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Abstract: The famous proof method by the conventional Skolemization and resolution has a serious limitation. It does
not guarantee the correctness of proving theorems in the presence of built-in constraints. In order to understand
this difficulty, we use meaning-preserving Skolemization (MPS) and equivalent transformation (ET), which
together provide a general framework for solving query-answering (QA) problems on first-order logic. We
introduce a rule for function variable elimination (FVE), by which we regard the conventional Skolemization
as a kind of the composition of MPS and FVE. We prove that the FVE rule preserves the answers to a class
of QA problems consisting of only user-defined atoms, while we cannot prove it in the presence of built-in
constraints. By avoiding the application of the FVE rule in MPS & ET computation, we obtain a more general
solution for proof problems, which guarantees the correctness of computation even in the presence of built-in
constraints.

1 INTRODUCTION If we take conventional proof method, however,

this problem is solved incorrectly. By applying Sko-
One of the most important methods for proving theo- lemization toE; A —Ez, a 0-ary function symbol, say
rems is based on Skolemization and resolution. This fn, is introduced andE; A —E; is converted into the
method, however, has a serious limitation in that it following four clauses:

may give an incorrect result in the presence of built- . :
in predicates. Consider, for example, a simple proof TaxCutx) « hasChildx,y), hasChildx,2),

problem below, which is a modification of the tax-cut _ notedy, z)
problem given in (Motik et al., 2005). Assume that hasChild PeterPaul) «
. . o : hasChild Peter f,,) <
e noteqis a predicate for built-in constraint atpms « TaxCu(Peten
and for any ground terntg andty, notedts,t2) is
true iff t; #£t,, and Application of the resolution rule three times yields

a negative clausg— notedqPaul, f;,). SincePaul and

e F, I, andFs are the first-order formulas given f, are not equal, we derive an empty clause( Thus

by: a proof is obtained by Skolemization and resolution,
Fi: WX, Wy, Vz: and the answer is “yes”, which contradicts the intu-
[(hasChildx,y) A hasChildx,z) Anotedy,z)) itive and correct answer explained earlier.
— TaxCux)] From this example, the following questions natu-
F>: hasChild PeterPaul) rally arise:

1. Where does this inconvenience come from?

] ) . 2. How to develop a theory to deeply understand the
The problem is to determine whethgj logically use of Skolemization and resolution and its limi-
entails E;, whereE; = R AR AR and E; = tation?
TaxCufPeten. SinceFs is already implied by, ) )
we know only one person who is a child BEter 3. Can we invent a new solution method to resolve
HenceE; i Ey, i.e., E1 does not logically entail this difficulty?
TaxCufPetern. The correct answer to this proof prob- We give an answer to each of these questions by re-
lem is thus “no”. placing the conventional Skolemization and resolu-

Fs: 3x: hasChild Peterx)
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Figure 1: A conventional proof diagram.
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Figure 2: An ET-based proof diagram.

tion (Robinson, 1965) with the meaning-preserving
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Figure 3: Connecting the conventional proof diagram and
the ET-based proof diagram using FVE.

To connect the diagrams in Fig. 1 and Fig. 2, we
introduce in this paper a partial mapping FVE from

Skolemization (Akama and Nantajeewarawat, 2011a) C£, to C£; as outlined in Fig. 3. For instance, the

and equivalent transformation (ET).

Let £, be the set of all first-order formulas. Let
CS be the conventional algorithm for transforming a
first-order formulainto its clausal form using the con-
ventional Skolemization. LetL; be the powerset
of the set of all usual clauses. Ldtdenote resolu-

clause sef (p(x) < fundf,x))} is mapped by FVE
to {(p(h) «+-)}. The conventional Skolemization, CS,
is identified as the composition of MPS and FVE in
the sense that

{CSL)|Le £1} = {FVE(MPS(L)) | L € £1}.

tion and factoring. Then a typical computation path \we prove in this paper that FVE preserves the answers
by the conventional proof method can be depicted by to proof problems in a certain restricted class. Since
Fig. 1. Afirst-order formulais converted by CSiinto & resolution and factoring are ET rules in the space of
set of usual clauses possibly with new function sym- ., the conventional solution can also be regarded
bOIS. FOI’inStance, an eXiStentia”y quantiﬁed formula as ET Computation’ i.e_, the conventional diagram

3x: p(x) is transformed into a clause sgip(h) <)},
whereh is a 0-ary function symbol.

In conventional clauses, all variables are univer-
sally quantified and existential quantification can-

supports a restricted form of computation compared
with the ET-based proof diagram.

The theory in this paper enables us to compare
the conventional solution and the ET-based solution

not be expressed. Conventional clauses are therefor proof problems in the common MPS & ET frame-

fore not sufficiently expressive for representing first-

order formulas. To extend clauses with the expres-

sive power of existential quantification, variables of
a new type, calledunction variables were intro-
duced (Akama and Nantajeewarawat, 2011a).
function variable may appear in an atom of a spe-
cial kind, calledfuncatom, which is generally of
the formfund f,t1,...,th,th+1), wheref is ann-ary
function variable or am-ary function constant, and
t1,...,tn,the1 are usual terms.

To understand the computation path in Fig. 1, we
consider a new path given in Fig. 2, where MPS
is the algorithm for transforming a first-order for-
mula into its extended clausal form using meaning-
preserving Skolemization (Akama and Nantajee-

warawat, 2011a). For instance, an existentially quan-

tified formula3x : p(x) is transformed by MPS into

a clause sef(p(x) < fundf,x))}, wherefund f,x)

is a funcatom andf is a 0O-ary function variable,
which is not included inZ;. An existentially quanti-
fied formula cannot be equivalently transformed into
a clausal form in the usual first-order formula space
L1. We extended.; into a new space, which includes
function variables. In Fig. 2C L, is the powerset of

the set of all extended clauses, which may possibly in-

work. The limitation of FVE can be precisely inves-
tigated. The difficulty shown by the example at the
beginning of this section can be overcome in the MPS
& ET framework by using ET computation paths that

A do not include application of the FVE rule.

The MPS & ET theory has been developed mainly
for solving query-answering (QA) problems. A QA
problem is a pairK,a), whereK is a first-order for-
mula anda is a user-defined atom, and the answer to
this problem is the set of all ground instances tiiat
are logically entailed b¥K.

While the answer to a proof problem is either
“yes” or “no”, which does not contain any (first-order)
term, the answer to a QA problem is a set of ground
atoms that may contain terms. MPS is necessary for
solving QA problems. Since a new term introduced
by the conventional Skolemization may affect ground
atoms in a model of a given first-order formula, the
conventional Skolemization is inappropriate for de-
veloping a solution for QA problems. So we take
MPS over CS. Since ET includes resolution and fac-
toring, we take the MPS & ET framework over the CS
& rf framework.

It was shown in (Akama and Nantajeewarawat,
2013) that proof problems constitute a specific sub-

clude function variables. MPS and extended clausesclass of QA problems. So it is natural to apply the

will be formally defined in Section 3, where the set of
all extended clauses is referred to as EELS

MPS & ET framework to solve proof problems. The
theory presented in this paper is developed as a the-
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ory for solving QA problems based on the MPS & ET of K. UsingModelgK), the answer to a QA problem
framework. (K,a) can be equivalently defined as

The rest of the paper is organized as follows: Sec-
tion 2 formalizes QA problems and proof problems. ang(K,a) = (ﬂModeIs{K)) nrep(a),
Section 3 describes a procedure for converting first- whererep(a) denotes the set of all ground instances
order formulas using MPS into equivalentformulasin of a (Akama and Nantajeewarawat, 2013).
extended existentially quantified conjunctive normal
forms, and formulates QA problems in clausal forms. 2.3 Proof Problems
Section 4 defines a target mapping, calléil, which
provides a basis for ET. Section 5 presents the main A proof problemis a pair(E;,E,), whereE; andE;
theoretical results of this work and the FVE rule. Sec- are first-order formulas, and the answer to this prob-
tion 6 explains the limitations of the FVE rule. Sec- lem, denoted byns,(E1, E), is defined by
tion 7 answers the three questions identified in the “yes if B = E
third paragraph of Section 1. Section 8 provides con- ans,(E1, E) = { “y N 1E =2
clusions. The proofs of all theorems presented in this no”  otherwise.
paper can be found in (Akama and Nantajeewarawat, It is well known that a proof probler€y, E,) can be
2015). converted into the problem of determining whether

The following notation is used. Given a sef ~ E; A —E; is unsatisfiable (Chang and Lee, 1973),
powA) denotes the power set éfandfpow(A) de- i.e., whetherEy A —=E» has no model. As a result,
notes the set of all finite subsetsAf ans(E1, E2) can be equivalently defined by

if ModelgEy A —Ep) = @,
ans:(Ex, E2) = { otherwise.

“yes”
“no”

2 QA PROBLEMS AND PROOF

PROBLEMS
3 MEANING-PRESERVING

TRANSFORMATION ON AN
EXTENDED FORMULA SPACE

2.1 Interpretations and Models

In this paper, an atom occurring in a first-order for-

mula can be either a user-defined atom or a constraintafter defining an extended formula space and an exis-
atom. The semantics of first-order formulas based tentially quantified conjunctive normal form (ECNF),
on a logical structure given in (Akama and Nantajee- a procedure for converting a first-order formula into
warawat, 2012) is used. The set of all ground user- an ECNF using meaning-preserving Skolemization

defined atoms, denoted lgj, is taken as the interpre-
tation domain. Arinterpretationis a subset of;. A
ground user-defined atoqis true with respect to an
interpretatior iff gbelongstd. Unlike ground user-

(MPS) is recalled. The notions of an extended clause
space, a plain clause, and a QA problem in a clausal
form are then introduced.

defined atoms, the truth values of ground constraint 3.1 An Extended Formula Space

atoms are predetermined independently of interpreta-

tions. A modelof a first-order formuleE is an in-
terpretation that satisfids. The set of all models of a
first-order formuléE is denoted bjModelSE). Given
first-order formula€; andEy, E; is alogical conse-
quenceof E;, denoted bye; = By, iff every model of
E1 is a model ofes.

2.2 QA Problems

A query-answering problerfQA problen) is a pair
(K,a), whereK is a first-order formula, representing
background knowledge, arads a user-defined atom,

We consider an extended formula space that contains
three kinds of atoms, i.e., user-defined atoms, con-
straint atoms, antuncatoms. Afuncatom is an ex-
pression of the fornfung f,ty,...,th,th+1), wheref

is either am-ary function constant or am-ary func-

tion variable, and th& are usual terms. There are
two types of variables: usual variables and function
variables. A function variable is instantiated into a
function constant or a function variable, but not into a
usual term. Each-ary function constant is associated
with a mapping fromg" to Gi, whereG; denotes the
set of all ground terms. The extended space contains

representing a query. The answer to a QA problem both universal quantifiers and existential quantifiers.

(K,a), denoted byanga(K, a), is defined as the set of

An extended disjunctive foriis a formula of the

all ground instances afthat are logical consequences form
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Wi, W (& V- VanVabr v vabp v
wherevs,...,Vym are usual variables, each af, ...,
an,by,...,bp is a user-defined atom or a constraint
atom, andy, ... ,fq arefuncatoms.

An existentially quantified conjunctive normal
form (ECNRF is a formula of the form

IVhiye- oy IVhm: (CLA - ACy),

wherevys,...,Vhy are function variables and, .. .,
C, are extended disjunctive forms.

3.2 Conversion Algorithm

Assume that

o the initial space i is the set of all first-order for-
mulas, and

¢ the target spacelR is the set of all ECNFs.

Let a formulaa in INI be given as input. It is trans-
formed into a formula in i as follows:

1. Convert— and+« equivalently into—, A, andv,
using the following logical equivalences:

—BVy
(=BVY) A (myVB)

2. Move - inwards equivalently until each occur-
rence of- immediately precedes an atom, using
the following logical equivalences:

B—y
By

-(-B) = B

-(BAy) = Bv-y
—(Bvy) = —BA-y
-VX:o = 3IX:-d
—-3Ix:a = Vx:-a

3. Repeatedly move in the current formula through
3,V, andA as far as possible using the following
logical equivalences in the left-to-right direction:

(X:B)VYy = 3Ix:(BVy)
(W:B)VY = Wx:(BVy)
(BAy)VE = (BVO)A(YVD)

Function-variable Elimination and Its Limitations

5. If the current formula includes a subformula of
one of the two forms
o VXy,...,VXn—1,V%n 1 B
o VXy,...,VXn—1,3Xn 1 B
such thaky, ..., xn—1,X, are not mutually distinct,
then rename these quantified variables by using
new variable names so that different quantifica-

tions in this subformula refer to different vari-
ables.

6. If the current formula includes, then:
(a) Skolemization:From the current formula, se-
lect a subformula
VX1, .-, VX0, 3Y 1 B,

wheren > 0, such that there is no further
universal quantification over this subformula.
Transform this subformulainto

Ih,Vxq, ..., V%0, VY (BV=fundh,Xa,..., X, Y)),

whereh is a newn-ary function variable that
has not been used so far.

Repeatedly move the newvsubformula (intro-
duced at Step 6a) throughas far as possible
using the following logical equivalence in the
left-to-right direction:

(3h:B) Ay
(c) Goto Step 3.

7. Stop with the current formula as the output for-
mula.

(b)

Jh:(BAY)

It was shown in (Akama and Nantajeewarawat,
2011b) that this algorithm always terminates and
yields an output ECNF in N that has the same logi-
cal meaning as the input first-order formula.

3.3 An Extended Clause Space

An extended clause & a formula of the form
ai,...,an < bl,...,bp,fl,...,fq,

where each ofy,...,an,by,...,bp is a user-defined

Each time the first and the second equivalences gtom or a constraint atom, arfd,...,fq are func

above are used, if includesx as a free variable,
then rename the quantified variabdén (3x : B)
and(Vvx: ), respectively, by using a new variable
name.

4. Repeatedly move in the current formulathrough
V as far as possible using the following logical
equivalence in the left-to-right direction:

vX: (BAY) (WX B)A(VX:y)

atoms. All usual variables occurring @are implic-
itly universally quantified and their scope is restricted
to the extended clauseitself. The setfay,...,an}
and{by,...,bp,f1,...,fq} are called théeft-hand side
and theright-hand siderespectively, of the extended
clauseC, and are denoted bijas(C) andrhs(C), re-
spectively. Whem = 0, C is called anegative ex-
tended clauseWhenn = 1, C is called anextended
definite clausethe only atom inhs(C) is called the
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headof C, denoted byheadC), and the seths(C) is 3.5 QA Problems in Clausal Forms
also called théodyof C, denoted byodyC). When
n> 1, Cis called a‘m_u|tl-_head extended clause Let <K’a> be a QA prob'em, wherK is a first-order
When no confusion is caused, an extended clause.formyla. Suppose that is converted into a seEs
a negative extended clause, an extended definiteof extended clauses by the procedure in Section 3.2.
clause, and a multi-head extended clause are alsorhen the QA probleniK,a) is transformed into the
called aclause a negative clausea definite clause QA problem(Cs a), which is said to be in alausal
and amulti-head clausgerespectively. form.
The set of all extended clauses is denoted by  aAgsyme that a proof problerEy, Ez) is given,
ECLS. Theextended clause spade this paperis  \yhereE; andE, are first-order formulas. This proof

the powerset of ECLS problem can be solved by first constructing a QA
Semantically, an extended clause corresponds toproblem(E,ye$, where

an extended disjunctive form, and a set of extended

clauses corresponds to an ECNF. B=tbe a set of e E=E;A-Ep and

extended clauses. Implicit existential quantifications o yesis a ground atom that does not appeaEin

of function variables and implicit clause conjunction ) ]

are assumed iBs. Function variablesi@sare allex- ~ SINce(E,yes is a QA problem, a solution method for
istentially quantified and their scope covers all clauses QA Problems can be used for solving it. That is, the
in Cs With occurrences of function variables, clauses QA Problem(E,yes is transformed into a QA prob-

in Csare connected through shared function variables. lem in a clausal formCs yes, whereCsis a set of
After instantiating all function variables i€sinto ~ €xtended clauses obtained frdrby the conversion

function constants, clauses in the instantiated set areProcedure in Section 3.2. The answer to the QA prob-

totally separated. lem (Cs yes, i.e.,ang;a(Cs yes, is either the single-
When no confusion is caused, a cla@és also N {yes or the empty set. As shown in (Akama
written as and Nantajeewarawat, 2013), the answer to the proof

problem(Ey, Ep), i.e.,ansy(E1, E2), can be obtained

e H «+ B, provided thaH = lhs(C) andB = rhs(C), throughang;a(Cs yes as follows:

e H <+ B,b,...,by, provided thaH = lhs(C) and

Bu{by,...,bn} =rhs(C), wheren > 1, and ans,(Ey, Ez) { “‘yes” .if ang;a(Cs yes = {yes,
e h« B, provided that{h} = Ihs(C) and B = ’ no” if anga(Csyeg = 2.
rhs(C).
3.4 Plain Clauses 4 A TARGET MAPPING MM

A plain clause and a plain clause set are defined be-A target mapp|ng isa key Concept for generating SO-
low. lutions for QA problems. We first prove in this sec-
tion that a mappingIM on pow(ECLS:), which is

Definition 1. A clauseC is plain iff the following defined in Section 4.2, is a target mapping, i.e., it sat-

conditions are satisfied: isfies Theorems 2 and 4. Transformations that pre-
1. If afuncatomfungf,ti,...,tn,th+1) Occurs inC, serve a target mapping always preserve the answers
thenty, ..., th,thy 1 are usual variables and are all to QA problems. For elimination of function variables
disctinct. (Theorem 8), Theorem 5 will play an important role
2. If funcatomsfund f,ty,...,tn,th+1) andfund f’, in Section 5.
t3,. .., th,th,1) both oceurirC, thentn 1 andty,, ;
are different. 4.1 Preliminary Notation for Defining
A set of clauses iplain iff it consists of plain clauses MM
solely. O

The notation below is used in Section 4.2 for defining

) . MM
Theorem 1. If a first-order formula is converted by

the algorithm in Section 3.2 into a set Cs of clauses in 1. Assumed that (i) for any constraint atamot(c)

ECLS, then Cs is a plain clause set. O is a constraint atom, (ii) for any constraint atom
¢ and any substitutioB, not(c)8 = not(c8), and
(iii) for any ground constraint atom, c is true iff
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not(c) is not true. Given a se€s of clauses in
ECLS:, letmvRh$Cs) be defined by

mvRh$Cs) = {mvRh¢C) | C € Cs},

where for any claus€, mvRh¢C) is the clause
obtained fromC as follows: For each constraint
atomc in Ihs(C), removec from lhs(C) and add

Function-variable Elimination and Its Limitations

SEL and a subseCs of GCL, letdc(sel Cs) be
defined as a subset of GDC by

dc(selCs) = {dc(selC) |C € Cs},

where for each clausee Cs dc(sel C) is the def-
inite clause obtained froi@ as follows:

e headdc(selC)) = sellhs(C))

not(c) to rhs(C).

2. Assume that (i)FVar is the set of all function
variables and=Con the set of all function con-
stants, and (ii)Map(FVar,FCon) is the set of
all mappings fromFVar to FCon Giveno €
Map(FVar,FCon) and a setCs of clauses in
ECLS, letCso = {Co|CecCs},ie,Cois
the clause set obtained fro@s by instantiating
all function variables appearing in it into function
constants using.

3. Let ECLS, denote the subset of ECEShat
contains all (extended) clauses with ho occurrence
of any function variablé. Let GCL be the set

of all clauses that consist only of ground user- 4.2 A Target Mapping MM
defined atoms. Given a sdéls of clauses in

ECLS\¢v, letginst(Cs) be defined as a subset of ysing the notation provided by Section 4.1, we de-
GCL as follows: fine a mappindIM (Definition 2) and prove in Theo-

(@) LetCs; be a ground clause set obtained from rem4thatViM is a targetmapping, i.e., for any clause
mvRh$Cs) by setCs (NModelgCs) = MM(Cs).

Cst = {CB| (Ce mvRh$Cs)) & Definition 2. Let Csbe a set of clauses in ECESA
(6 is a ground instantiation for all  collectionMM](Cs) of ground-atom sets is defined as

e bodydc(selC)) =rhs(C)

5. For any definite-clause s& C GDC, let the
meaning ofD, denoted byM (D), be defined as
follows:

(a) Letamappingp onpow(GU{L}) be defined
by: foranyGC GU{ L},
To(G) = {headC)| (CeD) & (body(C) CG)}.
(b) M (D) is then defined as the sgfy_; T3 (2),
where T3(@) = Tp(2) and for eachn > 1,
T5(2) = To(T5(2)).

usual variables occurringi@)}.  the set
(b) Let Cs, be a ground clause set obtained from {M(D) | (GT Msap(Fgar, FCon) &
Cs1 by removing each clause whose right-hand (E)e—ed EL) & c 2
side contains at least one false constraint atom (L = Wc[:(sDeLglnsl( DSG)))
or at least one falskincatoms. (L ¢ M(D))}

(c) Then letginstCs) be a ground clause set ob-
tained fromCs, by removing all true constraint
atoms and all truéduncatoms from the right-
hand side of each clause@s,.

In Theorems 2-5 below, assume tRais a set of
clauses in ECLS

Theorem 2. MM(Cs) C ModelgCs). O
4. Let G denote the set of all ground user-defined
atoms. Assume that is agroundatom outsidg.  Thegrem 3. For any m in Model6Cs), there exists
Let SEL be defined as the set of all mappings from |,y - MM(Cs) such that rhcC m. 0
fpow(G) to GU{L} such that for anpele SEL -
and anyX € fpow(G), the following conditions
are satisfied:

o If X =g, thense(X) = L. Theorem 5 below is used for proving the correct-
o If X # @, thensel(X) € X. ness of elimination of function variables in Theo-
Let GDC be the set consisting of every definite fem 8.

clause whose body contains only ground user- .

defined atoms and whose head is either a ground ' €orem 5. ModelgCs) = & iff MM(Cs) = @. [
user-defined atom at. Given a mappingel €

Theorem 4. N ModelgCs) = NMM(Cs). O

1Function constants may occur in clauses in EGLS
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5 ELIMINATION OF FUNCTION
VARIABLES

This section investigates the FVE partial mapping, de-

fined in Section 5.1, which maps a plain set of clauses

to a set of usual clauses. By the application of FVE,
all function variables in a given plain clause set are
instantiated. Given an arbitrary first-order formula
the formula MP$L) is a plain clause set and it can

be further converted into a set of usual clauses (with-

out function variables), which can also be obtained

for elimination of function variables, which is hence-
forth called theFVE rule

Theorem 9. Assume that yes is a ground atom
that does not appear in Cs. Then gg€syes =
ang;a(Cs, yes. O

5.3 A Solution Method for Proof

Problems

by app|y|ng the conversion a|gorithm CS (Cf F|g 1 5.3.1 A Procedure for SOIVing Proof Problems

in Section 1) td_. The main objective of this section

is to prove Theorem 9, which states that the answer toA procedure for solving proof problems is given be-
a proof problem is preserved by FVE transformation. low. Let (Es, Ez) be an input proof problem.

5.1 Satisfiability Preservation

Theorem 6 provides a foundation for satisfiability-
preserving transformation.

Theorem 6. Assume that Cs is a plain set of clauses
with no occurrence of any constraint atom. Then the
following conditions are equivalent:
e (Vsele SEL): L € M (dc(selgins{Csom)))
e (VYo € Map(FVar,FCon))(vsel € SEL) : L €
M (dc(sel ginstCs0))). O

Now we consider transformation &s into CS,
where

e Csis a plain set of clauses with no occurrence of
any constraint atom, and

e Cg is obtained fronCsas follows: Forang € Cs
and anyfuncatom fundh,v,...,vy,u), denoted
by f, occurring inC,

1. remove théunc-atomf from C, and

2. replace every occurrence oin C with fj(vi,
.,Vn), wheref,, = funcSymy (om(h)).

This transformation defines a partial mapping,
which is called FVE.

Theorem 7. MM (Csoy ) = MIM(CS). O

Theorem 8. ModelgCs) = & iff ModelgCs) = .
o

5.2 An ET Rule for Elimination of
Function Variables

Referring to the transformation s into C<S de-

1. Construct a QA problerfE,yes, where

e E=E;A-Ep, and

e yesis a ground atom that does not appeadEin
2. Convert the QA problen(E,yes by MPS, using

the conversion procedure in Section 3.2, into a QA
problem(Cs yes in a clausal form.

3. Convert/Cs yes by the FVE rule into a QA prob-
lem (C<,yes.

4. Using ET rules, transforniCs,yes into a QA
problem(Cs’,yes

5. Determine the answer to the proof problem,
Ez) by

“yes” if anga(Cs’,yes = {yes,
anspr(El’Ez)_{“no” if anga(CY',yes = 2.
If the clause se€s’ contains an empty clauge-),
thenModelgCs’) = @ and thug\ModelCs’) = G.
In this caseanga(Cs’,yes = {yeg. If the clause
setCs’ has a model, i.e.Model§Cs’) # @, then
(NModelgCs")) N {yes = @. Hence, in this case,
ang;a(Cs’,yeg = 2.

5.3.2 Example

To illustrate application of the above procedure, let
first-order formulas, F», andFs be given by:
Fi: Vx: [barbenx) —
(vy: ((persorty) A —shavey,y))
— shavex,y)))]

Fo: Vx: [barbenx) —

(Vy: ((persorty) Ashavey,y))
— —shavéx,y)))]

Fs: Vx: (barbenx) — persor{x))
In plain words, they represent the following knowl-

scribed in Section 5.1, Theorem 9 yields an ET rule edge:
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F1. Every barber shaves every person who does not 1. Its applicability does not cover all QA problems.

shave himself.

F>: Every barber does not shave a person who shaves

himself.
Fs: A barberis a person.

Itis applicable to a specific class of QA problems
that corresponds to a class of proof problems.

2. Itis not applicable to QA problems with built-in
constraint atoms.

Let us consider a proof that this knowledge entails the These limitations are demonstrated by means of ex-
nonexistence of any barber, i.e., consider the proof @mples below.

problem(Ej, Ez), whereE; = F; AR AR andE; is
the first-order formula-(3x : barber(x)), which intu-
itively means no barber exists.

Conversion of(Ex A —E3), which is (FL AR A
Fs) A —Ey), by MPS yields a seEs consisting of the
following four extended clauses, whefeis a 0-ary
function variable:

Ci: shavéx,x),shavey, x) < barber(y), persor{x)

Cy: « barbernx), persory),shavéy,y), shavex,y)

Cs: persor{x) « barben(x)

Cy4: barber(x) « funqf,x)

By the application of the FVE ruleCs is trans-
formed intoCs = (Cs— {Cs4}) U{C,}, whereCj is
given by:

C,: barber(f) «

The resulting clause s€s can then be transformed
equivalently using ET rules as follows:

e By successively unfolding dtarberatoms three
times, removal of the definite clause defining the
barber predicate, unfolding apersoratoms two
times, and removal of the definite clause defining
the personpredicateCs is transformed int€Cs;
consisting of the following two clauses:

shavéf, f),shavéf, )«
+ shavéf, f),shavéf, f)

e By removing duplicate atom§s, is transformed
into Cs, consisting of the two clauses:

shavéf, f) «
+ shavéf, f)

e By unfolding at theshaveatom in the second
clause aboveCs, is transformed int€s; consist-
ing of the two clauses:

shavéf, f) «

(<)
Finally, a clause se€s’ = Cs; is obtained. Sinc€s’
contains an empty clauseng(Cs’,yes = {yes.
Henceansy(E1, Ez) = “yes”.

6 LIMITATIONS BY EXAMPLES

The FVE rule, introduced in Section 5.2, has the fol-
lowing two limitations:

6.1 Incorrect Results when Applied to

QA Problems

We show that application of the FVE rule to a QA
problem may result in an incorrect result. In particu-
lar, after illustrating a QA problem on first-order logic
(Section 6.1.1) and its equivalent QA problem in a
clausal form (Section 6.1.2), we show that the corre-
sponding QA problem obtained by applying the FVE
rule gives an undesirable result (Section 6.1.3).

6.1.1 A QA Problem on First-order Logic

Assuming thaf andB are constant symbols, consider
a QA problem(K,a) on first-order logic, wher& is
the first-order formula

(3x: Kill (x, A)) A (Kill (A, A) v kill (B,A))

anda is the atomkill (x,A). Since(3x : kill (x,A))
follows logically from (kill (A,A) v kill (B,A)), this
QA problem is equivalent to the QA problefi{’, a),
whereK’ = (kill (A,A) v kill (B,A)). Among others,
ModelgK’) contains the models

o {kill(AJA)},

o {kill (B,A)},

o {kill (A,A),kill (B,A)}.
Hence(\ModelgK’) = @. Thereforeanga(K’,a) is
the empty set. So iang;a(K, a).

6.1.2 A QA Problem on Clauses with Function
Variables

By MPS,K is converted into a clause 9%, consist-
ing of the two clauses, wheré is a 0-ary function
variable:

kill (x,A) « fundf,x)
Kill (A, A), kil (B,A) «

The conversion yields the QA problefCs;,a) in
a clausal form. The set of all models Gfy, i.e.,
ModelgCs; ), contains the models

o {kill(A A},
o {kill(B,A)},
o {Kill (A A),kill (B,A)}.

219



KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

So(Model§Cs;) = @. Henceang;s(Csy,a) is the SemanticallyCss is equivalent tg{Cq,Cp,Cs}, which
empty set, which is the same asg;a(K,a) in Sec- does not yield a contradiction. The expected result
tion 6.1.1. “no” shown in Section 1 is thus well supported.

If we simplify Css by equivalent transformation

6.1.3 A QA Problem Obtained by Applying the without using the FVE ruleCss is transformed as fol-
FVE Rule lows:

e By unfolding ofhasChild Cs; is transformed into

By application of the FVE rule t€s;, with a function a clause sefCs,Cs,Cs,C7,Ca}, WhereCs—Cg are

symbol i corresponding to the function variabfe

we obtain a QA problemCs, a), whereCs; consists given by:
of the following two clauses: Cs: TaxCutPeter) «— notedPaul, Paul)
kil (fn,A) Cs: TaxCutPeter) « notedPaul,x), fung f,x)
kill (A, A), kill (B,A) + C7: TaxCutPeter «+ notedx, Paul), fund f, x)
e ’ Cs: TaxCutPeten <+ noteqx,y),fund f,x),
ModelgCs) contains the models fund(f,y)

o {kill (fn, A), kill (A, A)}, e SincenoteqPaul, Paul) is false,Cs is removed.

o {kill (fn, A), kill (B,A)}, e Since fung f,x) and funqgf,y) give x =y and
o {Kill (fn,A),kill (A,A),kill (B,A)}, noteqx,X) is false,Cg is removed.

along with other models each of which contains {C4,Cs,C7} is obtained, which includes the function
kill (fn,A). ThenModelgCs) = {kill (f,,A)}. As variable f. When lettingf () = Paul, Cs andC; are

a result, anga(Cs,a) = {kill (fn,A)}. This an- removed and the resulting clause se@g}, which is
swer differs fromang;a(K,a) in Section 6.1.1 and  satisfiable. SqCs,Cg,C7} is satisfiable, and we can-
ang;a(Csy,a) in Section 6.1.2, and is incorrect due to  not obtain a contradiction. This transformation result
inappropriate use of the FVE rule. shows clearly that the answer to this proof problem is

no-.
6.2 Incorrect Results in the Presence of

Built-in Constraint Atoms 6.2.2 A Proof Problem Obtained by Applying

the FVE Rule

Nex_t, we show tha_t in_the presence of a built-in con- pgqume thatfy, is a function symbol that corre-
straint atom, apphcapon of _the FVE rule even to a sponds to the function variable. By application
proof problem may yield an incorrect result._For this ot the FVE rule toCss, we have a clause s€s; —
purpose, we use t_he tax-cut prc_)of p_roble_m with acon- {C1,C,,C4,Cal, whereC, is given by:

straint atom on first-order logic given in Section 1

and its equivalent proof problem on extended clauses Ci: hasChild Peter fr) <

(Section 6.2.1). Then we show that, compared with

the (correct) answers to these proof problems, the cor-1t can be shown tha€s; yields a contradiction by
responding proof problem obtained by applying the repeatedly applying equivalent transformation as fol-
FVE rule gives an incorrect result (Section 6.2.2). lows:

e After application of unfolding three times at

6.2.1 A Proof Problem on Clauses with Function hasChild-atoms Cs; is transformed into a clause

Variables set{Cp,C5,Ca,CL,CL }, whereCl, andCy are given
by:
Consider the proof probleniE;, Ey) in Section 1, y,
whereE; = Fy A F> A F3 andE, = TaxCuiPeter). By Ce: TaxCutPeter) + noteqPaul, fr)
applying MPS to the conjunctioB; A —E,, a 0-ary Cs: TaxCut(Peter) «— noted fp, Paul)

function variable, sayf, is introduced andt; A —E;
is converted into a clause g8t consisting of the fol-
lowing clauses:

Ci: TaxCutx) « hasChildx,y),hasChildx, ),

e Since the constraint atoms in their bodies, i.e.,
noteqPaul, f,) andnoted f,, Paul), are true,Cg
andC; are transformed into:

CZ: TaxCutPeter «+

noteo[y, Z) 1.
C: hasChild PeterPaul) + Ce: TaxCutPeten «
Cs: hasChild Peterx) « fund f,x) From the final clause set, which contalls Cg, and
Cs: « TaxCufPeter C/, a contradiction is obtained. This contradiction
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misleads us that the answer to this proof problem is new function symbols. Then we have the following
“yes”, which is incorrect compared to the expected proposition based on the theory in the previous sec-
result given in Section 1 and the result obtained in tions: (i) each set of clauses obtained by sequentially
Section 6.2.1. Such inappropriate use of the FVE rule applying MPS and FVE to a first-order formula, with
yields a wrong answer. any selection of function variables and a mapping to
associate function variables with function symbols,
can also be obtained by application of the conven-
tional Skolemization using some function symbols,
and (ii) vice versa.

Limitations of the conventional Skolemization are
thus identified mainly by the limitations of FVE trans-
formation. FVE preserves the answers to proof prob-
lems (Theorem 9); however, its applicability is rather
Incorrect results caused by the conventional Skolemi- limited:
zation and resolution stems basically from the limita-
tion of Skolemization. In particular:

7 DISCUSSION

7.1 Incorrect Results Arising from

Built-in Atoms

1. FVE does not admit inclusion of built-in atoms in
input extended clauses in ECLSnd

1. If there is no built-in atom in an input first-order
formula, the composition of MPS and FVE gives
a set of usual clauses, which is also obtained by
the conventional Skolemization.

2. FVE can be applied to only a restricted class of
QA problems.

This is a sharp contrast to most of important ET trans-

. - . . ' formations, such as unfolding, resolution, factoring,

2. If there is a built-in atom_ln an .|nput flrst?order subsumption, side changing, and definite-clause re-
formula, MPS preserves its logical meaning but moval transformation, which have been invented on
FVE cannot guarantee the preservation of its 10g- y,o ghace of extended clauses (Akama and Nantajee-
ical meaning, which means that the conventional . rawat, 2014). These ET transformations preserve
Skolemization may produce an incorrectresult. o Jnswersto QA problems and can be applied to any

The tax-cut example shown earlier (cf. Section 1 and QA problem possibly with built-in constraint atoms.

Section 6.2) contains a built-in atonotedy, z), and
the fact thainoteqPaul, f) is true for any new func-
tion symbol f adopted by the conversion algorithm
CS (cf. Fig. 1) produces an incorrect result.

One limitation of the resolution method is that it
uses only resolution and factoring. Obviously, from
the viewpoint of ET, we can use other ET rules and
we should use them for more efficient computation.

More generally, the maximality of the instantia-
tion of function variables according to the usual Sko- 7.3
lemization is broken if a ground atom set contains ar-

bitrary built-in atoms. Hence Theorem 8 cannot be gjnce proof problems are formalized as QA problems,
obtained. the MPS & ET method can be applied to proof prob-
lems. A new procedure for solving proof problems is
given below.

Let (E1,Ep) be an input proof problem.

Inventing a New Proof Method

7.2 Understanding the Conventional
Skolemization and Resolution
1. Construct a QA problerfE,yes, where
e E=E;A—-E, and
e yesis a ground atom that does not appeaEin

2. Convert the QA problen(E,yes by MPS, using
the conversion procedure in Section 3.2, into a QA
problem(Cs yes in a clausal form.

Using ET rules, transformiCsyes into a QA
problem(Cs,yes.

Determine the answer to the proof problei,
Ez) by

The theory developed in the previous sections pro-
vides a deep understanding of the conventional Sko-
lemization and resolution. We have stated (in Sec-
tion 1) that the conventional Skolemization, CS, is

identified as the composition of MPS and FVE in the

sense that

{CSL)|Le L} = {FVE(MPSL)) |L € L1}. 3.

This is a simplified explanation for the purpose of
readability. More precisely, we need to consider that 4.
(i) by MPS, some function variables may be newly
introduced, and (ii) by FVE, some function sym-
bols may be associated with function variables. The
conventional Skolemization may also introduce some

"yes” if anga(Cs, yes = {yed,

an%r(El»Eﬁ:{uno" if ang;a(Cs,yeg = 2.

221



KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

By ET transformation at Step 3, we may basically REFERENCES

try to simplify Csusing ET rules. When we reach a

set of extended clauses that contains an empty clausedkama, K. and Nantajeewarawat, E. (2011a). Meaning-
(+-), we can stop with the answer “yes”. When we Preserving Skolemization. IRroceedings of the 3rd
reach a set of positive extended clauses, we can stop ~ nternational Conference on Knowledge Engineering
with the answer “no”. All ET rules, which preserve and Ontology Developmenpages 322-327, Paris,

France.
the answers to QA problems, can be used at Step 3'Akama, K. and Nantajeewarawat, E. (2011b). Meaning-

The reader may refer to examples given in (Akama Preserving Skolemization. Technical report, Hokkai-

and Nantajeewarawat, 2012; Akama and Nantajee- do University, Sapporo, Japan.

warawat, 2013; Akama and Nantajeewarawat, 2014). akama, K. and Nantajeewarawat, E. (2012). Proving Theo-
rems Based on Equivalent Transformation Using Res-
olution and Factoring. IfProceedings of the Second

World Congress on Information and Communication
8 CONCLUSIONS TechnologigsWICT 2012, pages 7-12, Trivandrum,

India.
The MPS & ET theory takes MPS in place of the con- akama, K. and Nantajeewarawat, E. (2013). Embedding
ventional Skolemization and ET in place of inference Proof Problems into Query-Answering Problems and
rules. The work developed in this paper enables us to Problem Solving by Equivalent Transformation. In
consider the conventional Skolemization and the con- Proceedings of the 5th International Conference on
ventional solution for proof problems in the MPS & Knowledge Engineering and Ontology Development

pages 253-260, Vilamoura, Portugal.

ET theory. ) )
. Akama, K. and Nantajeewarawat, E. (2014). Equiva-
. In this paper, the FVE rule has_ been proposed and lent Transformation in an Extended Space for Solv-
its correctness has been proved (i.e., the FVE rule pre- ing Query-Answering Problems. IRroceedings of
serves the answers to a class QA problems). The con- the 6th Asian Conference on Intelligent Information
ventional Skolemization is identified as application of and Database SystemisNAI 8397, pages 232-241,
MPS transformation followed by equivalent transfor- Bangkok, Thailand.
mation using the FVE rule. Since the resolution and Akama, K. and Nantajeewarawat, E. (2015). Function-
factoring inference rules are ET rules and proof prob- Variable Elimination and Its Limitations. Technical

lems are a subclass of QA problems, the conventional report, Hokkaido University, Sapporo, Japan.
solution for proof problems is a special case of the €hang, C.-L. and Lee, R. C.-T. (1978ymbolic Logic and
MPS & ET solution for QA problems. Mechanical Theorem ProvingAcademic Press.

This paper has also investigated the limitations of Motik, B., Sattler, U., and Studer, R. (2005). Query An-
the FVE rule, which are also limitations of the con- fn\';irt'lgg ;(Z;SXX:S%L with Rules.Journal of Web Se-
ventional Skolemization and the conventional solu- Robinson, J. A. (1965). A Machine-Oriented Logic Based

tion for proof problems. They are: on the Resolution Principle.Journal of the ACM
1. The conventional Skolemization may fail to pre- 12:23-41.

serve satisfiability of a given formula in the pres-

ence of built-in constraints.

2. The conventional solution for proof problems
based on Skolemization and resolution cannot
guarantee the correctness of an obtained answer
when built-in constraints are included in a given
problem representation.

By removing the FVE rule, which is less general

than other important ET rules, we have a new proof
method with correctness of computation being guar-
anteed even in the presence of built-in constraints.
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