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Abstract: Working memory load can be estimated using features extracted from the electroencephalogram (EEG). 
Connectivity measures, that evaluate the interaction between signals, can be used to extract such features 
and therefore provide information about the interconnection of brain areas and electrode sites. To our 
knowledge, there is no literature regarding a direct comparison of the relevance of several connectivity 
measures for working memory load estimation. This study intends to overcome this lack of literature by 
proposing a direct comparison of four connectivity measures on data extracted from a working memory load 
experiment performed by 20 participants. These features are extracted using pattern-based or vector-based 
methods, and classified using an FLDA classifier and a 10-fold cross-validation procedure. The relevance of 
the connectivity measures was assessed by statistically comparing the obtained classification accuracy. 
Additional investigations were performed regarding the best set of electrodes and the best frequency band. 
The main results are that covariance seems to be the best connectivity measure to estimate working memory 
load from EEG signals, even more so with signals filtered in the beta band. point. 

1 INTRODUCTION 

Monitoring mental states using physiological 
signals, and more specifically EEG (electro-
encephalogram) signals, has received more and more 
attention from researchers these last years. Indeed, it 
possesses numerous human factors applications, 
ranging from safety (e.g. driving, nuclear plant 
monitoring), to smart technology development 
(Fairclough, 2009; Parasuraman et al., 2012). 
Several mental states are currently under research 
focus, such as mental fatigue, attention, and 
affective states. Amongst them is working memory 
load, which reflects task difficulty and the associated 
mental effort (Gevins and Smith, 2007). This 
difficulty can be characterized in terms of quantity 
of engaged cognitive resources. Monitoring working 
memory load is particularly relevant for 
implementing user adaptive interfaces and user 
monitoring devices for safe transportation. 

Working memory load modulates the EEG 
signals recorded on the scalp. Several studies 
showed that the band power in the theta (4-8 Hz) 
and delta (2-4 Hz) frequency bands at frontal sites 

increases with workload, while the band power in 
the alpha band (8-12 Hz) at parietal sites decreases 
(Holm et al. 2009; Antonenko et al., 2010; Roy et al, 
2013). 

Working memory load estimation can be 
performed thanks to tools that have been developed 
for active Brain Computer Interfaces (BCIs). Thus, 
most of the processing chains dedicated to workload 
estimation that are reported in the literature include a 
feature extraction step (e.g. frequency filtering) and 
a translation step (e.g. classification). Additionally, 
spatial filtering techniques commonly used for 
active BCI applications have recently been applied 
to enhance working memory load estimation. The 
most commonly used features are power band values 
or their log variance after spatial filtering (Roy et al., 
2013). Connectivity measures have also, yet less 
often, been applied to workload estimation, such as 
coherence, phase coherence and functional 
connectivity estimated by directed transform 
function  (resp. Belyavin et al., 2007; Grimes et al., 
2008; Zhang et al., 2015). These measures estimate 
interactions between brain regions from EEG 
signals. To our knowledge, there is no literature 
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regarding a direct comparison of the relevance of 
several connectivity measures for working memory 
load estimation, nor any assessment of the relevance 
of pattern-based versus vector-based methods. 

The main goal of this article is therefore to 
propose a comparison of several connectivity 
measures to determine which one enables the more 
accurate estimate of working memory load. This 
study proposes a traditional signal processing chain 
using EEG signals recorded at different locations on 
the scalp. It is formed of a pre-processing step, a 
feature extraction step, and a classification step 
using FLDA (Fisher Linear Discriminant Analysis). 
The originality of the method comes from the 
features that are used, i.e. connectivity measures, 
which are either vector-based or pattern-based 
features. Several methods such as cross-correlation, 
spatial covariance, spectral coherence and phase 
locking value are implemented. Their performance, 
measured by the classification accuracy reached, is 
compared. The accuracy is computed from a 
database extracted from an experiment in which 
workload was manipulated by varying the number of 
items in working memory load. Additional 
investigations were performed regarding the best set 
of electrodes and the best frequency band. 

The paper is organized as follows. The 
experimental design and the data used to evaluate 
the performance of the method are described in 
section 2, the processing chain and the connectivity 
measures are presented in section 3, the results are 
detailed and discussed in section 4. 

 
Figure 1: Trial structure. Participants memorize a list of 2 
or 6 digits, and answer whether the probe item was in the 
list. The circled window was used for analysis. 

2 MATERIALS 

This research was promoted by Grenoble’s hospital 
(France) and was approved by the French ethics 
committee (ID number: 2012-A00826-37). 

2.1 Experimental Design 

Twenty healthy right-handed volunteers  (9  females;

 
Figure 2: Global structure of the processing chain. 

age: M = 25 years, S.D. = 3.5) participated in the 
experiment. The experiment lasted for 10 minutes 
and consisted of 80 trials. For each trial, the 
participants had to memorize a list of sequential 
digits visually presented on a computer screen. 
Then, a probe item flanked with question marks was 
displayed (Fig. 1). They had to answer as quickly 
and as accurately as possible whether the probe was 
present or not in the memorized list using a response 
box. Two levels of workload (WKL) were 
considered, i.e. 2 and 6 digits to memorize (low and 
high WKL respectively). Trials of low and high 
WKL were pseudo-randomly presented. 

2.2 Data Acquisition and Preprocessing 

Participants’ EEG activity was recorded using a 
BrainAmpTM system (Brain Products, Inc.) and an 
Acticap® equipped with 32 Ag-AgCl active 
electrodes that were positioned according to the 
extended 10-20 system. The reference and ground 
electrodes used for acquisition were those of the 
Acticap, i.e. FCz and AFz respectively. The data 
were sampled at 500 Hz. The EOG activity was also 
recorded using two electrodes positioned at the eyes 
outer canthi, and two respectively above and below 
the left eye. Moreover, the EEG signal was band-
pass filtered between 1 and 40 Hz, re-referenced to a 
common average reference and corrected for ocular 
artifacts using the signal recorded from the EOG 
electrodes and the SOBI algorithm. Time segments 
of 5 s were then selected (circled on Figure 1). Thus, 
for each participant, the database consisted of 80 5 s 
epochs, 40 in the low WKL condition, and 40 in the 
high WKL condition. 

3 METHODS 

3.1 Processing Chain 

Let X be the 5 s epoch. It is a 32 by 2500 matrix. 
The processing chain is a traditional one, formed of 
a pre-processing step, a feature extraction step and a 
classification step (Figure 2). 

In the pre-processing step, specific EEG 
channels  are  selected  and  filtered  in  a   frequency 
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band of interest using a 5th order Butterworth filter. 
The bands are either the theta (4-8 Hz), alpha (8-12 
Hz), beta (13-30 Hz) or gamma band (>30 Hz). In 
this step, X is transformed into a l by 2500 matrix Y, 
with l the number of selected channels. Then, in the 
feature extraction step, the feature vector f is 
computed from Y using connectivity measures, as 
detailed in section 3.2. The length of f depends on 
the used connectivity measure. Next, f is 
transformed into one of two WKL levels, low or 
high, in the classification step. 

3.2 EEG Channel Selection 

Five different sets of electrodes were used. The 
selected channels and thus the brain regions used to 
measure interactions between the EEG signals were 
different for each set. They were selected according 
to the literature as detailed below.  

Set 1: In order to analyze the interactions 
between frontal and parietal sites, 4 regions of 
interest (ROIs) are created: frontal right area (F4, 
F8, FC2, FC6), frontal left area (F7, F3, FC5, FC1), 
parietal right area (P4, P8, PO4, PO8) and parietal 
left area (P3, P7, PO3, PO7). These 4 regions were 
reported as regions where EEG is altered when 
workload changes (Roy et al, 2013). The EEG 
signals of each ROI are averaged to form 4 virtual 
electrodes, circled in blue in Figure 3. Here, l is 
equal to 4. 

Set 2: Only 1 channel is selected from each ROI, 
namely FC5, FC6, P3 and P4, circled in green in 
Figure 3. This selection is performed so as to check 
that no relevant information is lost by merging the 
signals into ROIs. Here, l is equal to 4. 

Set 3: In order to analyze the interactions 
between central and parietal sites in the middle of 
the scalp, 2 major electrode sites are selected, 
namely Fz, and Pz (Gevins and Smith, 2007), circled 
in orange in Figure 3. Here, l is equal to 2. 

Set 4: Since connectivity measures of frontal 
areas were reported to be particularly sensitive to 
workload modulations (Zhang and Tian, 2015), in 
order to analyze the interactions between the signals 
from only this particular site, 4 electrodes located at 
the frontal right site are selected, namely F4, F8, 
FC2 and FC6, circled in red in Figure 3. Here, l is 
equal to 4. 

Set 5: In the same manner, in order to analyze 
the interactions between the signals from only this 
particular site, 4 electrodes located at the frontal left 
site are selected, namely F7, F3, FC5 and FC1, 
circled in red in Figure 3. Here, l is equal to 4.  
 
 

 
Figure 3: Illustration of the 5 different electrode sets. 

3.3 Classification 

For each participant, a training set is used to learn 
the classification function and a validation set is 
used to evaluate the performances. Two different 
classification method types are investigated – 
pattern-based methods and vector-based methods. 

Pattern-based methods are used when the 
connectivity measure represents a function in time, 
such as cross-correlation or PLV. A pattern of high 
WKL (respect. low) is computed by averaging all 
the functions extracted from the epochs of the 
learning set labelled high WKL (respect. low). The 
Euclidian distances between the function extracted 
from the candidate epoch of the validation set and 
the two patterns are computed and the candidate 
epoch is assigned to the label whose pattern is the 
closest. 

As for vector-based methods, a feature vector is 
built from the connectivity measures by selecting 
specific values in the measures, such as the mean or 
maximal values. The classification method used is 
the Fisher’s Linear Discriminant Analysis (FLDA), 
which is very popular in BCI (Lotte et al., 2007). 

3.4 Performance Evaluation 

The performance of each processing chain is 
assessed based on its intra-subject binary 
classification accuracy with a ten-fold random cross 
validation procedure. The 80 epochs of each 
participant are randomly split into 10 subsets, which 
are used one after the other as a validation set while 
the 9 others are grouped to form the training set 
while the 9 others are grouped to form the training 
set. The performance of the different processing 
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chains is compared using statistical tests. Hence, 
repeated-measures ANOVAs were used to detect 
significant differences amongst group means and 
Tukey post-hoc tests were used to find means that 
were significantly different from each other. The 
first ANOVA had 2 factors –electrode set and 
pattern-based classification method (respectively 5 
and 2 levels). The second one also had 2 factors –
electrode set and vector-based classification method 
(respectively 5 and 7 levels). A single ANOVA 
could not be performed to directly compare those 
methods as the same number of levels could not be 
reached for both. Lastly, an additional ANOVA was 
performed for the two best classification methods of 
each type and their best electrode set as previously 
determined. These had only one factor, namely the 
frequency band (5 levels). The significance level 
used was α = 0.05. 

3.5 Connectivity Measures 

Interactions between brain regions were estimated 
with 4 connectivity measures: cross-correlation, 
covariance, coherence and PLV (for a review on 
connectivity measures see Greenblatt et al., 2012). 
Cross-correlation, covariance and coherence were 
computed using the signals filtered in the [1-40 Hz] 
band as well as in the theta (4-8 Hz), alpha (8-12 
Hz), beta (13-30 Hz) or gamma band (>30 Hz). PLV 
was computed using the signals filtered in the [1-40 
Hz] band only. 

Let us note l, the number of EEG signals and N 
the number of samples in an epoch Y, yi, the signal 
n°i and yik the value at time k of signal n°i. 

3.5.1 Cross-correlation 

The cross-correlation is a measure of similarity of 
two time series as a function of the lag of one 
relative to the other. It varies between -1 (negative 
linear relationship) to 1 (positive relationship). 0 
means that there is no linear relationship. It is 
computed as follows: c୷౟୷ౠሺதሻୀ 1N െ τ෍ቆy୧ౡ െ yనഥσ୷౟ ቇ ቆy୨ౡశಜ െ y఩ഥσ୷ౠ ቇ୒ିத

୩ୀଵ  (1)

where ݕത and σy denote mean and variance. The 
cross-correlation is a function of length 2N-1. 

l(l-1)/2 combinations of signals, and thus l(l-1)/2 
cross-correlation functions, can be computed from 
Y. For the pattern-based methods, the features used 
are the l(l-1)/2 functions formed of 2N-1 samples. 
Whereas for the vector-based methods, the feature 

vector is built by extracting the mean, maximal or 
minimal value of each of the l(l-1)/2 functions. Its 
length is thus l(l-1)/2. 

3.5.2 Covariance 

The spatial covariance between yi, and yj, is 
calculated as follows: ݏ௬೔௬ೕୀ 1ܰ ෍൫ݕ௜ೖି௬ഢഥ ൯ ቀݕ௝ೖି௬ണതതതቁே

௞ୀଵ  (2)

The covariance is the non-normalized correlation 
at τ=0.  

l(l+1)/2 spatial covariances can be calculated 
from Y and stored in the feature vector f.  

3.5.3 Spectral Coherence 

The spectral coherence, also called magnitude 
squared coherence, is a measure of the degree of 
relationship, as a function of frequency, between two 
signals. It is a real-valued function varying between 0 
and 1. It is expressed as: 

ቚߩ௬೔௬ೕሺ௙ሻቚଶ ൌ ቚܵ௬೔௬ೕሺ௙ሻቚଶܵ௬೔௬೔ሺ௙ሻ	ܵ௬ೕ௬ೕሺ௙ሻ (3)

with f, the frequency in Hz,  Syiyi, the spectral density 
of yi and Syiyj the cross power spectral density of yi 
and yj. In this work, the spectral density is computed 
using Welch's averaged modified periodogram with a 
Hamming window of 512 samples and 50% overlap. 

l(l-1)/2 coherence functions can be computed 
from Y. For the vector-based methods, the feature 
vector is built by extracting the mean or maximal 
value of each of the l(l-1)/2 functions. 

3.5.4 PLV 

The phase locking value (PLV) measures the 
stability of the phase difference between two signals 
yi and yj . It is expressed as: ܸܲܮ ൌ ෍݁௝หఝభሺ௜ሻିఝమሺ௜ሻหெܯ1

௜ୀଵ  (4)

௞݅ݖ  ൌ ௞݅ݕ ൅ ௞ሻ (5)݅ݕሺܶܪ݆
where M denotes the number of samples in the time 
window, φ1 and φ2 are instantaneous phases from 
analytic signals zi, zj (5), which can be obtained with 
Hilbert transform HT from yi, yj. 
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The PLV has values between 0 and 1, where 0 
means total randomness and no phase 
synchronization between the signals and 1 means 
complete phase synchronization. It was computed on 
a sliding window of 512 samples with a 75% 
overlap, which provided 15 values per epoch. And 
l(l-1)/2 PLV functions were obtained per epoch.  

For the pattern-based method, the features used 
are the l(l-1)/2 functions formed of the 15 samples. 
Whereas for the vector-based method, the feature 
vector is built by extracting the mean or the maximal 
value of each of the l(l-1)/2 functions.   

4 RESULTS 

Two different types of classification methods were 
investigated - pattern based methods (using cross-
correlation or PLV functions) and vector based 
methods (using the maximal cross-correlation 
amplitude, the covariance, the coherence mean or 
maximal value, the PLV mean or maximum value). 
The classification accuracy for each participant 
(using a ten-fold cross validation method) was 
computed for each classification method, each 
connectivity measure, each frequency band and each 
electrode subset. As detailed earlier, the results were 
analyzed using ANOVAs and Tukey’s tests. 

4.1 Electrode Sets 

The first 2 ANOVAs showed that there was no 
statistical difference in the results when different 
electrode subsets were used, regardless of the 
classification method (pattern-based methods: 
p=0.36; vector-based methods: p=0.84).  

4.2 Classification Methods 

When using the pattern-based classification 
methods, the cross-correlation function gave better 
results than the PLV function regardless of the 
electrode set (p<0.05). When using the vector-based 
classification methods, the best method was 
covariance (p<0.001). It gave the best results 
regardless of the electrode set. The classification 
accuracies for the vector-based methods are 
displayed in Figure 4. 

4.3 Frequency Bands 

We investigated the chain performance deeper by 
assessing the impact of the considered frequency 
band.   As    regards    the    pattern-based    methods, 

 
Figure 4: Mean classification accuracy reached using 
signals filtered in the [1-40 Hz] band for each vector-
based method. 

cross-correlation gave better results when the signals 
were filtered in the [1-40 Hz] band than when the 
signals were filtered in the theta or gamma bands 
(p<0.05). However, the results were not 
significantly different when the signals were filtered 
in the alpha or beta band. Regarding the vector-
based classification methods, the best results were 
obtained with covariance using the signals filtered in 
the beta band (p<0.001). Covariance gave results 
that were significantly better in the beta band than in 
the [1-40 Hz], theta or gamma bands (p<0.001) 
(Figure 5). 

 
Figure 5: Mean classification accuracy obtained using 
covariance for each frequency band. 1: [1-40 Hz]; 2: theta; 
3: alpha; 4: beta; 5: gamma band. 

4.4 Best Results 

Amongst all investigated methods, electrode sets and 
frequency bands, the best results were obtained with 
the covariance when the signals were filtered in the 
beta  band.  The  highest  mean  accuracy,  computed 
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with the 20 participants was 60.64%. It was reached 
with the electrode subset #2, with 4 channels 
selected from frontal right, frontal left, parietal right 
and parietal left areas. It was proved to be 
significantly different from random. Figure 6 
presents the obtained accuracy in this configuration 
for each participant. It can be seen that the 
performance reaches at least 70% for 5 participants 
out of 20.  

 

Figure 6: Obtained accuracy with the chain based on 
covariance in the beta band with the electrode set #2 for 
each participant. 

The highest accuracy reached with pattern-based 
cross-correlation was 57% and was proved to be 
significantly different from random. This accuracy 
was obtained in the [1-40 Hz] band using electrodes 
from the frontal right scalp region (electrode subset 
#4). 

5 DISCUSSION 

This article presents a direct comparison of several 
connectivity measures in order to better estimate 
working memory load. The best results are reached 
using covariance in the beta band with as high as 
61% using 4 electrodes evenly distributed on the 
scalp.  

The global accuracy may seem rather low. Yet, 
they are in the same range than the accuracy reached 
by Roy and collaborators (2013) on the same data 
set, who obtained 63% of mean accuracy. The 
processing chain designed by Roy et al. made use of 
the 32 electrodes. It consisted of a Common Spatial 
Pattern filter able to enhance the signal differences 
in the two classes and an FLDA classifier. The best 

results were also obtained when the signals were 
filtered in the beta band. Therefore here using 
covariance, we can reach the same performance 
using only 4 electrodes which is a nice improvement 
for future real-life implementations. Moreover, 
contrary to most of the literature, here we estimate 
workload between two states of engagement in a 
task. Indeed, several authors obtain very high 
classification accuracies, however they only estimate 
workload between a state of engagement and a state 
of relaxation (e.g. Heger et la., 2010). It should be 
better to say that they evaluate task engagement. 
Thus, the results have better be compared to that of 
Grimes and collaborators (2008) who obtained 65% 
of correct classifications. Hence, the results of this 
study are in line with the literature and provide 
information as to which combination of method, 
band and electrode set are the more relevant for 
workload estimation. 

Regarding the comparison between connectivity 
measures, the covariance performed significantly 
better than all the other methods. One explanation 
could be that the energy of the filtered signals is kept 
when the covariance is used while the cross-
correlation, the coherence and the PLV are 
normalized values where the information on the 
energy of the signal is lost. Energy could be a 
discrimant feature to detect workload levels. 

Finally, no significant difference could be found 
when the different electrodes subsets were used. 
This could be explained by the fact that the 
electrodes subsets were selected according to the 
literature and defined areas that are all known to be 
affected by a change in the workload level.  

This work shoul be pursued by evaluating the 
relevance of covariance for other mental states such 
as loss of control for driving applications. 

6 CONCLUSIONS 

This article presents a direct comparison of several 
bivariate connectivity measures in order to better 
assess working memory load. Covariance in the beta 
band seems to enable a better classification of this 
mental state. Only multivariate connectivity 
measures were tested. Multivariate measures could 
also be tried in the future. This is a promising 
preliminary work towards better user state 
estimation.  
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