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Abstract: Real Coded Genetic Algorithm (RCGA) has been attracting attention as one of the GA for handling real-
valued vectors. Various GA hardware have been proposed, for evolvable hardware, and for an increase in 
computational throughput. Yet, there are few reports of RCGA hardware. Herein, we propose a design for a 
real coded GA processor. The proposed processor is implemented using the JGG (Just Generation Gap) as a 
generation alternation model and the REX (Real coded Ensemble Crossover) as a crossover. In addition, the 
evaluation functions that depend on problem are calculated using soft macro CPU. The proposed processor 
is to be applied expected in embedded field applications because of it can be implemented in one chip 
FPGA.  

1 INTRODUCTION 

Many engineering problems have no known 
solution, or impose a large computational cost. 
Heuristic approaches are often effective for such 
difficult problems. That is, the search for 
approximate solutions, having sufficiently practical 
accuracy, occurs within an acceptable time, by the 
use of an empirical method. One such approach is 
genetic algorithm (GA). GA is based on the idea of 
the evolution of life; it is one of the optimization 
algorithms. GA can be applied to various problems, 
such as combinatorial optimization problem and NP-
hard problem. Moreover, GA has affinity with 
evolvable hardware which has been attracting 
attention. Real Coded Genetic Algorithm (RCGA) 
has been attracting attention (Kobayashi, 2009). It is 
handling real-valued vectors as genotype. RCGA is 
much better than conventional GA, when handling 
the genotype within a bit strings. Therefore, it is also 
effective for high-dimensional problem. 

In case of usual PC require long calculation time, 
a dedicated hardware is effective. Various GA 
hardware have been proposed based on conventional 
GA (Fernaldo et al., 2010). These GA hardwares are 
used evolvable hardware  as one of applications. The 
evolvable hardware is a device to change optimum 
hardware configuration by evolutionary computation. 
For example, there are applications such as the 
image filter circuit (Vasicek et al., 2007). However, 
there are few reports of RCGA hardware. 

In this paper, we propose a design of RCGA 
processor. The proposed processor is implemented 
using the JGG as a generation alternation model and 
the REX as a crossover. Effective sharing of 
computing units reduce the circuit scale. 
Furthermore, the use of soft macro CPU enhance 
versatility. The proposed processor is expected in 
embedded field applications because of it can be 
implemented in one chip FPGA.  

2 REAL-CODED GA 

The main processing of RCGA consists of a 
generation alternation model and a crossover. The 
generation alternation model consists of a 
reproduction selection and a survival selection of 
individuals.  

Several generation alternation model have been 
proposed such as MGG (Minimal Generation Gap) 
and JGG (Just Generation Gap) (Akimoto et al, 
2007). The two parents are selected in MGG. On the 
other hand, more than two parents are selected in 
JGG. The better results are often obtained by using 
JGG than MGG. 

Several crossover mechanisms in RCGA have 
been proposed. Among them, The Real coded 
Ensemble Crossover (REX) (Kobayashi, 2009) has 
good performance with low computational cost. 
Therefore, the proposed processor is implemented 
using the JGG and the REX. 
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The JGG perform three steps (Akimoto et al, 
2007) below. 

(1) Reproduction selection: The Np number of 
individuals are extracted with non-restoring 
at random from the population. 

(2) Generating Offspring: The Nos number of 
offspring are generated repeatedly applying 
crossover by using the parents. 

(3) Survival selection: The top Np number of 
individuals are selected in accordance with 
evaluation value from the offspring. 

In the above steps, Np and Nos are the number of 
parent (two or more) and the number of offspring, 
respectively. These parameters must be carefully 
chosen according to the problems. The offspring is 
generated according to equation (1) by using the 
replicated selected the parents in REX.  
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Where x is a real-valued vector of dimension 
number N, xi = {x1, x2, ..., xN+k} are the parents, xg is 
the center of gravity of parents and xc is the 
offspring. k is set interval, 1 ≤ k ≤ P-N. P is number 
of the population. Let ),0( 2

 be the probability 
distribution with average 0, dispersion 2

 and 

arbitrary symmetry. i  is a parameter according to 

probability distribution ),0( 2
 . 2

  is necessary that 

)/(12 kN  be satisfied. In order to satisfy this 

equation, let )/(3 kN  when using random 

number of interval [-α, α] in φ.  
The REX requires smaller amount calculation 

than such as CMA-ES (Covariance Matrix 
Adaptation Evolution Strategy). Since the variance-
covariance matrix is implicitly handled in the REX. 
Furthermore, The Adaptive Real-coded Ensemble 
Crossover (AREX) (Akimoto et al, 2009) has been 
proposed as improving the REX. The AREX is 
added mechanism to avoid the initial convergence 
that occurs in the optimization of the ridge structure 
function and multi-peak function. In addition, Big-
valley Explorer (BE) (Uemura et al, 2011) for multi-
funnel function optimization has been proposed. The 
BE is used the AREX and JGG. The BE has been 
reported to be better performance than the Multi 
Start CMA-ES (That is CMA-ES which initialize the 
population in the entire search space) in some 
benchmark functions. 

3 RCGA PROCESSOR 

3.1 Overview of RCGA Processor 

In the proposed processor, first, parents are selected 
at random in accordance with the JGG. Then, the 
offspring are generated by the REX. The evaluations 
are started by soft macro CPUs when first offspring 
is generated. Moreover, the selection of the offspring 
to be saved in the next generation population is also 
performed in parallel. Then, the current population is 
updated with the new offspring when the evaluation 
of all offspring are complete. An optimum solution 
is searched by the repetition of these processes. 
Figure 1 shows a flowchart of the proposed 
processor. 

 There are four parameters to set in the RCGA; 
number of dimensions N, number of parents Np, 
number of offspring Nos and number of population 
P. Np, Nos and P are determined on basis of N. Np 
is set as N+k. In the proposed processor, Np is set as 
the number of N+2 and number of power of two. Np 
is a reference parameter to parallelize the proposed 
processor. Therefore, main circuit such as arithmetic 
units or CPUs for evaluation exists by Np sets. Nos 
is set integer multiple of Np. This integer number is 
Nosr. Generation and evaluation of the offspring are 
performed in Np parallel. Therefore, the Nos number 
of offspring are generated by repeatedly executing 
those processes Nosr times. P is set as integer 
multiple of N.  

The proposed processor can be set several 
parameters by one of the CPU. The configurable 
parameters are the RCGA parameters, a goal of 
fitness to be a termination condition, a number of 
evaluations to abort the process.  

 

Figure 1: Flowchart of the proposed processor. 

3.2 Detail of Proposed Processor 

Figure 2 shows a block diagram of the proposed 
RCGA processor. The data are handled as single-
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precision floating-point number that conforms to 
IEEE754. 
The processor consists of the following blocks; (a) 
Memory (Population, Parent, Offspring), (b) 
Random number generator, (c) Random selection 
circuit, (d) REX circuit, (e) Evaluation circuit, (f) 
Sorting circuit, (g) Updating circuit. 

3.2.1 Memory 

Genotype of individual is a real-valued vector with 
N dimensions. A population memory store the P 
number of individuals. The parent memories and the 
offspring memories are prepared Np sets. Each 
parent memory store an individual. Each offspring 
memory store the Nosr number of individuals. In 
population memory and offspring memory, the 
upper bits of address are individual number and the 
lower bits are each element.  

3.2.2 Random Number Generator 

This circuits consists of the M-sequence random 
number generator and the fixed point number to 
floating point number conversion circuits. First, Np 
sets of 23 bits random numbers are generated. The 
number of bits are corresponded to the mantissa 23 
bits of single precision floating point format. Then, 
they are outputted after being converted Np number 
of fixed point number to floating point number at the 
same time. In addition, Np sets of lower log2P bits of 
23 bits signal are also used as selected number of 
parents in a random selection circuit.  

 

Figure 2: Block diagram of the proposed processor. 

 

Figure 3: Random selection circuit. 

 

3.2.3 Random Selection Circuit 

The Np sets of random numbers are obtained from 
the random number generator. These are individual 
numbers to select as parents from the population 
memory. The individual numbers are selected by the 
output of Np counter (log2Np bits, NpL). In addition, 
this counter select the memory to store among the 
Np sets parent memories. The selected numbers and 
the output of N counter (log2N bits, NL) are 
concatenated. This signal is inputted to the 
population memory as an address signal. These data 
are stored to the parent memories. The number of 
parents are counted once one individual reading is 
completed. This circuit halts after all Np sets parents 
data are read out. Figure 3 shows a block diagram of 
the random selection circuit. 

3.2.4 REX Circuit 

In the REX circuit, the Nos number of offspring are 
generated by performing the calculation of equation 
(1). The calculation of the equation (1) is performed 
by dividing into the following five steps; (1) 
Summation, (2) Calculation of the center of gravity 
xg, (3) Calculation of deviation (xi-xg), (4) 
Generation of random numbers ( ), (5) Generating 

offspring. 
 Figure 4 shows a block diagram of REX circuit. 
This circuit primarily consists of Np sets of single 
precision floating point multipliers and adders and 
some registers. The pipeline stage of multiplier and 
adder are set as four. A feature of this circuit is to 
achieve calculations by effectively utilizing the Np 
sets of multipliers and adders. The above five steps 
are calculated by changing the connection of 
multipliers and adders in each state. Therefore, the 
circuit can be implemented with less circuit 
resources than the case of arithmetic units are 
prepared as many as necessary in each state. Figure 
5 shows the wiring diagram of arithmetic units at 
each state in the case of Np = 4.  

 

Figure 4: REX circuit. 
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 The operations in each state are shown below. 
 At the step (1), all adders are used in parallel as 
shown in Figure 5 (a). Each time of reading data 
from the population memory, the data is added and 
stored to the sum register in each dimension. 
 At the step (2), all multipliers are used in parallel 
as shown in Figure 5 (b). The xg is calculated by 
multiplying a 1/Np in parallel to the sum registers in 
each dimension. 
 At the step (3), all adders are used in parallel as 
subtractors as shown in Figure 5 (c). The data are 
read simultaneously from Np sets parent memories. 
The deviations between the each dimension of the xg 
and each parents are calculated. The data of parent 
memories are overwritten by these deviations. 

 

 

 

Figure 5: Wiring diagram of each state (e.g. Np = 4). 

 The step (1) to (3) are performed only once in a 
generation. 

 At the step (4), all multipliers and adders are 
connected and used in parallel as shown in Figure 5 
(d). The calculation of  ܴଶ ൌ ଵܴߙ2 െ  is performed ߙ
in this state. Where R1 is random number of [0,1), R2 
is random numbers of [-α, α]. The generated random 
numbers are stored to the random registers. 
 At the step (5), all multipliers and adders are 
used by combining as shown in Figure 5 (e). First, 
the result of calculations in step (3) and the random 
numbers generated in step (4) are simultaneously 
multiplied at the same time. Then, the sum is 
calculated by the connecting adders. The one 
dimensional data of an offspring is calculated by 
adding the xg of the dimension at the adder. The 
calculated results are stored in the offspring 
memories. The one offspring is generated by 
performing the above process N times. 
 The Nos number of offspring are generated by 
execution of Nosr × Np times of step (4) and (5). 

3.2.5 Evaluation Circuit 

This circuit calculate the fitness of the offspring 
generated by the REX in accordance with an 
evaluation function. The proposed processor 
calculate fitness by the Np sets MicroBlaze (Xilinx 
Corporation) soft macro CPU in parallel. Therefore, 
it is possible to change the problem by rewriting the 
evaluation function of program. The MicroBlaze has 
RISC architecture and the 5-stage pipeline. As the 
peripheral circuits, evaluation start and end flag 
registers, an offspring memory and the 
corresponding fitness registers are connected 
through an AXI bus. Only one CPU is connected 
parameter registers set of the RCGA and a serial 
communication module for displaying the final 
optimum solution. Figure 6 shows MicroBlaze and 
peripheral circuits. 

 

Figure 6: MicroBlaze and peripheral circuit. 

 The operation of this circuit is as follows. The 
evaluation start flag is set whenever an offspring is 
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generated by the REX. Then, evaluation calculation 
is started. After the calculation, the result data is 
stored to the corresponding fitness register. Then, 
evaluation end flag is set. It is sequentially evaluated 
in parallel with the generation of offspring. 

3.2.6 Sorting Circuit 

This circuit store the top Np offspring's number 
while sorting in ascending order based on the fitness 
of each individual to save for the next generation. 
This circuit consists of Np sets floating point 
comparators, top Np sets fitness registers and the 
corresponding offspring number registers. If the 
change of evaluation end flag is detected, a new 
fitness is compared with simultaneously the current 
top Np sets of fitness registers. An insert location of 
a new individual is determined by result of exclusive 
OR of the comparison results of one level higher. 
At this time, the lowest fitness and individual 
number are erased. Then, the new fitness and 
individual number are inserted into the insertion 
location. Since evaluation is parallel with performs 
the above processing, top Np sets individuals are 
determined because of registers are completed 
sorting when the Nos number of the evaluations are 
completed. The 0-th individual is a best solution in 
current generation. Figure 7 shows a block diagram 
of the sorting circuit when Np = 4. 

 

Figure 7: Sorting circuit (e.g. Np=4). 

Table 1: The circuit scale of the proposed processor. 

FPGA resource XC7A200T Proposed Processor 
Slice Register 269200 76102 (28%) 

Slice LUT 134600 104162 (78%) 
Block RAM 365 161 (44%) 

DSP 740 160 (22%) 

Table 2: The circuit scale of the RCGA processing,  the 
MicroBlaze and peripherals. 

FPGA resource 
RCGA 

processing 
MicroBlaze and 

peripheral 
Slice Register 17200 (6%) 58902 (22%) 

Slice LUT 26636 (20%) 77525 (58%) 
Block RAM 8 (2%) 153 (42%) 

DSP 80 (11%) 80 (11%) 

3.2.7 Updating Circuit 

This circuit update the population memory by the 
top Np sets offspring. Hence, the individuals who 
have been selected as parents are overwritten by 
these offspring. Then, the fitness of current optimum 
solution is compared with the fitness of 0-th 
offspring in the sorting circuit. The optimum 
solution memory is updated when the fitness of 0-th 
individual is higher.  

4 EXPERIMENT 

4.1 Environment and Circuit Scale 

The proposed processor was designed using VHDL. 
The circuit was synthesized using the PlanAhead 
(14.7) of Xilinx Corporation. The circuit was 
implemented on the AC701 FPGA evaluation board 
of Xilinx Corporation. This board is implemented 
the Artix-7(XC7A200T-2FBG676C). Therefore, the 
arithmetic units in the REX circuit and the CPUs for 
evaluation are implemented 16 sets respectively. The 
proposed processor can be implemented in about 
80% of the circuit scale on the low-end FPGA. In 
addition, Table 2 shows a respective circuit scale of 
the RCGA processing circuit, the MicroBlaze and 
peripheral circuits. The MicroBlaze and peripheral 
circuits occupy more than 50% in the proposed 
processor. The RCGA processing circuits are about 
20% of the circuit scale. This is considered because 
of the floating point arithmetic units are shared.  

4.2 Evaluation 

The     proposed    processor    was    confirmed    the 
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performance by applying to two benchmark 
functions. The evaluation functions are the Sphere 
function by equation (2) and the Ellipsoid function 
by equation (3). The optimum solution of these 
functions are the minimum value f(x) = 0. The 
optimum solution is obtained when all of the 
variables are 0.  
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As a comparison, the C language program of 
RCGA was implemented and executed on a PC 
(Intel (R) Xeon (R) CPU E5-1620, 3.7GHz). The 
program was compiled by using the GCC-4.8.2. The 
program is not applied parallelism; it is executed on 
a single core CPU. After the fitness value f(x) is 
reached 10-7 or less, the x is regarded as an optimum 
solution. Table 3 shows the result of each function 
on the each environment. The FPGA was operated at 
frequency of 100MHz. The results are the average of 
30 times performed on the each environment. The 
Nos was set to be a close value of integer multiple of 
N on the proposed processor. In the Sphere function, 
the number of evaluation to reach an optimum 
solution is about 18,000 times on the PC at 12.1 ms. 
On the other hand, the proposed processor required 
about 19,000 times at 12.4 ms. In Ellipsoid function, 
the number of evaluation is about 35000 times on 
the PC at 27.2 ms, about 38000 times on the 
proposed processor at 23.7 ms. 

The number of evaluation of proposed processor 
was slightly increased, compared with PC. It was 
considered that because some part of processing of 
proposed hardware simplified for hardware 
implementation. Moreover, although the operating 
frequency of the PC and the FPGA board are very 
different, the execution times are almost the same. If 
it is possible to improve the operating frequency of 
the proposed processor, it is considered that the 
result can be obtained in the execution time of more 
than equivalent to the PC. 

5 CONCLUSIONS 

In this paper, we proposed a design of RCGA 
processor. The proposed processor is implemented  
using the JGG and the REX. The processor can be 
implemented less circuit scale by effectively sharing 
the circuit resources such as the arithmetic units. In 
addition,   the   proposed   processor   has  versatility 

Table 3: Result of each evaluation function. 

Function Item 
PC 

(Xeon, 
3.7GHz) 

Proposed 
processor 
(100MHz) 

Sphere 

Nos 7N 6Np (≈7N) 
Evaluation 

number 
18813 19302 

Execution 
time (ms) 

12.1 12.4 

Ellipsoid 

Nos 8N 7Np (≈8N) 
Evaluation 

number 
35737 37811 

Execution 
time (ms) 

27.2 23.7 

because the evaluation functions that depend on 
problem are calculated using soft macro CPU. The 
implementation experiments were evaluated by 
using two benchmark functions. The results can be 
obtained in almost the same execution time single 
core operation on the PC. The proposed processor is 
expected in embedded field applications because of 
it can be implemented in one chip FPGA. 

Future works are to perform the improvement of 
running speed and the application of such evolvable 
hardware using the proposed processor. 
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