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Abstract: Kernel methods such as Support Vector Machines (SVMs) are becoming increasingly popular because of their
high performance on graph classification problems. In this paper, we propose two novel graph kernels called
the Hadamard Code Kernel (HCK) and the Shortened HCK (SHCK). These kernels are based on the Hadamard
code, which is used in spread spectrum-based communication technologies to spread message signals. The
proposed graph kernels are equivalent to the Neighborhood Hash Kernel (NHK), one of the fastest graph
kernels, and comparable to the Weisfeiler-Lehman Subtree Kernel (WLSK), one of the most accurate graph
kernels. The fundamental performance and practicality of the proposed graph kernels are evaluated using three
real-world datasets.

1 INTRODUCTION these feature vectors is typically very high and this ap-

proach includes the subgraph isomorphism matching
A natural way of representing structured data is to problem that is known to be NP-complete (Garey and
use graphs (Vinh, et. al, 2010). As an example, Johnson, 1979), kernels deliberately avoid the explicit
the structural formula of a chemical compound is a computation of feature values and instead employ ef-
graph, where each vertex corresponds to an atom inficient procedures.

the compound and eact edge corresponds toA bond One representative graph kernel is the Random
between the two atoms therein. Using such graph reP-\walk Kernel (RWK) (Schlkopf and Smola, 2002;
resentations, a new research field called graph min-Kashima et. al, 2003), which computes; ’g-) in '
ing has emerged from data mining with the objective o(V( )|3') fo'r r’a hent :amd  where|V/( )"’ ié the
of mining information from a database consisting of bg p £t3] p -sg.' dgj-, Tho g ot
graphs. With the potential to find meaningful infor- gur:Ti]grfrvglu\(laeirflfhes rgrlrda:mgvj\ralk fn t?rr:egr;)ﬁrgtin—
mation, graph mining has raised great interest, and erates many sequences with the same labels for ver-
research in the field has increased rapidly in recent tices and e)(; esq e the araphs are similar to each
years. Furthermore, b_ecause the need for clgsrssi_fyingOther The Ngigr;br)r.r;ood Hgasrr)r Kernel (NHK) (Hido
graphs has mcre_ased N many r.eal—yvgrld applrcanons, and kashima 2009) and the Weisfeiler-Lehman Sub-
s oarotn oo tsgr e Kol (WLSK) are o oter recenty proposec
e . ernels that computk(g;,g;) faster than RWK. The
et. al, 2004), graph classification has also been widely NHK uses Iogical%upggt’igrr)s such as exclusive-OR on

researched worldwide. The main objective of graph X X )
classification is to classify graphs of similar structures the label set of adracent vertices, while the W.LSK
uses a concatenation of label strings of the adjacent

into the same classes. This originates from the fact Hices t t&(a o). The label dated b

that instances represented by graphs usually have simY¢" 'C?_S Oﬂfowpuh (9,9))- t eta €ls up a? thyl

ilar properties if their graph representations have high repeating the hash or concaténation propagate the la-
bel information over the graph and uniquely represent

| similarity. . )
structural similarity the higher-order structures around the vertices beyond

Kernel methods such as Support Vector Machine .
o ; the vertex or edge level. An SVM with two graph ker-
(SVM) are becoming increasingly popular because of nels works very well with benchmark data consisting

their high performance on graph classification prob-

lems (Kashima, et. al, 2003). Most graph kernels of graphs.
are based on the decomposition of a graph into sub-  The computation of NHK is very efficient be-
structures and a feature vector containing counts of cause its computation is a logical operation between
these substructures. Because the dimensionality offixed-length bit strings and does not require any string
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Hadamard Code Graph Kernels for Classifying Graphs

sorting. However, its drawback is hash collision, The vertices adjacent to vertexare represented as
which occurs when different induced subgraphs have N(v) = {u| (v,u) € E}. A sequence of vertices from
an identical hash value. Although WSLK must sort vto uis called a path, and its step refers to the num-
the vertex labels, it has high expressiveness becausder of edges on that path. A path is called simple
each vertex has a distribution of vertex labels within  if and only if the path does not have repeating ver-
i steps fromv. To overcome these drawbacks, in this tices. Paths in this paper are not always simple. Given
paper, we propose a novel graph kernel that is equiv-two graphgy = (V,E,L,¢) andg' = (V/,E’,L".¢), d
alent with NHK in terms of time and space complex- is called a subgraph df, if there exists an injective
ities and comparable to WLSK in term of expressive- function¢ : V' — V that satisfies the following three
ness. The graph kernel proposed in this paper is basedonditions forvv, vy, v € V.
on the Hadamard code. The Hadamard codeisusediny (¢ (vy),d(v2)) € E, if (v1,V2) € E/,
spread spectrum-based communication technologies, ,
such as Code Division Multiple Access (CDMA) to 2. £(v) =L(o(v)),
spread message signals. Because the probability of 3. ¢/((v1,v2)) = £((¢(v1),$(v2))).
occurrences of 1 and1 are equivalent in each col-  Additionally, a subgraply’ of g is an “induced sub-
umn of the Hadamard matrix except for the first col- graph,” wherep(v;) and¢(v2) are adjacent ig if and
umn, labels assigned by our graph kernel follow the only if v; andv in V(¢/) are adjacent i
binomial distribution with zero mean under a certain The graph classification problem is defined as
assumption. Therefore, the expected value of the la-follows. Given a set ofn training exampleD =
bel is 0, and for such labels, a large memory space iS{(gi)yi)} (i=1,---,n), where each example is a pair
not required. This characteristic is used to compressconsisting of a labeled grapyp and the clasy; €
vertex labels in graphs, enabling the proposed graph{4.1, —1} to which it belongs, the objective is to learn
kernel to be computed quickly. a functionf that correctly predicts the classes of the
The rest of this paper is organized as follows. In test examples.
Section 2, we define the graph classification prob-  In this paper, graphs are classified by a
lem and explain the framework of the existing graph SVM that uses graph kernels. Lef and
kernels. In Section 3, we propose the Hadamard c(g,0) be {01,02,---,0/5z} and c(g,0) =
Code Kernel (HCK), based on the Hadamard code, |{veV(g) | £(v) = c}|, respectively. A function
and another graph kernel called the Shortened HCK @that converts a grapito a vector is defined as
(SHCK), which is a version of HCK that compresses T
vertex labels in graphs. In Section 4, we provide a ®9) = (¢(9.01),¢(9,02), -~ ,¢(9,0[5])) " -
theoretical discussion of the effect of overflow on the Functionk' (gi,g;), defined asp(gi)T ¢(g;), is a semi-
proposed graph kernel. In Section 5, the fundamental yositive definite kernel. This function is calculated as
performance and practicality of the proposed method fq)|o\ws.
are demonstrated through experiments. Finally, we , T
conclude the paper in Section 6. K(gi,9)) = @g) @9))
= Y Y awaw)).
Vi€V (g) vjeV(g;)
2 GRAPH KERNELS whered is the Kronecker delta.
Given ag" = (V,E,2,¢M), a procedure to con-
_ vert g to another graply™V = (v E, 5/, ¢("+D)
2.1 Framework of Representative is called a relabel. Although relabel functigfi+?)
Graph Kernels is defined later in detail, the label of\ain g"*b
is defined using the labels of and N(v) in g,
This paper tackles the classification problem of and is denoted ag™(v) = r(v,N(v),/M). Let
graphs. A graph is represented gs- (V,E, %, /), {9©,gW. ... gM} be a series of graphs obtained by
whereV is a set of verticestE CV xV is a set of jteratively applying a relabéi times, whereg© is a
edges,2 is a set of vertex labels, and: V — X is graph contained iD. Given two graphgj; andg;, a
a function that assigns a label to each vertex in the graph kernel is defined usirgas
graph. Additionally, the set of vertices in gragh ) ) )
is represented a¥(g). Although we assume that k(@.9) =K(6".g/") +K(g".g") +--+K(g".g]").
only the vertices in the graphs have labels in this Becausek is a summation of semi-positive definite
paper, the methods in this paper can be applied tokernels,k is also semi-positive definite (Cristianini
graphs where both the vertices and edges have labelsand Taylor, 2000).
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Recently, various graph kernels have been applied
to the graph classification problem. Representative

graph kernels such as the NHK and WLSK follow
the above framework, where graphs contained®in
are iteratively relabeled. In these kerneld)(v) =
r(v,N(v),#("-1)) characterizes a subgraph induced by
the vertices that are reachable framwvithin h steps

in gl%. Therefore, givew; € V(g) andv; € V(g;), if

subgraphs of the graphs induced by the vertices reach-

able from vertices; andv; within h steps are identi-
cal, the relabel assigns an identical label to them. Ad-
ditionally, it is desirable for a graph kernel to fulfill
the converse of this condition. However, it is not an
easy task to design such a graph kernel.

We now review the representative graph kernels,
NHK and WLSK.
NHK: Given a fixed-length bit string€<1°) (v) of

lengthL, E(lm (v) is defined as follows.
h—
SX I
ueN(v)

whereROT is bit rotation to the left and is the ex-
clusive OR of the bit strings. NHK is efficientin terms

#011  #011
#001
#001

[ #100
#110 O #111

£ () = #001

ROT

e
Figure 1: Relabeling(© to g in NHK.

€§h) (v) is defined as

o

h,
D) =g

O 4w,

ueN(v)

where- and(® are string concatenation operators. Be-
cause concatenation is hot commutativés an iter-

v)-

of computation and space complexities because theator to obtain the verticeN(v) adjacent tov in al-

relabel of NHK is computable i®(L|N(v)|) for each
vertex and its space complexity@L).

Figure 1 shows an example of an NHK relabel and
its detailed calculation for a vertes, assuming that

L=3. First,£(10> (v2) =#011 is rotated to return #110.
We then obtain #001 by the exclusive OR of #110,

019 (vy) =#011,617 (v3) = #001,£.” (v) = #001, and

6(10) (v5) = #100. In this computation, we do not re-
quire sorted bit strings because the exclusive OR is

commutative. Three bits are required ﬂéﬁ” (v2) in

this example, and?gh)(vz) also requires three bits,
even ifhis increased.

NHK has a drawback with respect to accidental
hash collisions. For example, vertiogsvs, andv, in
gV in Fig. 1 have an identical label after the relabel.
This is becauses andvs in g(@ have identical labels
and the same number of adjacent vertices. However

vertices ofvy andvs, these vertices have the same ver-
tex labels ingY), leading to low graph expressiveness
and low classification accuracy.

We next describe the WLSK, which is based on
the Weisfeiler-Lehman algorithm, an algorithm that
determines graph isomorphism.

WLSK: Whenego) (v) returns a string of characters,
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phabetical order. Becauﬂgﬂ(v) has information on
the distribution of labels foh steps fromv, it has
high graph expressivenesslf the labels are sorted
using bucket sort, the time complexity of WLSK is
O(|Z||N(v)|) for each vertex.

Figure 2 shows an example of a relabel using
WLSK. Verticesvi, Vo, va, v4, andvs in g© have
labelsA, A, B, B, andC, respectively. For each ver-
tex, WLSK sorts the labels of the vertices adjacent to
the vertex, then concatenates these labelgn vs
has label BAC, meaning theg has label B irg® and
two adjacent vertices whose labels are A and C.

In addition to NHK and WLSK, we define the La-
bel Aggregate Kernel (LAK) to facilitate the under-
standing of the other kernels proposed in this paper.
LAK: In this kernel, Z(gm(v) is a vector in|X|-
dimensional space. In concrete terms, if a vertex in
a graph has a labe; amongZ = {01,02, -+ ,0/3/},

despite the different labels and numbers of adjacentthe'_th element in the vector is 1. Otherwise, itis 0.

In LAK, ¢

o

(v) is defined as

W=EYw+ Y 4
ueN(v)

().

1When1z(20) (v) is a string of length 15(21) (v) is a string of
length|N(v)| + 1. By replacing the later string with a new
string of length 1, both the computation time and memory
space that WLSK requires are reduced.
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Figure 2: Relabeling© to gV in WLSK.
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Figure 3: Relabeling(® to gV in LAK.
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Figure 4: Relabeling(® to g¥ in LAK.

Thei-th element irwéh) (v) is the frequency of occur-
rence of characteg, in the stringe(zh) (v) concatenated

by WLSK. Thereforezéh) (v) has information on the
distribution of labels withirh steps fronmv. Therefore,
LAK has high graph expressiveness. However, when

Hadamard Code Graph Kernels for Classifying Graphs

Table 1: Graph Kernel Characteristics.

advantages drawbacks
NHK computation time| hash collision
WSLK | expressiveness | computation time
LAK expressiveness & memory space
computation time

h is increased, the number of paths frerthat reach
vertices labeled; increases exponentially. Thus, el-

ements in€§h) (v) also increase exponentially. For ex-
ample, if the average degree of verticedjsthere
are(d +1)" vertices reachable fromwithin h steps.
Thus, LAK requires a large amount of memory space.
Figures 3 and 4 show an example of a relabel using
LAK, assuming thatX| = 3. The vertex label ofs in
g is (1, 2, 1), which means that there are one, two,
and one vertices reachable fratwithin one step that
have labelsw, 62, andos, respectively. Compared
with relabelingg'® to gV, the additional number of

values inc{” (v) when relabeling(® to g is large.

2.2 Existing Graph Kernel Drawbacks

We here summarize the characteristics of the above
three graph kernels. NHK is efficient because its
computation is a logical operation between fixed-
length bit strings and does not require string sorting.
However, its drawback is a tendency for hash colli-
sion, where different induced subgraphs have identi-
cal hash values. Although WSLK requires vertex la-

bel sorting, it has high expressiveness becdg?%(a/)
contains the distribution of the vertex labels within
h steps(0 < h’ < h) fromv. LAK requires a large
amount of memory space to store vectors for High
although it does not require label sorting. To over-
come these drawbacks, in this paper, we propose a
novel graph kernel that is equivalent to NHK in terms
of time and space complexities and equivalentto LAK
in terms of expressiveness.

3 GRAPH KERNELS BASED ON
THE HADAMARD CODE

In this section, we propose a novel graph kernel with
the Hadamard code to overcome the aforementioned
drawbacks. A Hademard matrix is a squérel, 1)-
matrix in which any two row vectors are orthogonal,
defined as follows:

1 1
o sz—l sz—l
sz o < sz—l - sz—l > (2)
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A Hadamard code is a row vector of the Hadamard
matrix. Given a Hadamard matrix of ordek, 2¢
Hadamard codes havind 2lements are generated
from this matrix. Using the Hadamard codes, we
propose the HCK as follows.

HCK: Let H be a Hadamard matrix of order
2Mog 21 and ¢(” (v) be a Hadamard code of order
[H|. If a vertexv has labelo;, thei-th row in the

Hadamard matrix of ordefH| is assigned to the

vertex. Therfﬁlh)( ) is defined as follows.
v)+ Z o

€<h)( V) =
ueN(v

4
When /g, is a Hadamard code for a vertex label
g, ET E(h (v)/|H] is the occurrence of; in a string

E( (v) generated by WLSK. Therefore, HCK has the
same expressiveness as LAK.

Figure 5 shows an example of a relabel using
HCK. Each vertew in gV is represented as a vector
produced by the summation of vectors for vertices ad-
jacent tov in g(©. Additionally, after the relabel, we
can obtain the distribution of the vertex labels within
one step of/ using the following calculation:

L
yHte (vs)

1 1 1 1 4
11 -1 1 -1 0
= al1 1 -1 1 2

CE AND /&S

1
|2
i I

0

That is, there are on@y, two G, and oneos labels

within one step ofis. Furthermore, the resultis equiv-
alent toéél> (v5), as shown in Fig. 3. The reason why

we divide Hégh)(v) by four is that the order of the
Hadamard matrix used 81| =

If each element irfgm (v) is stored in four bytes

(the commonly used size of integers in C, Java, and

other languages) the space complexity of HCK is
equivalent to LAK. Therefore, we have not overcome
the drawback of LAK yet. In this paper, we assume
that each vertex label is assigned to a vertex with
equal probability. Because the probability of occur-
rence of 1 and-1 are equivalent in the each col-
umn in the Hadamard matrix except for the first col-
umn, thei-th element (1< i < |Z|) in th) (v) follows

a binomial distribution with zero mean under this as-
sumption. Therefore, the expected value of the el-

ement inf&h)(v) is 0, and for the elements, a large
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Figure 5: Relabeling(© to g in HCK.

memory space is not required. For example, Tables 2
and 3 represent values of théh elements |r£( )( Vo)

andEE1 (v2), respectively, in a grapg™, wheng<
(shown in Fig. 6) is relabeled iterativefytimes. Un-
der this assumption of vertex label probability, the ex-

pected value of all elements ﬁﬁh) (v2) except for the
first element becomes 0. The first element represents
the number of paths frowp to the vertices reachable
within one step. Based on this observation, we assign
bit arrays of lengtip in theL bit array to the elements
as follows.

SHCK: Similar to NHK, ¢ (v) is a fix-length bit
array of lengthL. The bit array is divided into
|[H| fragments, one of which is a bit array of length
L —p(JH| — 1) and the rest are bit arrays of length
p. The first fragment of length — p(|H| — 1) is as-

signed to store the first element b(f) (v), the next
fragment of lengtltp is assigned to store the second
element, and so on. Herg,is a positive integer ful-
filling p(|H|—1) = p( 2[l0%[>[1 _ 1) < L. Addition-
ally, each element (ﬂ( ) is represented by its one’s
complement |m(5 )( V) for the purpose of the follow-
ing summation, which defindéh) (V)

Z E(Sh—l)
ueN(v)

— (V) + (u).

Because?(sh> (v) is a fixed-length binary bit string and

Eéh) (v) is the summation of the values represented as
bit strings, both the time and space complexities of
SHCK are equivalent to those of NHK. Additionally,
the expressiveness of SHCK is equivalent to LAK, if

overflow of the fix-length bit array does not occur.



Hadamard Code Graph Kernels for Classifying Graphs

Table 2: Elements in a label in LAK. Let x¢ be thei-th element inﬁgh) (v), which is the

h Label label of vertexv and is a value generated by summing
o] @)= 0 1 0 0) up the base Hadamard codeimes. Ifi = 1, X< = k.
1| vy 1 1 1 0) Fori # 1, if —2° << 2P — 1, X fits in a fragment
2 [ (P (w) = 5 3 2 2) of Ienthp without overflovxlilr)g: Letp&k,. i) 'be th'e

§3> probability that the value of’ is j andx{ fits in a bit
3 534 (v2) =( 7 ’ 7 6) fragment of lengttp without overflowing. Under the
al e =( 20 21 20 20) assumption that the probability of any label existing
5 6(35) (v2) =( 61 61 61 60) on a vertex is uniform, whek=1,
6 Z%:(Vz) —( 182 183 182 182 12 ifj=1
7 K?S) (v2) =( 547 547 547 546 p(k, j) = 1/2 if j= -_17 and
8| (3 (v)=( 1640 1641 1640 1640 0  otherwise,
9| (D(vy)=( 4921 4921 4921 4920 _ o

10 €(310> (o) —( 14762 14763 14762 14762) because an element in the Hadamard matrix is either

lor-—1. If xik fits in a bit array of lengtlp without
Vs v e overflowing,xg"l also fits in the array. In contrast, if
(1,0,0,0) 0001  @LLLY 1oL xK cannot fit in a bit array of lengtp without over-
oo iiiq(jg,o,l,m _ vlz)iiigsl iy flowing, x{“rl a[so cannot fit in the array. Overflow
e e occurs whend is 22~ and-+1 sum tox or whenx

is —2P and—1 sums ta. Thereforep(k, ) is intro-

A graph g(® relabeled by LAK (b} A graph ¢g® relabeled by HCK .
(=) A grph g2 relabelod by LAK (1) A graph 7' relabeled o duced by the following recurrence formula.

Figure 6: Relabeled graphs.

Jpk—1j-1) ifj=2-1,
Table 3: Elements in a label in HCK. ?p(k— Lj+1) dseif j=-2°
R Label p(k. j) = zp(k—l,jgl)ff%p(zl;—lzi—zp
O~ nll seif —2P<j<2P-1,
0 5?1) (v2) :( 1 ! Bl 0 otherwise.
1) £y (v2) =( 3 -1 -1 A1) .
o | /@ (V2) =( 9 1 -1 1) Accordingly, p(k), which is the probability that! fits
3 E?:” (V2) —( 57 1 1 1) in a bit array of lengttp without overflowing is
g (V2) = 1 -1 -
4] 9w =( 81 1 -1 1) -1
s Lol = TN/ P = 3 plki).
5| ()(v)=( 243 1 -1 -1) (L
(6) _
6 %17) (vz) =( 729 1 11 After h relabels of a graph in which the average
7]ty (v2)=( 2187 -1 -1 -1 degree igd, X< is a value that is a summation kf=
8| (P)=( 6561 1 -1 1) (d+ 1)" binary values. The probabilitg(p, d, h) that
9 429) (V) =( 19683 1 -1 -1) overflow does not occur fgy, d, andh is
0, .\ _ o
10 | 257 (w) =( 59049 -1 1) »-1 _
: pp.dh = Y p(@+D"%). @
==
4 SHCK OVERFLOW When h increases,p(p,d,h) becomes very small.

Nevertheless, in the next section, we demonstrate that

the proposed graph kernel SHCK has the ability to
As explained in the previous section, in SHCK, the classify graphs with high accuracy.
fixed-length bit arrayL is divided into small frag-

ments, each of which corresponds to an element in

Egm(v). We sum such bit arrays to relabel vertices. § EXPERIMENTAL EVALUATION
Because all elements 'ﬂﬁh) (v) except for the first ele-

ment are represented as a bit array of leqgtle face The proposed method was implemented in Java. All
the possibility of overflow when iteratively summing experiments were done on an Intel Xeon X5670 2.93
up these bit arrays. In this section, we theoretically GHz computer with 48 GB memory running Mi-
discuss the probability of overflow in SHCK. crosoft Windows 8. We compared the computation
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Table 4: Summary of evaluation datasets.

| | MUTAG | ENZYMES | D&D ]
Number of graph{D| 188 600 1178
Maximum graph size 84 126 5748
Average graph size 53.9 32.6 284.3
Number of labelsZ | 12 3 82
Number of classes 2 6 2
(class distribution) (126,63)| (100,100,100,100,100,100)(487, 691)
Average degree of verticegs 2.1 3.8 5.0
v U
0.6 NHK
@cmwert g WILSK
0> HCK
A B T
v u =
Figure 7: Conversion of a graph. 502
go0.2

time and accuracy of the prediction performance of
HCK and SHCK with those of HNK and WLSK. To
learn from the kernel matrices generated by the above
graph kernels, we used the LIBSVM packagsing
10-fold cross validation.
We used three real-world datasets. The first  Figure 8: Computation time for variols(MUTAG).
dataset, MUTAG (Debnath, et. al, 1991), contains in-
formation on 188 chemical compounds and their class g
labels. The class labels are binary values that indi- -
cate the mutagenicity of chemical compounds. The *wiZK —
second dataset, ENZYMES, contains information on HR
600 proteins and their class labels. The class labels STl /
are one of six labels showing the six EC top-level
classes (Schomburg, et. al, 2004). The third dataset,
D&D, contains information on 1178 protein struc-
tures, in which each amino acid corresponds to a ver-
tex and two vertices are connected by an edge if they
are less than é’\ngstroms apart (Dobson and Doig, 0
2003). Each chemical compound is represented as an
undirected graph where each vertex, edge, vertex la-
bel, and edge label corresponds to an atom, chemi- Figure 9: Computation time for variolis(ENZYMES).
cal bond, atom type, and bond type, respectively. Be-
cause we assume that only vertices in graphs have laNHK, WLSK, HCK, and SHCK for varioush for
bels, the chemical graphs are converted following the the MUTAG, ENZYMES, and D&D datasets, respec-
article (Hido and Kashima, 2009), that is, an edge la- tively. As shown in the figures, NHK and SHCK are
beled with/ that is adjacent to verticesandu in a faster than HCK, and much faster than WLSK. Ad-
chemical graph is replaced with a vertex labeled with ditionally, the computation time of NHK, HCK, and
¢ that is adjacent t# andu with unlabeled edges, as SHCK increases linearly whemis increased. The
shown in Fig. 7. Table 4 summarizes the datasets.  reason why WLSK requires such a large amount of
computation time is that WLSK must sort the labels
5.1 Scalability of adjacent vertices and replace a string of length
IN(v)| + 1 with a string of length 1. This is espe-
Figures 8, 9, and 10 show the computation time re- Cially true wherh =11 or 15 for the MUTAG dataset,
quired to obtain a grapg® from a graphg® in h = 8 or 14 for the ENZYMES dataset, aid= 10
or 20 for the D&D dataset. In our implementation,
2http://www.csie.ntu.edu.twicjlin/libsvm/ this replacement is done with Java’s HashMap class,
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where a string of lengthN(v)| 4+ 1 is the hash key 0 5 10 15 20

and a string of length 1 is a value corresponding to
that key. Although the average degree in the evalu- _. ) e .
ated datasets is small, WLSK requires further com- E')ggljg)! 13: Cligsification accuracy for variobsand p
putation time when the average degree of the data in- ’

creases. HCK requires a large amount of computation .

time for the D&D dataset because the number of la- ;‘%Egng tSHCtK Tf?]r varioush an?\p/)\/{osrghe %Nr'm
bels in the dataset is large and its computation time is ataset. € accuracy o IS slightly

h

proportional to the number of labels. superior to those of HCK and SHCIb & 2, p =3,
and 7< p < 17), and their accuracies are much supe-
5.2 Classification Accuracy rior to those of NHK and SHCKg = 1). The perfor-

mance of HCK is exactly the same as that of SHCK
Figure 11 shows the classification accuracy of NHK, for highp (7 < p < 17) and almost the same of that

: of SHCK for low p (p =2 andp = 3). The max-
A s o e g UM SEEaCy of WLSK is53,0% Whe tre max
ioush are almosf the same. Whan= 0, the accuracy imum accuracy of both HCK and SHCHK & 3, 4,
- ’ I 0, -
for SHCK (o = 1) is very low, because 1 of1 (the and 7< p < 17) is 51.3%. The reason why the accu

: ) racy of WLSK is slightly superior to that of HCK is
values in the Hadamard matrix) cannot be stored as ) L _ o
a one’s complement consisting of one bit. The ac- that?, ” (v) contains information on the distribution of

curacy of HCK is exactly the same as that of SHCK labels ath steps fromv, while égh) (v) contains infor-
(1< p < 5), which means that although overflow may mation on the distribution of all labels withimsteps
occur in SHCK, the kernel can assign identical vertex from v. Although the latter distribution can be ob-
labels to the identical subgraphs induced by a vertex tained from the former distribution, the former dis-
v and the vertices withiin steps fromv. Figure 12 tribution cannot be obtained from the latter distribu-

shows the classification accuracy of NHK, WLSK, tion. Therefore, WLSK is more expressive than HCK
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Figure 14: Qualitative performance of evaluated graph ker-
nels.

fication accuracy. Figure 13 shows the classification 2004Kernel Methodsin Computational Biology. MIT
accuracy of NHK, WLSK, HCK, and SHCK for var- Press.
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In this paper, we proposed graph kernels based on the mizing Graph Spectra. In Proc. of the International

Hadamard code to classify graphs. Figure 14 presents Conference on Discovery Science. 205-220.

a qualitative description of the performance of graph

kernels in terms of computation time and classifica-

tion accuracy. These experimental results show that

the proposed graph kernel SHCK is fast and accurate.

6 CONCLUSION
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