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Abstract: Two formulations and two general procedures useful to compute the number of bubbles and tunnels of 3-D 
binary objects are introduced in this paper. The first formulation is useful to compute the number of bubbles 
or voids of the object, while the second one is only useful to compute the number of tunnels or holes of the 
object. The first procedure allows obtaining, in two steps, the number of bubbles and tunnels of a 3-D object. 
Finally, the second procedure permits computing, in three steps, the number of bubbles and tunnels of several 
3-D objects from an image containing them. Correctness of the functioning of the two formulations is 
established theoretically. Results with a set of images are provided to demonstrate the utility and validity of 
the second proposed procedures.

1 INTRODUCTION 

Determining the number of bubbles (voids or 
cavities) and tunnels (holes) of a 3-D object is an 
important problem in image analysis. It can help, for 
example, in the: 1) analysis of 3-D microstructures of 
human trabecular bones in relation to its mechanical 
properties (Uchiyama, 1999), 2) quantitative 
morphology and network representation of soil pore 
structure (Vogel, 2001), 3) unambiguous 
classification of complex microstructures by their 
three-dimensional parameters applied to graphite in 
cast iron (Velichko, 2008), and 4) analysis of the 
connectivity of the trabecular bone in identifying the 
deterioration of the bone structure (Roque, 2009). 

In this paper we first introduce two mathematical 
expressions that allow computing, separately, the 
number of bubbles (voids) and tunnels (holes) of a 3-
D object. Second, we describe two general methods. 
The first method allows determining, in two steps, the 
number of bubbles and tunnels of a 3-D object with 
both cavities and holes. The second method, permits, 
in three steps, to accomplish the same task but for 
several objects into the same image. 

The rest of the paper is organized as follows. In 
section 2, several related methods to compute the 
Euler number of a digital 3-D image (object) are 
described. Next, in Section 3, several basic 
definitions that will facilitate the reading of the paper 
will be provided. After that, in Section 4, the 

proposed two expressions will be presented and 
demonstrated. In this same section the proposed 
methods to determine the number of bubbles and 
holes of 3-D objects will be described. Section 5 will 
be devoted to present several examples to show the 
functioning and applicability of the proposals. In 
short, Section 6 will be focused to show present the 
conclusions and directions for further research 
concerning this investigation. 

2 RELATED WORK 

One way to compute the number of bubbles and 
tunnels of a 3-D object could be by first computing its 
Euler number. In 3-D, the Euler number establishes 
the relation between the number of its bubbles and 
tunnels of the object. One expression that can be used 
for this goal could be the following general 
formulation (Lin, 2008): 

݁ ൌ 1 െ ܾଵ ൅ ܾଶ (1)

where ܾଵ is the number of tunnels or holes of the 
object and ܾଶ is its number of bubbles, cavities or 
voids (Lee, 1991 and Lee, 1993).  

Equation (1) is the simplification of the more 
general formulation: 

݁ ൌ ܾ଴ െ ܾଵ ൅ ܾଶ (2)

where ܾ଴ represents  the  number  of  objects in a 3-D 
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binary image. The first term of the right part of Eq. 
(1) equals 1 due to ܾ଴ ൌ 1. 

One first problem with Eq. (1) is that the numbers 
ܾଵ and ܾଶ cannot be obtained by computing local 
features of the 3-D object such as the number of 
vertices and edges. In other words, its computation 
cannot be broken into subtasks. This means that Eq. 
(1) cannot be used to compute local measures.  

A second problem with Eq. (1) is that both 
numbers ܾଵ and ܾଶ are part of the same equation. 
Thus, these two numbers cannot be computed directly 
from Eq. (1). 

In fact, observe that if a 3-D object possesses 
bubbles and tunnels at the same time, number ܾଶ will 
add up a 1 to Eq. (1) for each bubble found; in the 
other hand, number ܾଵ will subtract a 1 to Eq. (1) for 
each tunnel found. Thus, a 3-D object with exactly the 
same number of bubbles and the same number of 
tunnels will not alter the Euler number of the object. 
In this case, Eq. (1) will produce a 1, due to ሺെܾଵ ൅
ܾଶሻ will cancel each other. 

Different methods to compute the Euler number 
of a 3-D digital object (image) have been reported in 
literature. One of the first methods to accomplish this 
was reported in (Gray, 1970) and (Park, 1971), but it 
was only applicable for 6-connectivity. In (Kong, 
1989), authors report several methods to compute the 
Euler number of a discrete digital image in both 2-D 
and 3-D.  

In (Lee, 1987), the authors study the 3-D surface 
Euler number of a polyhedron based on the Gauss-
Bonnet theorem of differential geometry. 

In (Bonnassie, 2001), authors propose a method to 
compute the Euler feature of a 3-D object based on 
the analysis of its 3-D skeleton. The main idea is to 
analyse a local interest region around each point in 
the object skeleton. 

In (Toriwaki, 2002), authors present several 
fundamental properties of the topological structure of 
a 3-D digitized picture including the concept of 
neighbourhood and connectivity among volume cells 
(voxels) of 3-D digitized binary pictures defined on a 
cubic grid. They also introduce the concept of 
simplicial decomposition of a 3-D digitized object. 
Following this, the authors present two algorithms for 
calculating the Euler number (genus) of a 3-D figure.  

In (Schladitz, 2006), authors combine integral and 
digital geometry to develop a method for efficient 
simultaneous calculation of the intrinsic volumes of 
sets observed in binary images including surface area, 
integral of mean curvature, and Euler number. To 
make this rigorous, the concepts of discretization with 
respect to an adjacency system and complementarity 
of adjacency systems are introduced. 

In (Saha, 1995), authors introduce an approach to 
computing the Euler characteristic of a three 
dimensional digital image by computing the change 
in numbers of black components, tunnels and cavities 
in a 3 ൈ 3 ൈ 3 neighbourhood of an object (black) 
point due to its deletion.  

In short in (Lin, 2008), authors describe a method 
to compute the Euler feature of a 3-D image based on 
two definitions of foreground run and neighbour 
number. 

3 DEFINITIONS 

In order for the reader to understand the idea behind 
the proposal, several concepts are next defined. Such 
concepts are helpful to derive and prove the formal 
propositions that govern the operation of the proposed 
methods to compute the number bubbles and tunnels 
of 3-D objects.  

Definition 1 (voxel). In a regular grid in three-
dimensional space, a voxel is the cubic unit that 
makes part of a 3-D object. It is the minimal 
processing unit in a 3-D matrix.  

Definition 2 (voxel connectivity). Let ݌ଵ and ݌ଶ 
be two object voxels as specified in Definition 1. If 
 ଶ share a face, then it is said that both voxels݌ ଵ and݌
are face connected; otherwise, if ݌ଵ and ݌ଶ are 
connected by one of their edges or corners, then they 
are connected by an edge or by a corner; else, ݌ଵ and 
 .ଶ are said to be connected at all݌

 

Figure 1: (a) Two face connected voxels. (b) Two voxels 
connected by an edge. (c) Two voxels connected by a 
corner. (d) The not connected voxels. 

Figure 1 shows the prior four cases given in 
Definition 2 as follows: In Fig. 1(a) the two voxels 
are face connected; in Fig. 1(b) the two voxels are 
edge connected; in Fig. 1(c) the two voxels are corner 
connected; in Fig. 1(d) the two voxels are not 
connected. In this paper we will consider as 
interesting objects those composed of face-connected 
voxels.  This suggest the following definition: 

Definition 3. A connected 3-D object composed 
of ݊ voxels, ௡ܱ is any connected set of voxels 
connected only by their faces. 
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Figures 2(a) and 2(b) show two face connected 
objects composed, of four and six voxels, 
respectively. 

Definition 4. Let ௡ܱ a face-connected 3-D as 
stipulated by Definition 2. The faces common to the 
݊ pixels of ௡ܱ (the faces that interconnect the ݊ 
pixels) will be called contact faces. The remaining 
faces will be called exterior faces due to they connect 
some of the object voxels to the background. 

For example, the face connected object depicted 
in Fig. 2(a) possesses four contact faces and 18 
exterior faces. 

 

Figure 2: (a) Object composed of four face connected 
voxels; (b) object composed of six face connected voxels. 

Definition 5. Let ௡ܱ be an object composed of ݊ 
face connected voxels. A tetra-voxel is an 
arrangement of four object voxels as shown in Fig. 
3(a), 3(b) or 3(c). Let ݊  be the number of tetra-voxels ݐ
that can be found in a 3-D binary image by a simple 
scanning image method. 

 

Figure 3: A tetra-voxel in the (a) ݔ, (b) ݕand (c) ݖdirection, 
respectively. (d) An octo-voxel. 

Definition 6. Let ௡ܱ be an object composed of ݊ 
face connected voxels. An octo-voxel is an 
arrangement of eight object voxels as shown in Fig. 
3(d). Let ݊݋ be the number of octo-voxels that can be 
found in a 3-D binary image by a simple scanning 
image method. 

To better understand these two last definitions, let 
us consider the following three objects shown in Fig. 
4, composed of 6, 9 and 10 voxels, respectively. After 
scanning the first object, we observe that no tetra-
voxels or octo-voxels can be found. After scanning 
the second object, we note that it contains two tetra-
voxels, one in the ݔ direction and one in the ݖ 

direction. Finally, after scanning the third object, we 
appreciate that it contains an octo-voxel and six tetra-
voxels). 

 
Figure 4: (a) An object with no tetra-voxels or octo-voxels; 
(b) An object with two tetra-voxels, one in the ݔdirection 
and one in ݖdirection; (c) An object with one octo-voxel and 
six tetra-voxels. 

4 THE PROPOSAL 

Let ௡ܱ a 3-D object composed of ݊ face connected 
voxels for which we want to determine its number of 
bubbles and it number of tunnels. Let ݊ܿ, ݊ݐ and ݊݋, 
the number of the contact faces, number of tetra-
voxels, and number of octo-voxels of ௡ܱ, 
respectively. 

4.1 Number of Bubbles of a 3-D Object 

Suppose we want to compute the number of bubbles 
of an object ௡ܱ with no tunnels. For this we propose 
to use the following: 

Proposition 1. For a connected 3-D binary object: 
௡ܱ, composed of ݊ voxels, its number of bubbles 

(voids) ܾ݊ is always given as: 

ܾ݊ ൌ ሺ݊ െ ݊ܿ ൅ ݐ݊ െ ሻ݋݊ െ 1 (3)

Proof. The proof proceeds by mathematical 
induction on the number of voxels of ௡ܱ. For the base 
case, ଵܱ consists of a single voxel. Therefore, we 
have ݊ܿ ൌ ݐ݊ ൌ ݋݊ ൌ 0, values which satisfy Eq. 
(3). 

For the induction step, let us assume that Eq. (3) 
holds for ௡ܱ. Let ݊ܿ´, ݊ݐ´, and ݊݋´ be the number of 
contact faces, number of tetra-voxels and number of 
octo-voxels, respectively, of object ܱ௡ାଵ that is 
obtained by adding one voxel to ௡ܱ. 

Let ܰܥ, ܰܶ and ܱܰ be the corresponding 
numbers for this new voxel. We have that: 

݊ܿ´ ൌ ݊ܿ ൅ (4) ܥܰ

´ݐ݊ ൌ ݐ݊ ൅ ܰܶ (5)
´݋݊ ൌ ݋݊ ൅ ܱܰ (6)

It must be shown that Eq. (3) holds for ܱ௡ାଵ, i.e. 

ܾ݊´ ൌ ሺ݊ ൅ 1 െ ݊ܿ´ ൅ ´ݐ݊ െ ሻ´݋݊ െ 1 (7)

But this equation can be rewritten as follows: 
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ܾ݊´ ൌ ሺ݊ ൅ 1 െ ݊ܿ െ ܥܰ ൅ ݐ݊ ൅ ܰܶ െ
݋݊ െ ܱܰሻ െ 1 ൌ ሺ݊ െ ݊ܿ ൅ ݐ݊ െ ሻ݋݊ െ

1 െ ܥܰ ൅ ܰܶ െ ܱܰ ൅ 1. 
(8)

This equation simplifies to: 

ܾ݊´ ൌ ܾ݊ െ ܥܰ ൅ ܰܶ െ ܱܰ ൅ 1 (9)

which we know is true.                                             

 

Figure 5: (a) Object composed of 25 voxels with no 
bubbles. (b) Object with one bubble after appending a voxel 
to the object shown in Fig. 5(a). 

To numerically validate this last equation, let us 
consider the 3-D object composed of 25 voxels as 
shown in Figure 5(a), with no bubbles and with the 
central voxel and the central voxel from the right face 
missing. For this object, ܾ݊ ൌ ሺ25 െ 44 ൅ 20ሻ െ
1 ൌ 0 bubbles. Now, suppose that a new voxel is 
appended to this object as shown in Fig. 5(b) in such 
a way that a bubble is obtained. In this case we have 
that ܰܥ ൌ 4, ܰܶ ൌ 4, ܱܰ ൌ 0, and 

ܾ݊´ ൌ ሺ݊ ൅ 1 െ ݊ܿ´ ൅ ´ݐ݊ െ ሻ´݋݊ െ 1 ൌ
ሺ26 െ 48 ൅ 24 െ 0ሻ െ 1 ൌ 1. 

 

Also 

ܾ݊´ ൌ ܾ݊ െ ܥܰ ൅ ܰܶ െ ܱܰ ൅ 1 ൌ 0 െ 4 ൅
4 െ 0 ൅ 1 ൌ 1. 

 

4.2 Number of Tunnels of a 3-D Object 

Suppose now we want to compute the number of 
tunnels of an object ௡ܱ with no bubbles. For this we 
propose to use the following: 

Proposition 2. For a connected 3-D binary object: 
௡ܱ, composed of ݊ voxels, its number of tunnels 

(holes) ݄݊ is always given as: 

݄݊ ൌ 1 െ ሺ݊ െ ݊ܿ ൅ ݐ݊ െ ሻ (10)݋݊

Proof. Let us again proceed with the proof by 
mathematical induction on the number of voxels of 
௡ܱ. For the base case, ଵܱ consists of a single voxel. 

Therefore, we have ݊ܿ ൌ ݐ݊ ൌ ݋݊ ൌ 0, values which 
satisfy Eq. (10). 

For the induction step, let us assume that Eq. (10) 
holds for ௡ܱ. Let ݊ܿ´, ݊ݐ´, and ݊݋´ be the number of 
contact faces, number of tetra-voxels and number of 

octo-voxels, respectively, of object ܱ௡ାଵ that is 
obtained by adding one voxel to ௡ܱ. 

Let ܰܥ, ܰܶ and ܱܰ be the corresponding 
numbers of this new voxel. We have that: 

݊ܿ´ ൌ ݊ܿ ൅ (11) ܥܰ

´ݐ݊ ൌ ݐ݊ ൅ ܰܶ (12)

´݋݊ ൌ ݋݊ ൅ ܱܰ (13)

It must be shown that Eq. (10) holds for ܱ௡ାଵ, i.e. 

ܾ݊´ ൌ 1 െ ሺ݊ ൅ 1 െ ݊ܿ´ ൅ ´ݐ݊ െ ሻ (14)´݋݊

But this equation can be rewritten as follows: 

ܾ݊´ ൌ 1 െ ሺ݊ ൅ 1 െ ݊ܿ െ ܥܰ ൅ ݐ݊ ൅
ܰܶ െ ݋݊ െ ܱܰሻ ൌ 1 െ ሺ݊ െ ݊ܿ ൅ ݐ݊ െ

ሻ݋݊ ൅ ܥܰ െ ܰܶ ൅ ܱܰ െ 1. 
(15)

This equation simplifies to: 

ܾ݊´ ൌ ܾ݊ ൅ ܥܰ െ ܰܶ ൅ ܱܰ െ 1 (16)

which again we know is true.                                
To numerically validate this last equation, let us 

consider the 3-D object composed of 6 voxels as 
shown in Fig. 6(a), with no tunnels. For this object, 
݄݊ ൌ 1 െ ሺ7 െ 6 ൅ 0ሻ ൌ 0 tunnels. Now, suppose 
that a new voxel is appended to this object as shown 
in Fig. 6(b) in such a way that a tunnel is obtained. In 
this case we have that ܰ ܥ ൌ 2, ܰ ܶ ൌ 0, ܰ ܱ ൌ 0, and 

ܾ݊´ ൌ 1 െ ሺ݊ ൅ 1 െ ݊ܿ´ ൅ ´ݐ݊ െ ሻ´݋݊ ൌ 1 െ
ሺ8 െ 8 ൅ 0 െ 0ሻ ൌ 1. 

 

Also 

ܾ݊´ ൌ ܾ݊ ൅ ܥܰ െ ܰܶ ൅ ܱܰ െ 1 ൌ 0 െ 2 ൅
0 െ 0 െ 1 ൌ 1. 

 

 

Figure 6: (a) Object composed of 7 voxels with no tunnels. 
(b) Object with one tunnel after appending a voxel to the 
object shown in Fig. 6(a). 

4.3 Computing the Number of Bubbles 
and Tunnels of a 3-D Object 

Suppose now we want to compute the number of 
bubbles and tunnels of an object ௡ܱ that might have 
several of them in it. To accomplish this task we 
proceed in two steps. During the first step we obtain 
the number of bubbles of the object. For this, we make 
use of a connected component labelling algorithm. 
During the second step we obtain its number of 
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tunnels by using Eq. (10). More in detail, given a 3-D 
image ܨ of object ௡ܱ: 

First step (Number of bubbles):  
1. Apply over ܨ any connected component 

algorithm over the regions composed of 0-voxels. 
An adapted version of the algorithm reported in 
(Gonzalez, 2002) can be used for this goal. Due to 
bubbles are composed of 0-voxels, this algorithm 
will output value ݊ܿܿ. This variable corresponds 
to the number of bubbles plus 1. This 1 is obtained 
because the image background was also labelled; 
an extra label was generated. 

2. Compute the number of bubbles of the object, ܾ݊ 
as ݊ܿܿ െ 1. 

Second step (Number of tunnels):  
1. Apply Eq. (10) over image ܨ. If the object has 

bubbles and tunnels, this application will produce 
the number of tunnels minus the number of 
bubbles, ݄݊_ܾ. Refer to Eq. (1).  

2. Add to the result obtained in the last step to get the 
number of tunnels ݄݊ ൌ ݄݊_ܾ ൅ ܾ݊ of object ௡ܱ. 
To numerically validate the above described 

procedure, let us consider the object shown in Figure 
7, composed of 41 voxels, one bubble and one tunnel. 
The bubble is the 0-voxel in the centre of the second 
slice of 1-voxels of the object (left to right). The 
tunnel is composed of the three 0-voxels along the 
fourth slice of 1-voxels of the object (left to right). 

The first step outputs ܾ݊ ൌ 1, while the second 
step outputs ݄݊ ൌ ݄݊_ܾ ൅ ܾ݊ ൌ 1 െ ሺ41 െ 76 ൅
36 ൅ 0ሻ ൅ 1 ൌ 0 ൅ 1, as desired. Note that ݊ ݄_ܾ ൌ 0 
due to the object has one bubble and one tunnel, that 
according to Eq. (1) they cancel each other. 

 

Figure 7: Object composed of 41 voxels used to test the 
functioning of the described procedure. 

4.4 Computing the Number of Bubbles 
and Tunnels of a Set of 3-D Objects 

Suppose now are given an image ܨ of ܾ଴ voxelized 
objects; for each of these ܾ ଴ we would like to compute 
their numbers of bubbles and tunnels, respectively. In 
this case we would need to apply a similar procedure 
as described in section 4.3 with an additional step. We 

proceed into three steps as follows: 
During the first step, we apply any connected 

component algorithm over image ܨ. As a result we 
obtain ܾ଴ labelled connected 3-D regions.  

During the second step we apply the first step of 
the procedure described in section 3.3 to each labelled 
connected region ܴ௜, ݅ ൌ 1,2, … , ܾ଴. For each ܴ௜ we 
obtain its number of bubbles ܾ݊௜, ݅ ൌ 1,2… , ܾ଴. 

Finally, for the third step we apply the second step 
of the same procedure described in section 3.3 to 
obtain the number of tunnels of each object. 

To numerically validate the above described 
procedure, let us consider Fig. 8 with two objects; the 
first one composed of 8 voxels and one tunnel and the 
second one integrated of 41 voxels, with one bubble 
and one tunnel (the same object of Fig. 7). 

The first step provides as a result two labels (two 
connected 3-D regions). Now, for each label (region), 
the second step obtains ܾ݊ଵ ൌ 0 and ܾ݊ଶ ൌ 1, 
respectively. Finally, the third step outputs ݄݊ଵ ൌ
݄݊_ܾଵ ൅ ܾ݊ଵ ൌ 1 െ ሺ8 െ 8 ൅ 0 െ 0ሻ ൅ 0 ൌ 1 ൅ 0 ൌ
1 for the first object and ݄݊ଶ ൌ ݄݊_ܾଶ ൅ ܾ݊ଶ ൌ 1 െ
ሺ41 െ 76 ൅ 36 ൅ 0ሻ ൅ 1 ൌ 0 ൅ 1 ൌ 1, for the 
second object, as desired. 

 

Figure 8: Image with two object used to show the 
functioning of the described procedure. 

5 RESULTS  

In this section we report four experiments. First we 
verify the correct functioning of the proposal with a 
set of five 3-D images of size 100 ൈ 100 ൈ 100 
voxels. Each image has a different number of objects 
with a different increasing number of voxels, as 
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established in row two of Table 1. Each time an object 
was added to the image it was added manually to have 
a control over the number of bubbles and holes. Rows 
3 and 4 of Table 1 show the correct number of bubbles 
and tunnels (Correct ܾ݊ and Correct ݄݊) of each 
object of each image, respectively.  

Table 1: Results obtained by the application of the 
procedure to the five selected objects. 

Image number 1 2 3 4 5 
Number of 

objects 
1 2 3 4 5 

Correct ܾ݊ 2 2,1 2,1,3 2,1,3,2 2,1,3,2,5 
Correct ݄݊ 1 1,3 1,3,1 1,3,1,2 1,3,1,2,4 

Computed ܾ݊ 2 2.1 2,1,3 2,1,3,2 2,1,3,2,5 
Computed ݄݊ 1 1,3 1,3,1 1,3,1,2 1,3,1,2,4 

The procedure described in section 4.4 was 
applied to each of the five images. It was programed 
in Java NetBeans with the Processing Applet in a 
desktop computer with a Core i7 model 2600 
processor with 8Gb of RAM. Rows 5 and 6 depict the 
computed number of bubbles and tunnels for object 
of each image, respectively. From these rows note 
also that in all cases, as expected, the correct values, 
ܾ݊ and ݄݊, for each object were produced by the 
procedure. The average time to compute the number 
of bubbles and tunnels of each of the ܾ଴ objects in 
image ܨ was 29.6 milliseconds. It is worth 
mentioning that most of time is consumed by the 
connected component algorithms.  

Second, we studied if the number of object-voxels 
influenced computation time when the total 
procedure was applied over an image. For this, we 
automatically generated a set of images with an 
increasing number of object-voxels. We established a 
variable (݊ݒ) defining how many object-voxels will 
appear in the image. When ݊ ݒ ൌ 0.0, it meant that the 
corresponding image will have only background 
voxels, for ݊ݒ ൌ 0.05, it meant that 5% of the 
generated voxels will belong to objects, and so on. 
Each time we increased variable ݊  by 0.05. For each ݒ
value of variable ݊ݒ we generated 10 images. We 
took the average time to fully process the whole set 
of 210 images and computed the average time. With 
the exception of the first case, in average this time 
consumed by the connected component algorithm 
was of 25.5 milliseconds. 

Third, we demonstrated the applicability of our 
method when applied to objects of various shapes and 
complexities. Figure 9 show four of these objects: a 
sphere, an elephant, a bird and a cheese. In all cases 
images of 120 ൈ 120 ൈ 120 voxels were used. 
Second and third row of Table 2 show the true values 
of number of bubbles and tunnels of each object while 

fourth and fifth rows show the computed values. As 
expected it can be seen that in all four cases, the 
computed values coincide with the true values. The 
average time to obtain the desired results was of 51.8 
milliseconds. 

  
                     (a)                                      (b) 

  
                         (c)                                    (d) 

Figure 9: Four objects of different shape and complexities 
to demonstrate the applicability of the proposal. 

Table 2: Results obtained by the application of the 
procedure to the four objects of Figure 9. 

Object Sphere Bird Elephant Cheese 
Correct number of 

bubbles ܾ݊ 
0 0 0 0 

Correct number of 
tunnels ݄݊ 

0 0 0 10 

Computed number 
of bubbles ܾ݊ 

0 0 0 0 

Computed number 
of tunnels ݄݊ 

0 0 0 10 

   

Figure 10: Three transformed versions of cheese objects. 

Finally, we showed the robustness of our method 
to image transformations such as translations, 
rotations and scale changes. For this, we took the 
cheese object and translated, rotated and scaled inside 
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its image. Three of these transformed versions are 
depicted in Figure 10. Again, in all cases, the desired 
number of tunnels: 10 was correctly computed. 

6 CONCLUSIONS AND 
FURTHER RESEARCH 

From the theoretical point of view, we have 
introduced two formulations ((Eq. (3) and Eq. (10)) 
that allow determining the number of bubbles and 
tunnels, respectively, of any 3-D binary face 
connected object in an exact way. Both equations 
have been mathematically demonstrated; numerical 
examples have also been provided to numerically 
validate both equations.  

From the practical point of view, we have 
presented two procedures. The first procedure, 
described in detail in section 4.3, permits determining 
the number of bubbles and tunnels of a 3-D binary 
face connected object from a binary image of it. The 
second general procedure, fully explained in section 
4.4, allows to do the same but for several objects. 
Experimental results with images of object of 
different sizes and complexities have been given to 
show the applicability of both procedures. 

The time spent in seconds expended by the 
proposal is reduced making the procedure to be used 
in real time applications. 

Further work in this direction include: 
Implementation of the proposed general procedure 
described in section 4.4 into a FPGA or a GPU 
processor to see how much the processing time could 
be reduced. This will be of particular interest when 
processing large images with many objects in them. 
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