel debug symbol 
information. The list of available profiles is small, 
including only a small number of the available Linux 
distributions and only a limited subset of each 
distribution’s recent releases (Linux Profiles, 2012). 

Precompiled profiles for Android devices may be 
listed in the future. However, the fragmentation of the 
Android software ecosystem will likely necessitate 
the custom compilation of a profile for each target 
device due to the sheer amount of possible 
combinations. The 10 most popular Android devices 
alone each run multiple different kernel versions over 
the course of multiple manufacturer updates, already 
offering up an incredible number of permutations. 

4.1 Generating a Volatility Profile 

Generating the Volatility profile requires the 
compilation of a module against the target device’s 
kernel source to create the vtypes (kernel data 
structures). The Makefile included in the Volatility 
framework uses DwarfDump to pack the vtypes in a 
format which is readable by Volatility, generating a 
module.dwarf file (Hale, 2013b). 

The resulting file is then packed in a ZIP archive 
together with the target device kernel’s system.map 
file (Sylve, 2015). For Android devices the 
system.map is generally supplied along with the 
kernel source code, or can be manually assembled 
from information extracted from /proc/kallsyms/ 
using a cat command. The latter requires advanced 
knowledge of Linux kernel structures. 

The following steps are necessary to generate a 
Volatility profile for an Android target device: 

1. Procurement of the Volatility source code 
2. Editing the included Makefile to use the target 

device’s kernel source code as well as the 
correct toolchain for cross compilation 

3. Issuing the make command 
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4. Procurement of the system.map file 
5. Adding both the module.dwarf file generated 

by make and the system.map file to a ZIP 
archive 

The newly created ZIP file can then either be placed 
in the volatility/plugins/overlays/linux directory of 
the Volatility package root directory or referenced via 
the –plugins flag during execution of Volatility from 
the command line (Raman, 2014). 

4.2 Using Volatility to Analyze Android 
Memory Images 

The Volatility framework is a simple command-line 
based tool. The plugins to be run are passed as 
parameters, i.e.: 

python ~/android-volatility/vol.py 
--profile=Android_Profile -f 
~/lime.dump 
linux_pslist >> results_pslist.txt 

This command analyzes a memory image 
(lime.dump) using the linux_pslist plugin and outputs 
the generated list of running processes to a text file 
(results_pslist.txt). 

Some plugins, such as linux_volshell, require 
additional parameters and input from the user. 

5 THE VOLIX II VOLATILITY 
FRONTEND 

In essence, the Volatility framework consists of a 
collection of Python scripts which are executed from 
the command line using a compatible version of the 
Python (a high-level object-oriented programming 
language with an on-the-fly interpreter) software 
package. The Volatility Foundation also provides 
standalone executable versions of Volatility for 
Windows, which are also run from the command line. 

In an effort to simplify the operation of the 
Volatility framework, especially for less experienced 
users, the VOLIX Volatility frontend was developed 
(Logen et al., 2012). The latest version VOLIX II is 
built with a standard Windows Forms GUI, which 
should be familiar to most users of standard Windows 
software (VOLIX II, 2014). 

As part of this work, the software of VOLIX II was 
extended to include functions pertaining to the 
analysis of Android memory images, as well as 
making the analysis of general Linux memory images 
simpler and more accessible to novice users. Changes 
include the addition of a Volatility profile selection 

mechanism for Linux and Android, additional 
Android-specific automated extraction routines for 
common tasks  and an overhaul of the English 
language interface. 

The user supplies the extracted memory image 
from the target device along with the Volatility 
profile. VOLIX II can then be used for execution of 
specific Volatility commands from within the GUI, or 
to execute automatic routines such as finding hidden 
processes or installed locker apps. 

6 PRACTICAL  
CONSIDERATIONS FOR 
PHYSICAL ANDROID DEVICES 

Due to the nature of the extraction methods presented 
here, target devices must fulfill certain prerequisites 
in order to be considered for successful extraction of 
an accurate memory image. 

First and foremost, the injection of a kernel module 
such as LiME requires root access to the device. This 
means that unless the device has already been rooted 
for general use by its owner, the forensic investigator 
needs to find a viable root method and execute it on 
the device (Sylve, 2011). 

Second, access to a console/command line is 
necessary for execution of the insmod command. 
There are two possible ways to access a command 
line: An ADB session or an app installed on the 
device (such as a terminal emulator or a remote 
command line app e.g. SSH server or similar). 

Being able to open an ADB session requires either 
a USB or WiFi connection to the target device, the 
former of which is generally trivial unless there is 
physical damage to the device’s USB port. However, 
in order to successfully connect to the device via 
ADB, the device must be set up to allow ADB 
connections in the developer options. In addition, 
recent Android versions have an ADB fingerprinting 
feature which requires the manual authorization of the 
connected PC on the target device itself. 

Third, the injection of kernel modules via insmod 
requires that the kernel be configured to load modules 
at runtime. This requires three specific compilation 
flags (Hale, 2013b): 

CONFIG_MODULES=y 
CONFIG_MODULES_UNLOAD=y 
CONFIG_MODULES_FORCE_UNLOAD=y 

These flags are enabled by default for kernels 
running on many developer systems, as well as those 
included in many custom ROMs for Android devices. 
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This is not the norm, however, for factory standard 
devices sold to the general public. 

Ideally, a target device would be previously rooted, 
have an insmod-friendly kernel configuration, and be 
unlocked for ADB connections from new PCs. In the 
real world, this is generally not the case. In order to 
root the device and allow ADB connections from a 
workstation, the forensic investigator must first gain 
access to the physical device, bypassing the device’s 
PIN or pattern lock. Modifying the kernel to allow the 
injection of kernel modules generally requires a 
reboot, which may compromise system integrity 
(Ligh et al., 2014). 

7 FORENSIC CONSIDERATIONS 

Due to the nature of the extraction approach put 
forward here, a certain measure of forensic 
contamination of the target system is inevitable. Most 
devices encountered in the wild will not correspond 
to the ideal scenario introduced in Section 6, meaning 
they will need to be modified (root access, kernel 
modification, command line access) in order to 
extract memory images. 

These modifications, in some cases, require a 
reboot of the system. This makes it difficult to 
preserve the exact memory state of the Android 
device for extraction and may lead to loss of useful 
data. Running applications and open files relevant to 
the investigation may not automatically run/open 
again after a reboot, and many caches and temporary 
files are purged during boot. 

When applying the methods presented here, it is 
important to keep in mind that any extracted data may 
be incomplete and/or inaccurate. 

In many cases, though, these shortcomings are 
irrelevant. Many Android applications start 
automatically at launch, as is the case for a lot of 
malware applications such as malicious RAT 
(Remote Administration Tool) apps. 

8 EXTRACTION AND ANALYSIS 
OF MEMORY IMAGES FROM 
ANDROID DEVICES 

As part of the research project memory images were 
extracted from multiple hardware devices including a 
Samsung Galaxy Nexus running Android 4.3 and 4.4, 
an AVD (Android Virtual Device) running Android 
5.1, and a Google (LG) Nexus 5 running Android 5.1. 
While the Galaxy Nexus running Android 4.3 or 4.4 

realistically represents a large portion of the currently 
available Android devices, extraction of a memory 
image from Android 5.1 running on Google’s AVD 
emulator is largely a measure to ascertain that 
Android 5.1, as the most recent Android release at this 
time, contains no changes which would prevent the 
extraction method from working. 

8.1 Android 5.1 Android Virtual 
Device 

Building the LiME LKM, a Volatility profile and a 
compatible kernel for the standard version of Android 
5.1 running on the AVD emulator is a straightforward 
affair. The kernel source code for the Android 5.1 
version running on the emulator is easily obtainable 
directly from Google’s code repository, and the 
Android system images included with the Android 
SDK (which contains the AVD emulator) are highly 
compatible with the arm-linux-androideabi-
toolchains included in the Android NDK. 

Cross-compilation of the LiME LKM required 
only small modifications to the Makefile included in 
the LiME source code, such as modification of the 
path to the Android NDK arm-linux-androideabi- 
toolchain and the path to the previously downloaded 
Android kernel source code. 

Compilation of a kernel with the compilation flags 
needed for the use of insmod required the generation 
of a .config kernel configuration file using make 
goldfish_armv7_defconfig. The flags were then added 
to the kernel configuration file by hand before the 
kernel was compiled. 

Generation of the Volatility profile for the Android 
5.1 AVD was similarly simple, as was extraction 
using insmod, due to AVD system images providing 
root access by default. 

After a successful extraction and transfer of the 
memory image to a forensic workstation via adb pull, 
the Volatility framework was successfully used to 
extract data from the image. Plugins used to extract 
data include linux_pslist, which provides a list of 
processes running at the time of extraction, 
linux_dmesg, which outputs the kernel message 
buffer, and linux_lsof, which lists open files at the 
time of extraction (cf. figure 2). 

8.2 Samsung Galaxy Nexus 

Both compilation of the LiME LKM and generation 
of the Volatility profile for Android 4.3 and 4.4 on the 
Galaxy Nexus proved more difficult. 
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8.2.1 CyanogenMod 11 (Android 4.4) 

The first attempt to extract memory from this device 
was made using a nightly build of the CyanogenMod 
11 custom ROM (based on Android 4.4), due to the 
fact that these systems present an easy target for the 
extraction methods detailed here. They offer enabled 
USB debugging (which means the device is ready for 
ADB connections), the ability to inject kernel 
modules and root access by default (see 6). 

 

Figure 2: Excerpt from the output of linux_pslist on an 
AVD Android 5.1 memory image. 

Two problems were encountered during this 
approach: 1. The use of a nonstandard toolchain to 
build CyanogenMod and 2. the fact that 
CyanogenMod strips its kernel debug symbols to save 
space. The toolchain problem was solved by 
switching to a toolchain included in the 
CyanogenMod source code for full compatibility with 
the CyanogenMod custom ROM, enabling the 
successful extraction of a memory image from the 
Galaxy Nexus. 

Obtaining the kernel debug symbols for the 
Volatility profile was possible only by using cat to 
extract a list of debug symbols from /proc/kallsyms 
on the running system. After modification of the 
extracted list before integrating it in a Volatility 
profile, only rudimentary analysis of the extracted 
memory image proved possible. 

Due to missing debug symbols, many important 
Volatility plugins, such as linux_pslist or 
linux_dmesg would output only empty files or a short 
string unrelated to the usual output of these plugins. 
Other plugins, such as linux_check_syscall, run 
without issue (cf. figure 3). 

 

8.2.2 Galaxy Nexus Factory Image  
(Android 4.3) 

In a more standard approach, the extraction and 
analysis method was also tested on the Galaxy Nexus 
running the standard Android 4.3 factory image. In 
this case, recompilation of the kernel with the 
compilation flags necessary for injection of kernel 
modules was required, but was otherwise 
straightforward. 

 

Figure 3: Excerpt from the output of linux_check_syscall 
on a Galaxy Nexus CyanogenMod 11 memory image. 

Similar to the approach for the Google AVD 
emulator, the kernel source code for the Galaxy 
Nexus factory image is readily available, as the 
Galaxy Nexus was part of the Google Nexus 
developer device program. For this reason, the 
Galaxy Nexus factory image is also highly 
compatible with the toolchains supplied by Google’s 
NDK. Cross-compilation of the LiME LKM as well 
as the module.dwarf file for the Volatility profile 
were completed without any problems. 

Extraction of the memory image from the device 
additionally required gaining root access on the 
device, which was accomplished using the Nexus 
Root Toolkit. 

After the successful extraction of the memory 
image and transfer to the forensic workstation via 
ADB, analysis of the image with Volatility proved 
successful, allowing the recovery of information with 
most of the Linux plugins included with Volatility. 

8.3 Google (LG) Nexus 5 

The Nexus 5 is part of Google’s current Nexus lineup 
of developer smartphones (soon to be replaced by a 
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successor known as the Nexus 5 2015), and has, at 
time of publication, received an update to the latest 
Android release: Lollipop 5.1.1. 

Like the Galaxy Nexus, it runs a standard factory 
image. Hence, cross-compilation of the LiME LKM 
as well as creation of the corresponding Volatility 
profile were straightforward and analogous to the 
process for the Google AVD emulator. Gaining root 
access was also possible using the same Nexus Root 
Toolkit used for the Galaxy Nexus. 

After successful extraction of the memory image 
from the Nexus 5 device and transfer to the forensic 
workstation via adb pull over a USB connection, 
nearly all of the Volatility framework’s Linux plugins 
were found to be useable, even with this very latest 
version of Android. 

8.4 Simplifying Memory Extraction 
and Analysis 

Successful extraction of a memory image using the 
LKM approach, as well as subsequent analysis using 
the Volatility Framework, depends on a number of 
factors which may vary according to the 
manufacturer, the version of the installed operating 
system, user settings, and the device’s security and 
root status. 

While the extraction and analysis of memory 
images from standard developer devices such as the 
Google Nexus series or the Google AVD Emulator 
follows a standard, documented routine, extracting 
and analyzing memory from any of the myriad 
available consumer devices requires a more 
specialized approach with time-consuming 
experimentation. 

8.4.1 LKM and Volatility Profile Repository 

At the lowest level, it is the generation of the LKM as 
well as the Volatility profile that differs from device 
to device. Since both the LKM and the Volatility 
profile only need to be generated once for a given 
device running a given Android version, a repository 
of kernel modules and ready-to-use Volatility profiles 
could greatly simplify the extraction of memory 
images from popular devices. 

While the creation of a repository would require 
physical access to all the devices in question and, in 
some cases, multiple hours of work per device, 
crowdsourcing the modules and profiles is a 
possibility. 

The Volatility Foundation already provides a basic 
set of Linux and Mac OS profiles for use with the 
Volatility Framework on Github at 

https://github.com/volatilityfoundation/profiles. This 
repository could be extended to include profiles for 
Android devices, preferably bundled with the 
corresponding LiME kernel modules. The kernel 
modules and profiles generated for the purposes of 
this research will be submitted shortly. 

The availability of a LKM and Volatility profile for 
a given device would not guarantee a successful 
extraction – it would, however, greatly accelerate the 
process. 

8.4.2 Different Versions of Android on the 
Same Device 

While the generation of the LKM and the Volatility 
profile is a process that differs greatly from device to 
device, the process is generally very similar when the 
device is the same, but a different Android version is 
used. 

In many cases, the only difference is the kernel 
source code that the LKM and Volatility profile 
vTypes are compiled against – simply replacing the 
source code directory with the appropriate version for 
the kernel now running on the device is often 
sufficient to generate a working LKM and Volatility 
profile. 

In part, this is due to the significant changes 
manufacturers make to the kernels shipped on their 
devices (which generally do not change as heavily 
when the OS version is simply upgraded), but also 
simply due to differing kernel source code folder 
structures and incompatbile cross-compilation 
toolchains.  

9 MALWARE ANALYSIS USING 
MEMORY IMAGES 

The Linux plugins for the Volatility Framework 
provide multiple possible methods for the detection 
and analysis of malware in Android memory images. 
These range from the simple detection of a running 
process known to be associated with malware (using 
linux_pslist, for instance) to more complex methods 
such as using linux_yarascan for pattern matching 
malware detection (Luttgens et al., 2014), as well as 
ways to ascertain the addresses of remote 
communication servers if in use. 

Well known Android malware such as the Remote 
Administration tool AndroRAT, for instance, was 
easy to detect running in memory even with the 
simplest detection routines, showing up in 
linux_pslist without any attempt at hiding itself (cf. 
figure 4) 
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While it is relatively simple for a malware 
developer to hide a malware application from the 
Android task switcher or DDMS (Dalvik Debug 
Monitor Service), hiding the application process so 
that it is not detectable in pslist is very difficult. 
Therefore, many malware apps rely on simple 
security by obscurity to avoid detection – such as the 
process name chosen by the developers of AndroRAT 
as seen in Figure 5. 

 

Figure 4: Excerpt from the output of linux_pslist from a 
system with a running AndroRAT installation – the process 
name chosen by the developers of AndroRAT is very 
generic and could correspond to any number of applications 
a user has installed. 

After detection, it may be useful to ascertain the 
servers and/or nodes the malware communicated with 
– this can be achieved by reading the data in the 
routing table cache using linux_route_cache (Pryor, 
2013). The routing table cache can contain a record 
of systems a Linux machine has communicated with 
in the past: 

If the malware was transmitting at the time the 
memory image was extracted, it may also be useful to 
extract packets stored in the send and receive queues  

 

Figure 5: Excerpt from the output of linux_route_cache 
from a Google Nexus 5 running Android 5.1.1 - note the 
destination IP addresses accessed through gateways 
192.168.0.1 and 192.168.0.43 for access via WiFi and 
mobile data respectively. 

at the time of extraction. This can be achieved using 
linux_pkt_queues, which  recovers packets from the 
queues and can save them directly to disk (Pryor, 
2013). 

Additionally, linux_sk_buff_cache can be used to 
recover and save packets which were in kernel 
memory at the time of extraction, but is currently 
incompatible with SLUB (Unqueued Slab Allocator 
– a memory management mechanism which allows 
the retention of certain allocated data objects for later 
reuse (Cinar, 2015)), the current default allocator in 
Linux since kernel 2.6.23 (Case, 2012). 

Last but not least, the Volatility framework also 
provides Linux plugins which allow the detection of 
active rootkits, such as linux_check_creds, which can 
detect rootkits piggypacking on the credentials of 
processes with root privileges (often PID 1), 
linux_check_idt, which lists the addresses and 
symbols contained within the IDT (Interrupt 
Descriptor Table), including those hooked by 
rootkits, and linux_check_syscall, which lists the 
system call tables and checks them for functions 
hooked by rootkits (Linux Profiles, 2012). 

Rootkits may also inject kernel modules which are 
hidden in the loaded module list (as called by lsmod). 
The Volatility plugin linux_check_modules can 
detect these modules, as long as they are still present 
under /sys/modules/ (Pryor, 2013). 

10 CONCLUSION 

The extraction and analysis of RAM images from 
Android devices remains a relatively young field. 
While possibilities for both extraction and analysis 
exist for a multitude of Android device and software 
constellations, the application of the currently known 
and documented methods generally require extensive 
knowledge of both Linux systems and the use of 
Make for the compilation of kernel modules. In 
addition, many of the existing approaches are 
documented only for specific devices running 
specific versions of Android, making it difficult to 
apply them to other devices which a forensic 
investigator may encounter during investigations. 

The methods described here provide a universal 
approach for the extraction of RAM images from 
Android devices, as well as the generation of a 
corresponding Volatility profile for subsequent 
analysis using the Volatility framework. In addition, 
the extension of the VOLIX II Volatility frontend for 
Android memory images greatly simplifies the 
analysis of these memory images with the previously 
generated Volatility profiles. 
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In the future, automatic (scripted) generation of 
LiME LKMs and Volatility profiles for a given 
device would greatly simplify the process of memory 
extraction and analysis. This could, for instance, be 
achieved via distribution of a Linux VM (virtual 
machine) containing the required scripts, to be 
launched on the investigator’s forensic workstation. 

With a target device that fulfills the requirements 
set forth in section 6, the investigator would need to 
supply only the source code for the kernel running on 
the device and quickly be able to compile a working 
LiME LKM for the device, as well as generate a 
Volatility profile for memory extracted from the 
device with the LKM. 

A cleaner forensic approach for memory extraction 
from Android devices, free from the limitations 
shown in section 7, would require a completely new 
approach which does not hinge upon the injection of 
a kernel module. This would, however, require the 
discovery of a vulnerability in Android which can be 
triggered without modification of the running system. 
Even if such a vulnerability were located, it would 
only be a matter of time until Android was patched to 
remove the vulnerability. 
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