An Aspect-Oriented Extension to the OWL API
Specifying and Composing Views of OWL Ontologies using Ontology Aspects and
Java Annotations

Ralph Schifermeier, Lidia Krus and Adrian Paschke

Corporate Semantic Web Group, Institute of Computer Science, Freie Universitdit Berlin, Berlin, Germany

Keywords:

Abstract:

Modular Ontology Development, Aspect-Oriented Programming, Ontology APIs.

Aspect-Oriented Programming (AOP) is a technology for the decomposition of software systems based on

cross-cutting concerns. As shown in our previous work, cross-cutting concerns are also present in ontologies,
and Aspect-Oriented Ontology Development (AOOD) can be used for flexible and dynamic ontology mod-
ularization based on functional and non-functional requirements. When ontologies are used in applications,
application and ontology-related requirements often coincide. In this paper, we show that aspects in ontologies
can be expressed as software aspects and directly referred to from software code using the well-known Aspect]
language and Java annotations. We present an extension of the well-known OWL API with aspect-oriented
means that allow transparent access to and manipulation of ontology modules that are based on requirements.*

1 INTRODUCTION

Ontologies provide a formal representation of shared
knowledge for use in information systems. Recent
years have witnessed a significant adoption of ontolo-
gies in IT, not least due to the standardization activi-
ties by the W3C leading, among others, to the incep-
tion of the Web Ontology Language OWL, which can
be used to describe ontologies and knowledge bases'
using Description Logics (DL).

Still, the authoring of ontologies is a potentially

4Source code and documentation are available at https://

github.com/ag-csw/aspect-owlapi

IThere is a dissent between different communities on the
exact definition of the term ontology. Some communities
define an ontology as only the conceptualization of a spe-
cific discourse domain, i.e., a statemtent of a logical theory
about concepts and their relations. A knowledge base, by
this definition, is a set of assertions about concrete objects
(instance data), grounded in the conceptualization given
by the ontology. In this paper, we commit to the defini-
tion of ontologies by Guarino and Giaretta (Guarino and
Giaretta, 1995), according to which a knowledge base is a
special kind of ontology. Therefore, whenever we speak
of ontologies, we also include what others would refer to
as knowledge bases. We have made this choice because
in this work, we exclusively talk about OWL 2 ontologies,
and the OWL 2 specification does not make this termino-
logical distinction either?.

Zhttp://www.w3.0org/TR/2012/REC-ow12-syntax-20121211/

Schafermeier, R., Krus, L. and Paschke, A..

complex and resource intensive process. Therefore,
reusability of existing ontologies is generally desired.
However, reuse of ontologies is often not trivial, as
many of the existing ontologies designed with this
purpose in mind are extremely large, and only small
parts of them are actually relevant in a particular reuse
scenario (Noy and Musen, 2004).

Ontology modularization tackles the problem of
creating meaningful reusable ontology modules or
views of large monolithic ontologies that can be easier
explored or extracted. Beyond reuse, ontology mod-
ularization may serve a number of further goals, such
as the improvement of reasoning and query result re-
trieval performance, scalability for ontology evolution
and maintenance, complexity management, ameliora-
tion of understandability, context-awareness, and per-
sonalization (Parent and Spaccapietra, 2009).

A significant number of approaches to the prob-
lem of ontology or knowledge base modularization
therefore exist, each of them tackling one or several
of the above-mentioned problems.

In our previous work (Schifermeier and Paschke,
2014), we have presented Aspect-Oriented Ontology
Development (AOOD) as a unified, goal indepen-
dent approach to defining syntactic ontology modules,
which was inspired by the Aspect-Oriented Program-
ming (AOP) or Aspect-Oriented Software Develop-
ment (AOSD) paradigm. A commonly accepted no-
tion of an ontology module is that defined by the con-

187

An Aspect-Oriented Extension to the OWL API - Specifying and Composing Views of OWL Ontologies using Ontology Aspects and Java Annotations.
In Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2015) - Volume 2: KEOD, pages 187-194

ISBN: 978-989-758-158-8

Copyright (© 2015 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

cept of conservative extensions as proposed by (Grau
etal., 2008) and (Konev et al., 2009), which guarantee
that a module is self-contained in the sense of being
semantically equivalent to its parent ontology wrt. a
particular signature. A syntactic module, on the other
hand, is defined less rigidly as a set of axioms that is
a subset of all axioms of the parent ontology.

Applications using ontologies come with a set of
requirements. A subset of these requirements are re-
lated to how the ontology is going to be used and what
the application developers expect to get back from the
ontology. These requirements are in fact related to
the ontology itself, still they concern the application’s
mode of operation. As those particular requirements
affect both the application and the ontologies in the
same manner, it appears natural to have them reflected
in a unified way in the application code as opposed to
have them scattered across the application. For this
reason, we have developed a formalism that allows
for a direct mapping of software aspects to ontology
aspects and a system that permits to control the use of
ontology aspects from within the application code in
a declarative fashion.

The contribution of this paper consists of a soft-
ware artifact that makes ontology aspects accessible
to developers of semantic web applications. We have
implemented it in the form of an aspect-oriented ex-
tension to the well-known OWL API3, a Java API for
OWL 2 ontologies, using Aspect]* as a Java aspect
language and Java annotations as a way to declara-
tively control ontology aspects from Java code.

The remainder of this paper is structured as fol-
lows. In section 2, we decribe the formalism of
aspect-oriented ontologies for OWL. In Section 3, we
demonstrate how we make this formalism available
in Java code using Java annotations. In Section 4,
we discuss the results on the basis of a an experi-
mental evaluation using an ontology from the arts do-
main that contains AOOD aspects for temporal attri-
bution, provenance information and reasoning com-
plexity. Section 5 gives an overview of related work.
Section 6 concludes and points out future work.

2 ASPECT-ORIENTED
ONTOLOGY DEVELOPMENT

In (Schifermeier and Paschke, 2014), we describe
a formalism for Aspect-Oriented Ontology Devel-
opment (AOOD) which we derived from the basic
principles of Aspect-Oriented Programming (AOP).

3 http://owlapi.sourceforge.net/
4 https://eclipse.org/aspectj/

188

Aspects in software are self-contained modules that
comprise a well-defined fragment of a system’s func-
tionality and instructions on how to combine this
functionality with the main system, the former being
referred to as advice and the latter being referred to as
pointcuts.

Advice is regular software code, in the majority
of cases written in the same programming language
as the main system. A pointcut is a collection of so
called join points, points in the code of the main sys-
tem where the advice of the aspect is supposed to be
executed. A pointcut can be an exhaustive list of join
points or an abstract description thereof by the means
of quantification.

Thereby, advice adds a well-defined piece of func-
tionality to an existing system, while the pointcut con-
tains all the necessary information on where exactly
to add it. Each piece of information reflects a require-
ment or business concern. As defined by the IEEE
standard 1471 of software architecture (Group, 2000),
“concerns are those interests which pertain to the sys-
tems development, its operation or any other aspects
that are critical or otherwise important to one or more
stakeholders”. The functionality in the advice nor-
mally reflects a cross-cutting concern, i.e. the imple-
mentation of a requirement that cross-cuts with other
requirements of the system.

As in software development, cross-cutting con-
cerns are linked to requirements. Requirements can
be functional, i.e., directly related to the business
goals the system or ontology is supposed to accom-
plish. Non-functional requirements, in contrast, are
related to goals concerning the system or ontology
itself. Functional ontology requirements are gener-
ally directly related to the competency questions the
ontology is supposed to answer, while examples for
non-functional requirements include provenance in-
formation, multilinguality and reasoning complexity.

Each of these requirements is mapped to one ore
multiple sets of axioms in an ontology. If there ex-
ists a relationship between an aspect and an axiom, it
means that this axioms belongs to the aspect in ques-
tion. This way, an ontology can be modularized into
(possibly overlapping) modules, each module repre-
senting a requirement, and each module-requirement
pair being encapsulated in an aspect.

Aspects can, in turn, be formal descriptions them-
selves, i.e., just as the ontology module they are
mapped to, they can be ontological statements as well.
For example, a set of facts in an OWL ontology can
be related to a temporal aspect, e.g. Bonn is capital
of West Germany, which was only valid from 1949 to
1990, where the temporal aspect is an OWL individ-
ual that comes with relations and properties formal-

An Aspect-Oriented Extension to the OWL API - Specifying and Composing Views of OWL Ontologies using Ontology Aspects and Java

ized using the W3C time ontology and representing
the time interval /949-1990.

The individual representing the aspect may be di-
rectly referenced by its IRI (if it is a named individ-
ual). Beyond that, it is possible to define super aspects
by using some sort of query (e.g. all the things that
happened during the 20th century which is equivalent
to all facts in the ontology that are related to temporal
aspects which are valid between 1900 and 1999).

2.1 An Aspect Vocabulary for
Ontologies

We define a vocabulary that is suitable for a sound and
complete description of aspects in ontologies on an
abstract level. Software aspects apply to lines of code
where the execution flow is diverted due to a call to
a method, function or routine (or whichever callable
units the paradigm of the programming language at
hand defines), i.e., each call is a candidate for a join
point, and the system can be changed by advising the
join points.

In the case of ontologies, the application of an as-
pect would mean the modification of factual (Tbox or
Abox) knowledge. Hence, elements that can be used
as join points in ontologies must be expressions that
represent canonical units of factual knowledge. What
these simple expressions exactly are is defined by the
knowledge representation model of each specific lan-
guage. In the case of RDF they are triples, while in the
case of OWL, they are axioms. Once the simple ex-
pressions of a language have been identified, we can
map the relevant concepts from the AOSD domain to
ontologies and come up with an abstract definition of
ontology aspects:

Pointcut: A pointcut in an ontology is the set of
simple expressions that will be affected by the facts
that are contained in the aspect (and stem from a
cross-cutting requirement).

Advice: An advice in an ontology is a set of facts
that will be applied to the facts in the pointcut and,
depending on their nature, extend or restrict the facts
in the pointcut. A language aspect might, for exam-
ple, add language specific information (a translation)
to the facts in the pointcut, while a temporal aspect
might impose a temporal restriction on them (with the
consequence that they are only valid during a speci-
fied period in time).

Aspect: An aspect in an ontology is a compound
entity consisting of a pointcut and an advice.

Annotations

<<annotation>>

hasAdvice some Advice
hasPointcut some Pointcut

rdfs:subPropertyOf rdfs:subPropertyOf

| % hasAdvice | % hasPointcut

/ owl:equivalentClass \
N/

rdfs:range

rdfs:domain rdfs:range
| Advice | | Aspect | | Pointcut |
b4 "
rdfs:subClassOf
Functional Nonfunctional
Aspect Aspect
rdfs:subClassOf
= rdfs:subClassOf
Temporal
Aspect Access
Restriction
Resoning
Complexity Customer
Specific

Feature
Provenance

rdfs:subClassOf

Provenance Trust | | Compatibility
Based ‘/1
Trust rdfs:subClassOf

Figure 1: The aspect ontology for OWL 2 ontologies con-
ceptualizing the terms Aspect, Pointcut and Advice. The two
annotation properties hasAdvice and hasPointcut can be ap-
plied to axioms (as opposed to only individuals) and are
not part of the OWL semantics. The class hierarchy under
Aspect is preliminary and designed to be extended by users.
The separation of functional and non-functional aspects cor-
responds to functional vs. non-functional concerns.

2.2 Embedding Aspects in OWL
Ontologies

The foundation for aspect-oriented ontologies is an
ontology that formalizes the concept of an aspect as
described in the above Section 2.1. The ontology is
depicted in Figure 1. Given this ontology of aspects,
we define an aspect-oriented ontology module as fol-
lows:

Definition 1 (Aspect-oriented Ontology Module).
Given an ontology O that consists of a finite set
of axioms Axp, an aspect ontology Os with the set
A C Sig(0y4) of all aspect individuals in Oy, 4 =
{a|3i € O4 : hasAdvice(a,i)} an aspect individual
ap € A and a predicate hasPointcut, then O, C
O, consisting of the set of axioms AXOaO ={ax €
Axo | hasPointcut(agp,ax)} is an ontology module de-
fined by the aspect ay.

189

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

E Requirement 1

. O Requirement 2
Requirements

O Requirement 3
O Requirement 4

B Requirement 1
O Requirement 4

Manual annotation/ &

selected editing °
context in tool

Aspect names
or descriptions

Aspects Query
oo
Modules :> Query based
aspect description

Original ontology

Ontology with aspect
meta descriptions module

Aspect-based :>
module selection

Ontology

Figure 2: The approach of Aspect-Oriented Ontology Development (AOOD): Parts of an ontology are annotated with aspects
by some query (left) or manually (center). Later, parts of the ontology may be extracted by giving a name or specifying a
query (right). The aspect descriptions provide a view on ontology modules (bottom). On a higher level, each aspect represents

a requirement (top).

Aspect individuals can either be named or anony-
mously defined by some query (in, for example,
SPARQL or SPARQL DL), which would then cor-
respond to the quantification principle mentioned
above.

The connnection of an aspect individual to an on-
tology axiom is a kind of reified statement. While
reifcation is defined syntactically on the data ex-
change level (namely for RDF), OWL does not de-
fine semantics for it (and therefore, there exists no di-
rect syntactic category for reification in OWL). The
Aspect-Oriented Ontology Development approach
uses reifacation as the infrastructure, with a particu-
lar semantics described above. Technically, instead
of introducing a dedicated syntactic category, for the
sake of backwards compatibility, we use the OWL 2
annotation mechanism for making the connection be-
tween aspects and their advices and pointcuts.

3 OWL ASPECTS
IMPLEMENTED AS GENERIC
ASPECTJ ASPECTS
SUPPLEMENTING THE OWL
API

The most notable APIs for web ontologies are Apache
Jena’ and the OWL API®. With both being Java APIs,
Jena’s scope are RDF graphs while the OWL API is

5 http://jena.apache.org/
6 http://owlapi.sourceforge.net/

190

tailored to the OWL language’, providing an object
model for OWL entities and axioms and interfaces for
DL-based reasoning and explanation support. In what
follows, we describe an extension of the OWL API
by programmatic access to OWL aspects as defined
in the previous sections.

3.1 Requirements

We defined the functionality of our approach in terms
of functional requirements, which can be seen in Ta-
ble 1.

We designed an aspect-oriented extension of the
OWL API using the Java aspect language Aspect]®.
We use Java aspects in order to intercept read/write
access to the OWL API’s Java object model of a
loaded OWL ontology and advice the calls by code
responsible for extracting ontology modules affected
by an OWL aspect.

With regard to requirement 2 we decided to use
Java annotations as a means to convey the selected
aspects from the Java side.

The heart of the extension is a set of pointcut
definitions that intercept all calls to the OWL API
that either return or manipulate OWL entities or ax-
ioms. Client code using the OWL API can use the
@OWLAspect java annotation type to specify one ore
more aspect IRIs either on the method or class level.
If one or more annotations of that type are encoun-
tered, then all operations on the OWL API within

7 At the time of the writing of this report, the target language
of the OWL API was OWL 2.
8 https://eclipse.org/aspectj/

An Aspect-Oriented Extension to the OWL API - Specifying and Composing Views of OWL Ontologies using Ontology Aspects and Java

Annotations

Table 1: Functional requirements for the OWL API extension with ontology aspects.

The system should allow for mapping aspects to ontology modules.
The system should permit the mapping of declarative aspect descriptions to OWL aspects

Aspects should be ontological entities identified by IRIs, as defined in the AspectOWL
The declarative selection of aspects should allow for a combination of multiple aspects
If an aspect declaration is associated with code manipulating an ontology, then the manipu-
If an axiom is added, then it will be annotated with the aspect(s) present in the declaration.

If an axiom is deleted, and an aspect declaration is present in the Java code, then only
the corresponding aspect associations must be deleted in the ontology (the axiom is only

ID Name Description
F-1 aspects
F-1.1 aspect declaration

in the set of loaded ontologies.
F-1.1.1 aspect identification

ontology.
F-1.1.2 aspect combination

using logical AND/OR operations.
F-2 ontology change

lation must only affect this aspect
F-2.1 axiom addition
F-2.2 axiom deletion

removed from this aspect, not from the ontology).
F-3 module extraction

If an aspect declaration is associated with code reading from an ontology, then only that
part of the ontology is returned, which is associated with the given aspects. The rest of the

ontology is hidden.

Listing 1: Example client code using the OWL API. Note
that aspect references are added transparently and uninva-
sively as method annotations. Client code itself does not
need to be changed.

@OWLAspect({”http ://www.fu—berlin .
de/csw/ontologies/aood/
ontologies/aspect123”, “http ://
www. fu—berlin.de/csw/ontologies/
aood/ontologies/myAspectd56”})

public void doSomething () {

Set<OWLAxiom> allAxioms =
myOntology . getAxioms () ;

-}

the context of the annotation will only be executed
on the subset of the ontology that corresponds to the
aspect(s) specified by the annotations. For example,
a call to OWLOntology.getAxioms () from a client
method with the annotations from Listing 1 would
only return those axioms that belong to the modules
specified by the two IRIs used in this example. Ac-
cordingly, write operations would also only be per-
formed on the subset.

3.2 Conjunctive and Disjunctive
Combination of Aspects

In order to fulfill requirement F-1.1.2, the annota-
tion type system had to be extended by some kind of
boolean arithmetics that allows for conjunctive and/or
disjunctive combination of multiple aspects. The Java
annotations system does not permit relations between
single annotations in the same place, but nesting of
annotations is possible.

In order to provide a syntax for boolean opera-
tions, we subclassed the OWLAspect annotation type
by OWLAspectAnd and OWLAspectOr.

Unfortunatley, nesting of annotations is restricted
to non-cyclic nesting levels, disallowing arbitrary
nesting (and thereby arbitrary boolean combinations).
However, using the distributivity property of boolean
operations, it is possible to bring every boolean for-
mula into a non-nested form. As a consequence, this
approach is feasible for arbitrary boolean combina-
tions of aspect declarations conveyed using Java an-
notations.

An example of a combination would be:

@OWLAspectOr ({
@OWLAspectAnd ({” http ://...# Aspectl”,
“http ://...# Aspect2”}),
@OWLAspectAnd ({” http ://...# Aspect2”,
“http ://...# Aspect3”})
3]

3.3 Syntactic vs. Semantic Modules

The above approach allows for the selection of sub-
sets of axioms, also referrred to syntactic modules as
mentioned in Section 1. Depending on the use case,
this might be sufficient, or it might be necessary to
extend the selected set of axioms to a proper semantic
module, such that the parent ontology is a conserva-
tive extension of the module. The system we present
here may extend the selected subset to a proper mod-
ule by using syntactic locality (Del Vescovo et al.,
2012) as an approximation.

4 CASE STUDY

We conducted an experimental evaluation of our ap-
proach in the for of a case study using an ontology
from the arts domain, containing information about
paintings as well as context information in the form of

191

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

Table 2: Information encoded in the ontology from the case study: Famous paintings and the paintings’ creators and locations.
OWL aspects comprise (a) time, (b) provenance, and (c) reasoning complexity (not shown in the table).

Painter ~ Painting Location Time period Provenance
Raphael Sistine Madonna Italy 1513-1754 Wikipedia
Germany 1754-1945 Wikipedia
since 1955 Wikipedia
Russia 1945-1955 Wikipedia
Diirer Felsenschloss Germany 1494-1945 Berliner Zeitung
since 2000 Berliner Zeitung
Russia 1945-2000 Berliner Zeitung
Frauenbad Germany 1496-1945 The New York Times
since 2001 Spiegel
Azerbaijan 1993 The New York Times
USA 1997-2001 Spiegel, The New York Times
Johannes der Tdufer ~Germany 1503-1945 Die Welt
since 2004 Die Welt
Unknown 1945-2003 Die Welt
Estonia 2003-2004 Die Welt

aspects. The particular case stems from a consortium
partner in the realm of digital curation of content from
the arts domain. The ontology we used is an extended
version of the publicly available painting ontology”.
The ontology was used to model geolocations of con-
temporary artworks.

The additional aspects that were modeled were

e Jocation changes over time (for which period in
time was painting A in location X), using tempo-
ral aspects,

e provenance information about each location/time
statement (which source stated that painting A
was in location X during the time interval T) using
provenance aspects, and

e the belonging of each axiom to one or several
of the OWL 2 profiles OWL2-EL, OWL2-RL or
OWL2-QL, using reasoning complexity aspects.
Table 2 provides an example of the information

encoded in the ontology.

For the temporal aspects, the W3C time ontol-
ogy'? was used. For the provenance aspects, we used
the W3C PROV ontology!!.

The ontology contains 1,378 axioms. We used the
OWL API in combination with the Pellet reasoner in
order to extract the subsets of the ontology that con-
form to the OWL-EL, QL, and RL profiles, respec-
tively, and annotated the axioms with the correspond-
ing reasoning complexity aspect.

In order to test the functional requirements, we
implemented unit tests in which the ontology de-
scribed above is loaded and a variety of read and write

9 http://spraakbanken.gu.se/rdf/owl/painting.owl
10 http://www.w3.org/TR/owl-time/
1 http://www.w3.org/TR/prov-o/

192

operations is performed, each using different combi-
nations of aspect annotations.

The results show that the relevant use cases can be
captured by the implementation. Competency ques-
tions, such as Where was an artpiece located at a par-
ticular point in time? or a reduced view on the ontol-
ogy with only axioms belonging to a less expressive
but tractable OWL profile for, e.g., only browsing the
class hierachy, could all be represented with ontology
aspects and corresponding java annotations.

Details on the cases and the different combina-
tions thereof we coverered can may be examined in
the github repository.

S RELATED WORK

Aspect-oriented Ontology Development for ontology
module definition shares similarities with the work of
Doran et al. (Doran et al., 2008) and d’Aquin et al.
(d’Aquin et al., 2007).(Doran et al., 2008) proposes
SPARQL queries in order to define ontology modules.
The authors show that a set of specialized approaches,
such as (d’Aquin et al., 2006), (Seidenberg and Rec-
tor, 2006), (Doran et al., 2007) and (Noy and Musen,
2000) may be reformulated in the form of SPARQL
queries. (d’Aquin et al., 2007) proposes a similar
approach using graph transformations and relying on
user-defined graph-based extraction rules.

(Grau et al., 2005) presents a partitioning ap-
proach using ‘E-Connections (Cuenca Grau et al.,
2006). The criterion for the partitioning process is
semantic relatedness. This is determined by check-
ing the E-safe property a structural constraint which
avoids the separation of semantically dependent ax-

An Aspect-Oriented Extension to the OWL API - Specifying and Composing Views of OWL Ontologies using Ontology Aspects and Java

7y

rdf:type

0 FelsenschlossObj

hasLocationCountry

hasLocationCountry

‘ Timelnterval3

hasBeginning

v v

0 Timelntervall

hasBeginning hasEnd

7y

rdf:type

createdBy —P>|

Annotations
—""_—-____—___i‘:: rdfitype = _
@ TemporalAspect2 TemporalAspect
e _-="77 rdftype
a b

| DateTimelnterval

|‘ Timelnterval2 |
T

hasBeginning hasEnd

v

= "2000-01-01-00:00:00" B "1496-01-01-00:00:00"
ANxsd:dateTime ANxsd:dateTime

B 1945-01-01-00:00:00"
ANxsd:dateTime

B "1945-01-01-00:00:00"
Axsd:dateTime

. ,2000-01-01-00:00:00"
ANxsd:dateTime

Figure 3: Example of how a temporal aspect (of locations of Diirer’s paintings Feldschloss) is concretely expressed in the

knowledge base.

ioms in order to achieve semantically consistent mod-
ules. The relatedness of the different modules is re-
tained by the E-Connections. Concept subsumption
or the use of roles across different modules is not
possible. ‘E-Connections apply to ontology entities
(classes, individuals and properties), in contrast, our
approach applies to axioms.

Schlicht et al. propose a semi-automated ap-
proach to ontology partitioning based on application-
imposed requirements (Schlicht and Stuckenschmidt,
2008). The method constructs a dependency graph of
strongly interrelated ontology features, such as sub/-
super concept hierarchy, concepts using the same re-
lations, or similarly labeled concepts. Then, the on-
tology is partitioned retaining strongly related groups
in the same module. The method is parametrizable
by specifying the features taken into account for con-
structing the dependency graph and the size a module
should have in terms of the number of axioms.

While the latter approaches work with a posteriori
modularization of existing ontologies, a third arising
class of methodological approaches aim at modular
construction of ontologies in an a priori manner.

Related work in this area has been accomplished
by (Thakker et al., 2011), proposing a methodolog-

ical framework for constructing modular ontologies
driven by knowledge granularity. The proposed ap-
proach involves a separation into three levels: an
upper ontology, modeling the theoretical framework,
domain ontologies for reusable domain knowledge,
and domain ontologies for application specific knowl-
edge.

6 CONCLUSION AND OUTLOOK

This paper describes an approach to declarative syn-
tactic or semantic ontology module selection for de-
velopers of semantic web applications, based on our
approach to aspect-oriented ontology modularization.
We presented a demo implementation based on the
OWL API, which we extended with Aspect] aspects
and an annotation system, which is used to spec-
ify ontology aspects (referenced by IRIs), which are
mapped to ontology modules. In this fashion, opera-
tions performed using the OWL API are restricted to
the submodule(s) of the ontology specified using the
annotations.

The approach is transparent in that developers
need not change their application code. As mentioned

193

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

in section 4, a weakness of the approach is that the
pointcut definitions need to be exhaustive in order to
capture all relevant method calls in the OWL APIL
Furthermore, they may potentially break in case of
future changes of the OWL API.

Future work comprises the integration of the dec-
laration of aspects using SPARQL or DL based
queries from our previous work into the API ex-
tension for more dynamic module selection. Cur-
rently, an extension to the well-known ontology ed-
itor is developed, which allows focused work on on-
tology modules based on aspects by hiding parts of
the ontology that do not belong to a selected aspect.
WebProtégé was built on top of the OWL API, and the
aspect-oriented extension to the OWL API described
in this paper, allows the implementation of this fea-
ture in an uninvasive fashion, i.e., without changing
any WebProtégé or OWL API source code.

REFERENCES

Cuenca Grau, B., Parsia, B., and Sirin, E. (2006). Com-
bining OWL ontologies using E-Connections. Web
Semantics: Science, Services and Agents on the World
Wide Web, 4(1):40-59.

d’Aquin, M., Doran, P.,, Motta, E., and Tamma, V. A. M.
(2007). Towards a parametric ontology modulariza-
tion framework based on graph transformation. In
Grau, B. C., Honavar, V., Schlicht, A., and Wolter,
F., editors, WoMO, volume 315 of CEUR Workshop
Proceedings. CEUR-WS.org.

d’Aquin, M., Sabou, M., and Motta, E. (2006). Modular-
ization: a key for the dynamic selection of relevant
knowledge components. In Haase, P., Honavar, V.,
Kutz, O., Sure, Y., and Tamilin, A., editors, WoMO,
volume 232 of CEUR Workshop Proceedings. CEUR-
WS.org.

Del Vescovo, C., Klinov, P., Parsia, B., Sattler, U., Schnei-
der, T., and Tsarkov, D. (2012). Syntactic vs. Semantic
Locality: How Good Is a Cheap Approximation? In
Schneider, T. and Walther, D., editors, Workshop on
Modular Ontologies (WoMO) 2012, pages 40-50.

Doran, P., Palmisano, 1., and Tamma, V. A. M. (2008).
Somet: Algorithm and tool for spargl based ontology
module extraction. In Sattler, U. and Tamilin, A., ed-
itors, WoMO, volume 348 of CEUR Workshop Pro-
ceedings. CEUR-WS.org.

Doran, P,, Tamma, V., and Iannone, L. (2007). Ontology
Module Extraction for Ontology Reuse: An Ontology
Engineering Perspective. In Proceedings of the Six-
teenth ACM Conference on Conference on Informa-
tion and Knowledge Management, CIKM 07, pages
61-70, New York, NY, USA. ACM.

Grau, B. C., Horrocks, 1., Kazakov, Y., and Sattler, U.
(2008). Modular Reuse of Ontologies: Theory and
Practice. Journal of Artificial Intelligence Research,
31:273-318.

194

Grau, B. C., Parsia, B., Sirin, E., and Kalyanpur, A. (2005).
Automatic Partitioning of OWL Ontologies Using E-
Connections.

Group, I. A. W. (2000). IEEE standard 1471-2000, Rec-
ommended Practice for Architectural Description of
Software-Intensive Systems. IEEE.

Guarino, N. and Giaretta, P. (1995). Ontologies and Knowl-
edge Bases Towards a Terminological Clarification.
Towards Very Large Knowledge Bases: Knowledge
Building and Knowledge Sharing, 25:32.

Konev, B., Lutz, C., Walther, D., and Wolter, F. (2009). For-
mal Properties of Modularisation. In (Stuckenschmidt
et al., 2009), pages 25-66.

Noy, N. and Musen, M. (2004). Specifying ontology views
by traversal. In Mcllraith, S., Plexousakis, D., and
van Harmelen, F., editors, The Semantic Web — ISWC
2004, volume 3298 of Lecture Notes in Computer Sci-
ence, pages 713-725. Springer Berlin Heidelberg.

Noy, N. F. and Musen, M. A. (2000). PROMPT: Algorithm
and Tool for Automated Ontology Merging and Align-
ment. In Proceedings of the Seventeenth National
Conference on Artificial Intelligence and Twelfth Con-
ference on Innovative Applications of Artificial Intel-
ligence, pages 450—455. AAAI Press.

Parent, C. and Spaccapietra, S. (2009). An Overview of
Modularity. In (Stuckenschmidt et al., 2009), pages
5-23.

Schifermeier, R. and Paschke, A. (2014). Aspect-Oriented
Ontologies: Dynamic Modularization Using Ontolog-
ical Metamodeling. In Proceedings of the 8th Interna-
tional Conference on Formal Ontology in Information
Systems (FOIS 2014), pages 199 — 212. 10S Press.

Schlicht, A. and Stuckenschmidt, H. (2008). A Flexible Par-
titioning Tool for Large Ontologies. In Proceedings
of the 2008 IEEE/WIC/ACM International Conference
on Web Intelligence and Intelligent Agent Technology
- Volume 01, WI-IAT °08, pages 482—488, Washing-
ton, DC, USA. IEEE Computer Society.

Seidenberg, J. and Rector, A. (2006). Web Ontology
Segmentation: Analysis, Classification and Use. In
Proceedings of the 15th International Conference on
World Wide Web, WWW °06, pages 13-22, New York,
NY, USA. ACM.

Stuckenschmidt, H., Parent, C., and Spaccapietra, S., ed-
itors (2009). Modular Ontologies: Concepts, Theo-
ries and Techniques for Knowledge Modularization.
Lecture Notes in Computer Science. Springer Berlin /
Heidelberg.

Thakker, D., Dimitrova, V., Lau, L., Denaux, R., Karana-
sios, S., and Yang-Turner, F. (2011). A priori ontology
modularisation in ill-defined domains. In Proceed-
ings of the 7th International Conference on Semantic
Systems, I-Semantics *11, pages 167-170, New York,
NY, USA. ACM.

