
Software, Is It Poetry or Prose?
Conceptual Content at the Higher Abstraction Levels

Iaakov Exman1 and Alessio Plebe2
1Software Engineering Dept., The Jerusalem College of Engineering – JCE - Azrieli, POB 3566, Jerusalem, Israel

2Department of Cognitive Science, University of Messina, Messina, Italy

Keywords: Software Theory, Conceptual Content, Runnable, Understanding, Poetry, Prose.

Abstract: Software is it Poetry or Prose? It is part Poetry, part Prose. But it has much more in common with both
forms of natural language, than usually admitted: software concepts, rather than defined by syntactic
oriented computer programming languages, are characterized by the semantics of natural language. This
paper exploits these similarities in a two-way sense. In one way the software perspective may be relevant to
the analysis of natural language forms, such as poems. In the other way round, as its central message, this
paper uses properties of both Poetry and Prose to facilitate a deeper understanding of highest-level software
abstractions.

1 INTRODUCTION

This paper takes the position that before proposing a
theory of software engineering one must understand
the nature of software itself. Thus, this work focuses
on theoretical implications of natural language
aspects of highest-level software abstractions. It was
triggered by a dialogue of the authors during a
festive dinner at a conference in Rome last year and
continued by electronic means. The dialogue
inspired by the style of Galileo (Galilei, 1632) is
partially transcribed below as an introduction to the
issues at stake in this work.

1.1 Dialogue Concerning Two Chief
Software Views

Alessio – I may agree that in some sense software is
deeper than Chomskian theories, for me especially
in that Chomsky made a sharp division between
syntax and semantics, moving almost all the burden
of language on the syntax side. It is not, I think, the
way (natural) language works. Of course I'm not the
only one on this position. Most exponents of the so-
called cognitive linguistics enterprise challenged the
syntactocentricsm of generative grammar. One of
the first was George Lakoff, a former student of
Chomsky, who, trying to find examples of linguistic
expressions supporting the alleged autonomy and
independence of syntax, found so many

counterexamples instead, to become convinced of
the contrary (Lakoff, 1986). He became one of the
leading exponents of cognitive linguistics, together
with Langacker (Langacker, 1987), Fauconnier
(Fauconnier, 1997) and several others. But maybe
you have in mind other reasons why the Chomsky
account of language is limited with respect to
software.

Iaakov – Since I like gedanken (thought)
experiments (Brown, 2011) as much as the
cremeschnitte we ate at the dinner, I ask you to
imagine the following experiment. Assume that from
the birth of a person until age of fifteen one is
supposed to learn the mother tongue and use it
strictly according to grammatical, syntactic rules.
From the age of fifteen until the age of twenty one
gradually uses words with the same meaning as
before, but more and more liberated from
grammatical, syntactic rules. From the age of twenty
onwards one is totally free to speak poetry instead of
prose. Since the meaning of a word does not follow
from grammar, but may be assumed to be dependent
on a context – defined by an ontology – in such a
world Chomskian theories would be unimportant. So
is software, less grammar, more and more concepts.

Alessio – Your second issue is the analogy with
poetry, I must say I didn't caught it in Rome, maybe
now I can understand a bit more. Repeating a poem
to myself (mentally or aloud) corresponds somehow

Exman, I. and Plebe, A..
Software, Is It Poetry or Prose? - Conceptual Content at the Higher Abstraction Levels.
In Proceedings of the 6th International Workshop on Software Knowledge (SKY 2015), pages 9-17
ISBN: 978-989-758-162-5
Copyright c© 2015 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

9

to "executing" it. That's interesting. As the execution
of software will affect hardware components,
registers, memory content and so on, the "execution"
of a poem will elicit responses, in emotional brain
centers, recall long-term memories, activate
semantic networks. In both cases the meaning of the
code (poetic or software) is in the activation
resulting from its execution. It sounds fine. Of
course, one may raise several possible objections.
For example: what is special for poetry in this
analogy? Wouldn't be similar when reading a novel,
or a newspaper article? Maybe I'm still far from
catching completely the intents of your analogy.

Iaakov – Poetry is paradoxical. On the one hand, it
is more constrained by structures. On the other hand,
it is less grammatical, more audacious. This is like
object oriented software, more structured, and freer
in conceptual terms. But we are also aware of other
software assets which are prose-like.

Alessio – Now, I come to my point. What I shared
with you was a thought I had since long, but never
articulated in detail: the possibility that the road
taken by computation toward software in the 60's
has been the result of the influence of Chomsky. It
had the consequence of a paradigm shift from
mathematics to linguistics. In the early years of
computation, it was entirely within mathematics,
with central concepts like Dedekind's recursive
functions. Turing devised its foundational machine
in 1937 as a contribution to Hilbert's
Entscheidungsproblem (Turing, 1937). Even the
introduction of "compilation" by Grace Murray
Hopper in 1953 (Hopper, 1953) was totally
unrelated with linguistics. It was only after the
publication of Chomsky's "Syntactic Structures" in
1957 (Chomsky, 1957), and his huge success, that
John Backus (Backus, 1959) and John McCarthy
(McCarthy, 1960) launched the concept of
"programming languages", hinging at large inside
the Chomskian tools: generative grammar,
tokenization, parsing, translation, and so on.

Iaakov – I get your point.

Alessio – I remember you objecting that history does
not go with alternatives, it has no sense in imagining
a different destiny if contingencies were different.
That is correct, but my point is not historical, is
more ontological. There is an underlying widespread
assumption, that software is actually a sort of
language, not a spoken language, but one that
follows the same rules of natural languages, because
it is a language in its essence. I'm not saying that this
is wrong belief; I'm just saying that it is a belief

rooted in the contingencies of history – see also
(Nofre, 2014), for a sociological account of this
historical contingency – which could be true or
possibly wrong.

Iaakov – It is easier for me to agree with an
ontological point than with a historical one. I would
prefer to state that software proper – the runnable
part, not the requirements and other assets – is in
essence a complex semantic structure, rather than a
language. It is runnable meaning.

Alessio – The two alternatives do not affect anything
with regard to how efficient is to treat computation
using linguistic tools. But it is clearly important
when dealing with the ontological status of software.

Iaakov – I would add a cautious caveat. Efficiency
has more to do with the underlying machine, than
with the runnable meaning itself.

Alessio – Good, I will stop for now... Let me just
add that this sort of conversation is quite new for
me. But I'm interested in continuing, and it touches
two sides of my interests: from one side, the
philosophy of computing and on the other side
linguistic meaning. I'll do it with pleasure.

1.2 Paper Organization

The remaining of the paper is organized as follows.
Section 2 deals with software as Poetry, section 3
with refactoring Poetry, section 4 with software as
Prose, section 5 with Conceptual Software. The
paper ends with a discussion and conclusion.

2 SOFTWARE AS POETRY

Here we point out to features that poetry has in
common with software – see also (Gabriel, 2008) for
another paper analysing poetry, having in mind
software. We display poems in diagrams as if we
were describing a kind of software.

2.1 Poetry Has Structure

From the earliest to most modern samples, poems
have structure. Fig. 1 displays a modern sonnet by
Edna St. Vincent Millay (Millay, 1921). It has four
stanzas, with respectively 4, 4, 3 and 3 verses, and
classical rhymes, e.g. in the 1st stanza, ended rhymes
with extended, and all rhymes with fall.

SKY 2015 - 6th International Workshop on Software Knowledge

10

Figure 1: SONNET by E. St. Vincent Millay – Classical
structure of a modern poem with four stanzas, with 4, 4, 3
and 3 verses, displaying classical rhymes at the end of
verses.

To make the comparison of poetry with software
more concrete, we treat this poem as a piece of
software, providing its UML “class diagram”. Each
stanza is assumed to be a different class. This is seen
in Fig. 2. If the reader is not familiar with UML
(Booch, 2005), (OMG, 2015), one can think it as an
ontology graph containing concepts (classes).

Structure reflects meaning, thus class names
were chosen as the most meaningful word in each
stanza. Class attributes are significant nouns, and the
class functions are the significant verbs. Inheritance
links classes with related themes. Association links a
class with the previous one, of which it is aware.
The overall sonnet class diagram resembles a typical
software design pattern – like Observer or Mediator
(Gamma, 1995).

2.2 Poetry Has Metaphors

A metaphor is a figure of speech in which a term
refers to an object or action that it does not literally
denote, implying a resemblance. Metaphors are a
common way to generate new meanings of words,
indeed new words and idioms.

A neutral dictionary definition of cigarette is just
a smoking device: a small roll of finely cut tobacco
for smoking, enclosed in a wrapper of thin paper.
But if one reads just the first stanza in St. Vincent
Millay’s sonnet, a cigarette resembles a peculiar
device to measure time – by its gradual shortening

due to the falling ashes. It also implies momentary
memories of the end of an affectional relation – if
one reads the third and fourth stanzas.

Figure 2: UML CLASS DIAGRAM of the previous sonnet
– each class (in a yellow rectangle) corresponds to one
sonnet stanza. Class names are numbered by stanzas order.
The 1st one is “cigarette”. The middle part of each class
contains “nouns” (attributes). The lowest part contains
“verbs” (functions). The vertical white triangle
arrowheads denote inheritance, i.e. similar themes. Indeed
the bold red words are common to pairs of classes. The
horizontal black arrowheads denote associations, i.e. a
class aware of the previous one.

Similarly with the so to speak sunset, of the
faraway sun, the closest star to planet earth which is
actually rotating around the sun. Here the sun
represents a less peculiar device to measure a short
time and perhaps human vanity.

2.3 Poetry Is Runnable

Running a poem is to read it in one’s head or aloud,
once and again, to understand its contents. Running
means understanding.

The statechart in Fig. 3 shows the actual reading
steps – as transitions between states – of the above
poem by one of the authors of this paper in order to
be satisfied by his understanding of the poem. The
starting point is the upper-left arrow out of the black
circle. The reader decides about the ending point that
could be at the sunset state, but not necessarily.

Software, Is It Poetry or Prose? - Conceptual Content at the Higher Abstraction Levels

11

Figure 3: RUNNING (reading in one’s head) THE
SONNET by E. St. Vincent Millay – In each of the four
states one reads the respective stanza (class). One may
proceed to the next state, to a related state or return to a
previous state. The reason for a specific transition is
written close to the transition arrow: this reason may be
either a difficulty to be solved or just an associative link.
For instance, in the upper transition from cigarette to
jazzing one has “cigarette ended on the floor”. Here “on
the floor” is associatively related to “on the wall” in the
opposite direction transition.

3 REFACTORING POETRY AS IF
IT WERE SOFTWARE

In this section we analyse a poem which illustrates a
case of analogy to software in which one needs to
refactor (Mens, 2004), (Fowler, 1999) classes.

3.1 Interrupted Stanzas

Poems may have shorter than expected stanzas,
which convey meaning by their very interruptions.
Fig. 4 displays a poem – named Edge – written by
Sylvia Plath (Plath, 1963). This poem has modern
characteristics, such as quite free structure and the
absence of rhyme.

Plath’s poem structurally has 10 very short
stanzas of 2 verses each. But after some “poem
running” in one’s head, one perceives that many of
the sentences of the poem are broken into
consecutive verses. For instance let us look at the
sentence:

Her bare
Feet seem to be saying:

It starts in the second verse of the third stanza (Her
bare) and continues in the fourth stanza (Feet seem
to be saying:). There is a whole blank line between

the stanzas strongly suggesting a deliberate
interruption – as part of the poem significance –
despite the fact that the word Feet begins with a
capital letter insinuating that it starts a new sentence.

Thus, the structure of the poem – in particular the
many interruptions – conveys semantics. Further
examination of the poem links these interruptions to
its main meaning.

Searching the Web – e.g. (Wikipedia, 2015) –
one finds that Edge was written a short time before
Sylvia Plath’s relatively young age suicide – a
drastic intentional interruption of her life. Given this
information, the title Edge, its broken sentences, and
the overall poem gets a possible meaning.

3.2 Refactoring Poetry Classes

If one persists in the one-to-one correspondence
between stanzas and UML classes, one would obtain
ten classes for Plath’s Edge poem class diagram.

In Fig. 5 one can see the corresponding class
diagram of Plath’s Edge poem. It contains just three
classes – named by their most significant words –
with attributes and functions given by considerations
similar to those that lead to the diagram in Fig. 2.

Why three instead of ten classes?
Resuming the “poem running” in one’s head, one

finds that in spite of the broken sentences, one has a
clear sense of continuity among groups of stanzas.
Paradoxically, the interruptions are rather links
between consecutive stanzas. One can divide the
latter into three groups.

The first group has stanzas 1 to 4. The common
subject is the woman and her body. It is perfected,
an accomplishment, and a Greek tragedy brings it
beyond the Edge, it is over.

The second group has stanzas 5 to 8. The garden
may be associated with a kindergarten, with the
Garden of Eden (the serpent and the woman), the
flowers and odors.

The third group with just two stanzas 9 and 10,
where a distant – detached – moon is staring at the
tragedy, but “nothing is to be sad about”, she (the
moon? the woman?) is used to this sort of thing.

So, instead of many too short stanzas, we
refactor the poem classes into just three consistent
ones.

Refactoring classes, see e.g. (Mens, 2004),
(Fowler, 1999) is a software technique which is
based upon semantics (and also efficiency)
considerations. Its aim is to facilitate comprehension
of the software system, for diverse purposes, such as
maintenance, reuse, and so on.

SKY 2015 - 6th International Workshop on Software Knowledge

12

Figure 4: “EDGE” POEM by Sylvia Plath – It has ten very
short stanzas of only two verses. One perceives broken
sentences, which rather link stanzas into three groups.

A potentially interesting usage of the analogy
between poetry and software is for educational
purposes. It should be an instructive exercise for
software engineering students, to practice concurrent
factorization of poems and software systems and
their respective class diagrams. This would
emphasize and clearly illustrate the importance of
semantics for software.

4 SOFTWARE AS PROSE

Software assets other than runnable programs, e.g.
requirements, specification documents or user’s
guides, are essentially like prose. Let us see their
common properties.

4.1 Prose Is Easily Readable

By prose we mean all texts – literary, journalistic or

professional – excluding the following types: poetry,
text containing formulas (e.g. mathematical or
chemical), texts very specialized like philosophical
ones. The immediate quality of prose is to be easily
readable, as people are used to speak and write in
prose.

Figure 5: UML CLASS DIAGRAM of the Edge POEM –
each class (a yellow rectangle) corresponds to a group of
stanzas (see text). Class names are numbered by groups
order. The 1st one is “Her”. The middle class part has
“nouns” (attributes). The lowest part has “verbs”
(functions). The vertical white triangle arrowhead denotes
inheritance (similar themes): the bold red words are
common to pairs of classes. The horizontal black
arrowhead denotes association (a class aware of the
previous one).

4.2 Prose Also Has Metaphors

On the other hand, prose texts have varying degrees
of sophistication. Thus all the complex
characteristics of natural language – say ambiguity,
synonymy, use of metaphors etc. – may appear in
ordinary prose texts, eventually demanding deeper
comprehension.

5 SOFTWARE AS CONCEPTUAL
CONSTRUCTS

Software systems are hierarchical. From bottom up,

Software, Is It Poetry or Prose? - Conceptual Content at the Higher Abstraction Levels

13

one roughly encounters assembly language the
closest to a machine, next a high-level language as
Java, then UML and on top a small set of ontologies
relevant to the system domains. From the ontology
concepts (classes) one can derive UML classes.
Thus the highest-level of abstraction is conceptual
content, closest to human beings.

5.1 Conceptual Content of Abstract
Factory

In order to illustrate the idea of conceptual content
of software, we use a software design pattern class
diagram as a case study.

The class diagram of the Abstract Factory
software design pattern (Gamma, 1995) is seen in
Fig. 6. The purpose of this design pattern is to
provide an interface to create families of related
objects, without specifying their concrete classes.

A general observation, when looking at this class
diagram, is that none of its concepts is part of the
vocabulary (the reserved words) of a programming
language. So they are not intrinsic software artefacts.
Let us now specifically examine some of these
concepts. We start with “Abstract Factory”. Both
words “abstract” and “factory” appear in the English
dictionary as independent words with specific
meanings, having no necessary relation to software.
The word “abstract” has been incorporated with a
specific meaning into software. It denotes a special
kind of class.

Figure 6: CLASS DIAGRAM OF THE ABSTRACT
FACTORY DESIGN PATTERN – The abstract factory
class may have any number (here 2) of concrete factory
sub-classes. Each concrete factory has the same family of
products (here Product A and Product B). For instance
Concrete Factory 2 has two products Product A2 and
Product B2. Concrete Factory 2 and its products have class
names with hatched background.

5.2 Software Also Has Metaphors

The concept “Abstract Factory” is a metaphorical
usage of natural language terms incorporated into
software. If one looks carefully at the Abstract
Factory class diagram, indeed all the concepts result
from metaphorical usage.

“Create” is another such example, meaning
construction of an object in an object oriented
programming language. A “factory” is thus a class
whose main purpose is to construct “objects”.

Moreover, “concrete factory” is a typical
example of ambiguity. It is not a factory that
fabricates concrete or itself made of concrete (in the
dictionary: concrete is a strong construction material
made of sand, conglomerate gravel, in a cement
matrix).

Even the explanation of the purpose of the
abstract factory design pattern using the term
“families” of related objects extends by analogy the
meaning of a non-software word, viz. “family”.

Summarizing our claim, the highest-level
abstraction of software is as set of concepts that may
be extracted from domain ontologies and included in
UML class diagrams. Since these concepts are
ordinary natural language words, all the
complexities of natural language, such as ambiguity,
synonymy, figures of speech as metaphors, are
fundamental for the understanding, development and
maintenance of software, and therefore should be
part of a basic theory of software.

Are these complexities so fundamental for
software? The immediate answer is that if software
itself should automatically manipulate software,
these complexities should be resolved.

5.3 A Metaphor Design Pattern

Given the fact that metaphors are so common in the
highest abstraction levels of software, we propose a
generic Metaphor design pattern. The purpose of
this design pattern is as follows: easily change or
addition of a new context for a given term with
multiple meanings.

This proposed design pattern is modelled after
the Strategy pattern (Gamma, 1995), with a sort of
inversion of roles. In the Strategy pattern a context is
fixed and strategies are variable. In the Metaphor
pattern a given term is fixed and its contexts
providing different meanings are variable.

The class diagram of this proposed Metaphor
pattern is shown in Fig. 7. Its generic classes are:

 Metaphor – it contains the several meanings of a
given term; it receives a term meaning as input

SKY 2015 - 6th International Workshop on Software Knowledge

14

and sets its specific context;

 Term – it is an (abstract) interface declaring a
SetContext() function and corresponding
Actions();

 Contexts – these are concrete classes with
different domains, each say given by an ontology
and its specific actions.

An example of a term is “bridge”. This term has
numerous different but metaphorically related
meanings given by the respective contexts: e.g. civil
engineering, odontology, card games, and even
design patterns.

Figure 7: CLASS DIAGRAM OF A METAPHOR
DESIGN PATTERN – In a metaphor a single term is fixed
and its various meanings are set by variable contexts. In
this diagram only two contexts are shown, but they imply
that any number of contexts can be added.

6 DISCUSSION

This discussion deals with foundational issues,
practical implications for software and theoretical
implications.

For the purposes of this discussion, instead of
referring in separate specifically to the similarity of
software either to poetry or to prose, we jointly refer
to both under the rubric of software natural
language conceptual issues.

Before we embark in the discussion proper, it
should be pointed out that this paper stressed
metaphors. But different works also refer to other
figures of speech. For instance, (Noble, 2004) takes
care to differentiate metaphor from metonymy,
especially in the context of software design patterns.
In contrast to our approach, they refer to the pattern
functionality and not to the terms naming the pattern
classes.

6.1 Foundational Issues

Significant issues have been opened in the literature
concerning software conceptual contents. Is software
semantics intrinsic (inner) or extrinsic (outer)? In
other words, is software semantics just given by the
inner workings of the computing machine or is it
deeply related to the human conceptual (outer)
world?

White mentions various obstacles to solve this
symbol grounding problem (White, 2006): e.g. the
difficulty to assign a clear boundary between inside
and outside of the computer system. Piccinini argues
for “computation without representation” (Piccinini,
2006), i.e. instead of semantics, meaning of symbols
and states is given by functional properties of
computational systems. According to Smith's notion
of participatory computation (Smith, 2002), any
physical computing system is inherently situated in
its environment in a manner in which its processes
extend beyond the physical boundaries of the
system, which stands in semantic relations to distal
states of affairs.

Another foundational issue refers to universality.
Do the conceptual contents of software affect only
restricted classes of software systems? Absolutely
not: the referred characteristics of natural languages
– ambiguity, synonymy, figures of speech such as
metaphoric usage for new word invention – not only
are extensive at a given time, but also are expected
to persist along time. They are inherent to the
vitality and evolution of natural languages.

In this work we provided case studies to make
plausible that the highest software abstraction levels
do not refer at all to the machine and its semantics
works much like in ordinary human language. This
will be discussed at length in a subsequent paper.

6.2 Conceptual Software: Praxis

From the praxis criterion viewpoint, explicit
consideration of conceptual contents of software
enables various ways of software system
development in an ontology-oriented fashion – see
e.g. (Pan, 2013), (Exman, 2013). There also exist
tools for improvement of software system
modularity in terms of conceptual analysis (Lindig,
1997), (Ganter, 1999), (Exman, 2015).

The practical importance of semantic
considerations of the natural language concepts
found in the higher abstraction levels of software, as
opposed to the dominantly syntactic concerns in
lower abstraction levels – viz. code in programming
languages – refer to different aspects:

Software, Is It Poetry or Prose? - Conceptual Content at the Higher Abstraction Levels

15

a- Natural Language for Non-programmers –
nowadays software applications in mobile
devices – typically smartphones – are
increasingly used by non-programmers, meaning
that software is more and more exposed and
should be understood by people that do not
“speak” programming languages.

b- Software Systems Complexity – software systems
are growing in size, complexity and criticality,
with potentially life-threatening situations – e.g.
autonomous vehicles, remote surgery, and
largely automatic power stations. Design of such
complex systems is presented in increasingly
high abstraction levels to enable design
comprehension.

6.3 Conceptual Software: Theory

From a theoretical viewpoint an important issue is
formality. FCA (Formal Concept Analysis) (Ganter,
1999), (Ganter, 2005) is a well-developed formalism
dealing with concepts. It involves lattice theory and
related algebraic domains of mathematics. Besides
its theoretical importance, it has been shown to have
a variety of practical applications, including
software development.

One raises the issue of boundaries of the
formalism applicability: are there software systems
for which this formalism is insufficient? We
encourage exploration beyond these boundaries,
eventually leading to new discoveries.

6.4 Future Work

A final theoretical criterion we should consider is
precision and measurability with regards to formal
concept analysis. This is currently a topic of our
research, and we have enough reasons to assume that
results of interest are attainable.

Possible directions of measurability are
comparisons of two numerical values: 1- a structure
refactoring ratio, say in sub-section 3.2 we obtained
the class diagram by reducing the number of classes
in a 3/10 ratio; 2- a semantic meaning ratio which
would express sizes of sets of terms needed to
convey the same meaning.

7 CONCLUSION

The main contribution of this work is raising issues
concerning the importance of conceptual analysis for
software theory – which follows from inherent

characteristics of natural languages, rather than from
programming languages.

ACKNOWLEDGEMENTS

The authors wish to acknowledge significant
suggestions by two anonymous referees.

REFERENCES

Backus, J. W., 1959. The syntax and semantics of the
proposed international algebraic language of the
Zurich acm-gamm conference, in Proc. Int. Conf. on
Info. Proc.,Paris.

Booch, G., Rumbaugh, J. and Jacobson, I., 2005. The
Unified Modeling Language User Guide, 2nd ed.,
Addison-Wesley, Boston, MA, USA.

Brown, J. R. and Fehige, Y., 2011. Thought Experiments,
The Stanford Encyclopedia of Philosophy, E. N.
Zalta (ed.). Web site:

http://plato.stanford.edu/archives/fall2011/entries/thought-
experiment/

Chomsky, N., 1957. Syntactic Structures, Mouton.
Exman, I. and Yagel, R., 2013. ROM: an Approach to

Self-consistency Verification of a Runnable Ontology
Model, in CCIS Vol. 415, 271-283, Springer.

Exman, I. and Speicher, D., 2015. Linear Software
Models: Equivalence of Modularity Matrix to its
Modularity Lattice, in Proc. 10th ICSOFT Int. Joint
Conference on Software Technologies, Colmar,
France, pp. 109-116, (July 2015). DOI =
10.5220/0005557701090116

Fauconnier, G., 1997, Mappings in Thought and
Language, Cambridge University Press, Cambridge
(UK).

Fowler, M., Beck, K., Brant, J., Opdyke, W. and Roberts,
D., 1999. Refactoring: Improving the Design of
Existing Code, Addison-Wesley, Boston, MA, USA.

Gabriel, R. P., 2008. Designed as Designer, in
OOPSLA’08.

Galilei, Galileo, 1632. Dialogue Concerning The Two
Chief World Systems, Italian, English translation by
Stillman Drake, University of California Press,
Berkeley, CA, USA, 1953.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J., 1995.
Design Patterns, Addison-Wesley, Boston, MA, USA.

Ganter, B. and Wille, R., Formal Concept Analysis:
Mathematical Foundations, Springer, New York,
USA, 1999.

Ganter, B., Stumme, G. and Wille, R., 2005. Formal
Concept Analysis - Foundations and Applications.
Springer-Verlag, Berlin, Germany.

Hopper, G. M., 1953. Compiling Routines, Computers and
Automation, vol. 2, (4), pp. 1-5, (May).

Lakoff, G., 1986, A Principled Exception to the
Coordinate Structure Constraint, in Proceedings of the

SKY 2015 - 6th International Workshop on Software Knowledge

16

the Twenty-First Regional Meeting Chicago Linguistic
Society, Chicago Linguistic Society.

Langacker, R. W., 1987, Foundations of Cognitive
Grammar, Stanford University Press, Stanford (CA).

Lindig, C. and Snelting, G., 1997. Assessing Modular
Structure of Legacy Code Based on Mathematical
Concept Analysis, in ICSE’97 Proc. 19th Int. Conf. on
Software Engineering, pp. 349-359, ACM. DOI:
10.1145/253228.253354.

McCarthy, J., 1960. Recursive functions of symbolic
expressions and their computation by machine, Part I.,
Comm. ACM, Vol. 3 (4), pp. 184-195 (April).

Mens, T. and Tourwe, T., 2004. A survey of software
refactoring, IEEE Trans. Software Eng., Vol. 32, pp.
126-139. DOI: 10.1109/TSE.2004.1265817.

Millay, E. St. V., 1921. Second April, “Unnamed Sonnets
I-XII”, pp. 97-110, Mitchell Kennerley, New York,
NY, USA,

Modern American Poetry, Online Poems, Web site:
www.english.illinois.edu/maps/poets/m_r/millay/onlin
e_poems.htm

Noble, J., Biddle, R. and Tempero, E., 2002. Metaphor
and metonymy in object-oriented design patterns, in
ACSC’02 Proc. 25th Australasian Conf. Comp. Sci.,
Vol. 4, pp. 187-195. DOI: 10.1145/563857.563823

Nofre, D. et al., 2014. When Technology Became
Language, The Origins of the Linguistic Conception
of Computer Programming, 1950-1960, Technology
and Culture, vol 55, pp. 40-75.

OMG (Object Management Group), 2015. “Unified
Modeling Language” (UML) Specification version
2.5, (June 2015). URL Accessed September 2015:
http://www.omg.org/spec/UML/2.5.

Pan, J. Z. et al., 2013. (eds.), Ontology-Driven Software
Development, Springer, Heidelberg, Germany.

Piccinini, G., 2006. Computation without Representation,
Philosophical Studies. DOI= 10.1007/s11098-005-
5385-4.

Plath, S., 1963. Edge Poem, Web site:
http://www.poetryfoundation.org/poem/178970

Smith, B. C., 2002. The foundations of computing, in:
Scheutz, M. (ed.), Computationalism: New Directions,
pp. 2358, MIT Press, Cambridge, MA, USA.

Turing, A., 1937. On Computable Numbers with an
Application to the Entscheidungsproblem, Proc.
London Math. Society, vol. 42, pp. 230-265.

White, G., 2011. Descartes among the Robots – Computer
Science and Inner/Outer Distinction, Minds &
Machines. DOI= 10.1007/s11023-011-9232-4.

Wikipedia, 2015. Sylvia Plath, Wikipedia. Web site:
https://en.wikipedia.org/wiki/Sylvia_Plath

Software, Is It Poetry or Prose? - Conceptual Content at the Higher Abstraction Levels

17

