An Experimentation Line for Underlying Graphemic Properties
Acquiring Knowledge from Text Data with Self Organizing Maps

Gilles Bernard, Nourredine Aliane and Otman Manad
Laboratoire d’Informatique Avancée de Saint-Denis (LIASD), PARIS 8 University, 2 Rue de la Liberté, Saint-Denis, France

Keywords:

Abstract:

Neural Networks, Computational Linguistics, Unsupervised Knowledge Learning, Text Information Retrieval.

We present an experimentation line that encompasses various stages for research on graphemes distribution

and unsupervised classification. We aim to help close the gap between recent research results showing the
abilities of unsupervised learning and clustering algorithms to detect underlying properties of phonemes and
the present possibilities of Unicode textual representation. Our procedures need to ensure repeatability and
guarantee that no information is implicitely present in the preprocessing of data. Our approach is able to
categorize potential graphemes correctly, thus showing that not only phonemic properties are indeed present
in textual data, but that they can be automatically retrieved from raw-unicode text data and translated into
phonemic representations. By the way, we observe that SOM algorithm copes well with very sparse vectors.

1 INTRODUCTION

This paper presents an attempt at an experimentation
line that addresses the issue of discovering oral and
scriptural properties of graphemes without any prior
knowledge, with the support of big corpora, within a
neural net framework, namely Self Organizing Map
(Kohonen, 1995) among other tools.

Graphemes have properties which partly reflect
the properties of their underlying oral correspondents
(phonemes), and partly scriptural formatting uses and
conventions, as well as morphemic properties. But
graphemes, as well as they are known to human be-
ings, are not immediately accessible to computers;
the only unit the computer processes is the computer
character — not even an equivalent to human written
character.

Research has been done, essentially by computa-
tional linguists, that address issues related to our prob-
lem, with proposals of algorithms effectively tested
against linguistic data, beginning with the seminal
work of (Harris, 1968). Of particular interest here is
a paper by (Goldsmith and Xanthos, 2009) that has
shown the feasibility of automatic detection of some
phonological phenomena in any language, given a
corpus in phonemic representation.

On the other hand, the devising of Unicode con-
ventions has given computer scientists the ability to
work on a close approximation to written characters
in most languages. But there is still work to be done

Bernard G., Aliane N. and Manad O..

to reduce the gap between human produced phonemic
representation(s) and the Unicode representation(s).
Our results show that experiments on the structural
and distributional properties of characters may give
us means to access the properties of graphemes and
their underlying phonemes, thus contributing to this
gap reduction.

This approach would enable us to generalize and
validate approaches as the one quoted above. Among
unsupervised algorithms, Self Organizing Map algo-
rithm has been selected for its ability to map in two
dimensions the results, with easier detection of the
phenomena analyzed.

2 THE ISSUE

Among digrams ‘ca’ is more frequent than ‘tc’ be-
cause of the properties of consonants and vowels; but
‘ch’ is more frequent than ‘ct’ for a completely dif-
ferent reason: ‘ch’ is in fact one consonant written
with two characters. The properties of ‘ch’ (its distri-
bution) are thus to be compared with those of ‘c” and
not with those of ‘ca’. Other properties relate to scrip-
tural (as opposed to oral) properties, as uppercase vs
lowercase or punctuation.

Usual entropy measures or Markov chains do not
capture such differences, which is not such a draw-
back from an empirical point of view, in helping with
strings pronunciation, speech recognition, error cor-

659

An Experimentation Line for Underlying Graphemic Properties - Acquiring Knowledge from Text Data with Self Organizing Maps.

DOI: 10.5220/0005577706590666

In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics (ANNIIP-2015), pages 659-666

ISBN: 978-989-758-122-9

Copyright ¢ 2015 SCITEPRESS (Science and Technology Publications, Lda.)



ICINCO 2015 - 12th International Conference on Informatics in Control, Automation and Robotics

rection, language identification, or optical recogni-
tion. But it constitutes a hindrance for linguistic or
psychological research and in deciphering unknown
languages or codes. In such cases we need more re-
fined analyses.

Graphemes (written basic units as ‘c’ or ‘ch’)
seem to be processed as units by the typer as well as
by the reader, as shown by psychological studies such
as (Weingarten et al., 2004). Interestingly, for (Jones
and Mewhort, 2004), the difference between lower-
case and uppercase characters frequency induces dif-
ferent psychological properties: “[...] identification
time for uppercase letters is predicted better by fre-
quency of uppercase letters than by frequency of low-
ercase letters”.

We choose to take nothing for granted, not even
separators; as the ‘h’ of ‘ch’ a white space could well,
in some writing systems, be part of a complex symbol.
In English a dot “.” finishes a sentence or signals an
abbreviation; it can also be part of a grapheme, as in
‘...7, in which it does not retain its usual function.

The aim of our experimentation-line is to capture
those properties without making any educated guess
(as what is uppercase or what is a separator), and see
how much information can be gathered.

3 STATE OF THE ART

Interest in the distributional properties of written data
is not knew. The famous Zipf law on the statisti-
cal properties of words was discovered as early as
1912 by Estoup and given a mathematical formula by
Zipf (Petruszewycz, 1973). Shannon opened new ar-
eas with information theory, and in the 1960’s, lin-
guists and mathematicians have worked on related is-
sues: mathematical generalization of Zipf law (Man-
delbrot, 1957), vowel / consonant automatic distinc-
tion (Sukhotin, 1962), prediction of morpheme clo-
sure (Harris, 1968).

Those issues underwent a loss of interest in favour
of syntactic and semantic parsing. Democratization of
computers renewed this interest in the 1990’s, with a
variety of statistical approach to low level phenom-
ena, see (Powers, 1997).

But in their vast majority, researchers in empir-
ical work on raw data have more concentrated on
the properties of words, than on grammatical data
or graphemes (with the exception of handwritten
grapheme recognition, which has very little to do with
our issue). Grammatical data was abstract and ob-
scured by years of so-called deep structure (but see
(Bernard, 1997) using statistics of grammatical data
to capture word properties); graphemes were too triv-

660

ial. Furthermore, works like Harris’ algorithm for de-
tecting meaningful units based on their distribution
waited for years before being rediscovered (Bernard
and Mariage, 2005), (Pham and Lee, 2015). The same
can be said of Sukhotin’s algorithm, known only in a
very narrow field (Guy, 1991).

Recent research has seen new approaches. (Gold-
smith and Xanthos, 2009) have successfully assigned,
from a corpus in phonemic representation, a phono-
logical category for each phoneme, as vowel vs con-
sonant or low vs high vowel (in vowel harmonic lan-
guages, see also (Goldsmith and Riggle, 2012)), us-
ing distributional profiles, Hidden Markov Models or
Spectral Clustering. (Mayer and Rohrdantz, 2013)
also show the possibilities of another clustering algo-
rithm (Ward, 1967) for discovering sound properties,
but, as with the others, “the words should be given in
some phonemic transcription (e.g., using IPA)”.

This constraint on phonemic representation is
what blocks the possibility of adapting such algo-
rithms outside of linguistic research, for computing
on raw data, because computer applications do no use
IPA (International Phonetic Alphabet) but Unicode (at
best).

4 SYSTEM DESCRIPTION

4.1 Graphemix Overview

The experiments presented in this paper have been
produced by Graphemix 0.1 (figure 1). Our system
aims to encapsulate every stage of experiment pro-
duction, from the constitution of the corpus to the vi-
sualization of the results, going through parameter se-
lection for algorithms and monitoring of the database.

The components are written in C++ using
Qt 5 libraries; it is available as a gitlab project
(https://gitlab.com/harris/charprops, ~ with cmake
build system), running on *nix systems.

It presents itself as a board with four tabs: cor-
pus constitution, corpus analysis, algorithm choice
and tuning, result visualization. In the first tab, the
user composes a corpus from the web and local files,
with format and encoding preferences. The second
tab contains the customizable analysis of the corpus
into potential graphemes, as well as primary statis-
tical results. In the third tab one selects an algo-
rithm and tunes its parameters. Version 0.1 only has
Sukhotin’s algorithm and Kohonen’s Self Organizing
Maps. Eventually the fourth tab yields the results. We
describe below with more detail the components relat-
ing to each tab.



An Experimentation Line for Underlying Graphemic Properties - Acquiring Knowledge from Text Data with Self
Organizing Maps

Copiale
Freprocessing

Corpus
versioning

T

Algorithms
(Sukhotin, SOM)

PostgresQL
DE

Graphemix
monitoring

Multi-Mgram
computing

Figure 1: Experimentation line.

4.2 Corpus Constitution

Corpus constitution-is done with a corpus version-
ing tool inspired by the operation of git. All data are
stored in a PostgreSQL database.

Though working on Unicode corpora is our goal,
in Graphemics 0.1, only written languages in the Uni-
code Basic Multilingual Plane are supported, either
in UTF-8, UTF-16 or CS-4 representations. The user
can select other charsets, or introduce arbitrary Uni-
code representations for codices that are not accepted
by the Unicode Consortium.

4.3 Corpus Analysis

The analysis takes three steps: at first, extracting ev-
ery possible grapheme, let us call it a candidate, then
compute what are the candidates that occur after one
candidate and their number of occurrences in this con-
text.

The result is a two dimensional matrix, whose
lines are the candidates and the columns their neigh-
bour candidates, and the values are the number of
times each candidate occurs after another. Transpo-
sition of the matrix gives the number of times each
candidate occurs before another.

This matrix is the input for the algorithms in the
following tab. The first two steps are done together,
for performance reason; with big corpora, it would
not be reasonable to separate identification of candi-
dates and identification of their context. The next sub-
section details those two first steps and the following
one the produced matrix.

4.4 Look up Candidates

We divide the texts in candidates, that is, in characters
ngrams, whose size is comprised between 1 and N.
The N upper bound can be selected by the user; it is
set by default to 5.

If two letters graphemes (English ‘sh’, French
‘ch’, German ‘ie’) are frequent, three and four letter
ones are not unusual: English ‘ough’, French ‘eaux’,
German ‘sch’, punctuation “...". The default value of
five seems to be a good general upper limit.

We determine all possible graphemes with their
right context. For example, the sequence:

seeing through
whose grapheme analysis should yield:
‘s’ ‘ee’ ‘i’ ‘ng’ *” “‘th” ‘r’ ‘ough’.

We first posit a window of ten characters (the dou-

ble of the upper bound size):

Then we take every candidate on the left and ev-
ery candidate as a possible neighbour on the right.
We take the size one candidate with all possible size
neighbours on the right. We then do the same with
the size two candidate, and so on until size 5. The last
possible analysis is “seein+g thr”. Table 1 illustrates
this (“_” replaces space for legibility).

We then move the window one character to the
right and recurse. With our corpus of over five mil-
lions of characters, we had 140 billions of possible
contexts. Most of those possibilities include the same
candidates, in candidate position or in neighbour po-
sition, so we must take into account the identification

661



ICINCO 2015 - 12th International Conference on Informatics in Control, Automation and Robotics

Table 1: Analysis of a sequence.

Candidate | Neighbour
e
ee
S eei
eein
eeing
e
se el
eing
i
see
ing_t
) 9
seein
g_thr

time for counting cooccurrences of the same candi-
date with the same neighbour.

In order to reduce the computation time and mem-
ory usage, we have used a character prefix trie repre-
senting the ngrams and their contexts. The depth of
the trie is at most 10, and its breadth is at most the
number of possible Unicode characters in the BMP
(theoretically 65,536).

45 Build the Matrix

The context matrix is a sparse matrix with immense
size, as candidates could theoretically be numbered
in millions. Fortunately, not every possible ngram oc-
curs in the corpus; and lots of ngrams only occur a
few times.

Ngrams that occur few times in big character cor-
pus are not likely candidates for being graphemes, so
they can (and should) be eliminated. But we made
the choice not to apply any apriori threshold, so even
hapax (occurring only once) ngrams are taken into ac-
count in the matrix. Itis only in a following stage that
the user selects the threshold to be used for SOM or
Sukhotin usage.

The afore mentioned PostgreSQL database stores
the components of the matrix (as fi, j, valueg
records), as well as other values (e.g. threshold). All
requests from the algorithms are made to this base.

4.6 Algorithm Panel
The algorithm tab is actually very simple, as only two
algorithms are available in version 0.1: Sukhotin’s al-

gorithm and Kohonen’s Self Organizing Maps. We
will only dwell on the second, as the first one cannot

662

be used (for separating vowels and consonants) before
identification of the graphemes.

4.6.1 Self Organizing Maps

Within the unsupervised neural models, Self Organiz-
ing Maps (SOM) is probably the most popular one
nowadays, so there is no need to give a detailed de-
scription. See (Kohonen, 1995) for a complete de-
scription of the algorithm.

The SOM learning algorithm extracts the main
characteristics of the data space and makes a pro-
jection of those properties from a high-dimensional
space onto a bi-dimensional map. The most inter-
esting property-of this mapping is that it preserves
the topological ordering of the implicit relations be-
tween the data categories. It depicts similarity be-
tween data classes by encoding them in the proximity
between clusters of units distributed over the map: re-
lated forms in the data space are near one another in
the map space.

The dimensionality reduction of the extracted rep-
resentation allows to discover and analyze relation-
ships between data classes that would be impossible
to detect in their original space. Moreover, the bi-
dimensional mapping provides a convenient visual-
ization interface.

X being the input vector, j an index on the neurons,
W the memory vector of the neurons, the winner, J*,
is determined by the following equation, where d() is
a distance or similarity measure:

d(X;Wj ) = mind(X;Wj) @
foreach jin fn; pg

The distance can be euclidian, Manhattan, or some
other. The cosine similarity (dot product, equation 2)
is often used; with sparse vectors it can drastically
reduce computation time.

n 1
C= XiWi (2)
i=0
In the learning phase the winner and every neuron
in its neighbourhood are modified according to equa-
tion 3, where t is the time (epoch), j an index on the
neurons:

W =w®+avOG i W @

The learning rate a follows the equation 4, where
Qg is the initial learning rate.

a0 =apt ) @

max



An Experimentation Line for Underlying Graphemic Properties - Acquiring Knowledge from Text Data with Self

Learning in the neighbourhood V of the winner
follows the gaussian variant given by equation 5,
which yields better results than mexican hat or other
variants.

O, - dm(j;j )
Vir(j j)=e 20 ®)
dm: distance Manhattan

with s obeying equation 6, where i = initial value

and f = final value.

Si .t
s =si(J)ma (6)
St

Uses of SOM applied to very high dimensional
data spaces (we have experimented here up to half a
million dimensions), as well as applications on sym-
bolic data, are not so frequent (but see (Mayer et al.,
2008) and (Tsimboukakis and Tambouratzis, 2007)).
In previous studies the dimensionality was reduced by
various ad-hoc means (e.g. (Honkela et al., 1997),
(Bernard, 1997)).

This well known “curse of dimensionality”, see
for instance (Aggarwal et al., 2001), could fully apply
here, as we can easily have millions of dimensions,
with very sparse vectors (in our runs, 1 non zero com-
ponent in 5,000). In such cases the authors recom-
mend lower norms (L1 or even fractional norms). If
the same reasoning applies here, Manhattan could be
a good choice here; so we added it to the possible
choices: euclidian distance, manhattan distance and
cosine similarity.

To assess the quality of the classification, we com-
pute the intra-class inertia which measures the ho-
mogeneity inside groups, hereafter HI (equation 7),
and the inter-class inertia, which measures the hetero-
geneity between groups, hereafter HB (equation 8). S
is the similarity measure chosen (distance or cosine
similarity), m the number of groups and nj the cardi-
nal of each group.

L™ A soewy @)
Hi== —  S(Xi; W 7
Mj=1 Nji=1
1 m m
HB= ——— W,
o S ®)

With distance measures, HI should be closer to 0
and HB closer to 1; the reverse holds with similarity
measures.

5 EXPERIMENTS AND RESULTS

5.1 First Results

We have processed a French corpus composed of nine

Organizing Maps

novels (5,2 Mb) extracted from Gutenberg Project; a
subset of 2Mb size was used for our first tests. Choos-
ing corpora in a well known language should make
it easier to refine the processing protocol. The size
of our corpus may seem little for the corpus process-
ing community. But consider that the unit studied is
the grapheme, not the word nor the phrase, and that
we extract every possible candidate and all possible
neighbouring candidates.

Text ending excluded, every letter has five candi-
dates possible to its right (same to its left). It can be
the last letter of five possible candidates. All these
potential relationships are computed and stored.

Generation of the prefix trie containing all possi-
ble vicinities does not take much time (between five
and ten minutes on an. ordinary medium level com-
puter). The toll is on the identification of which can-
didate is neighbour to which, and on the transactions
(even in batch mode) with the database: this part of
the process took a few hours.

Our full corpus yielded 374,108 ngrams, with 123
characters; 125,384 ngrams occurred just once. This
confirms what is already known about word hapax
in documents: contrary to intuition, their proportion
does not follow a decreasing curve, however large is
the corpus. It holds here. Figure 2 shows the dis-
tribution of the ngrams by frequency order (first 100
frequencies), often said to follow Zipf law.

140000

120000

100000

80000 H

60000 |

number of ngrams

40000

20000 |

0

0 10 20 30 40 50 60 70O 80 390 100

frequencies

Figure 2: Ngram Distribution.

But the formula they follow is steeper than Zipf
law, shown in figure 3.

The sparsity of the matrix depends on the thresh-
old selected; the increase of the number of non-zero
components follows astonishingly regular curves ;
figure 4 shows the curve for our test corpus, figure
5 for the full one.

663



ICINCO 2015 - 12th International Conference on Informatics in Control, Automation and Robotics

16000

14000 ¢

12000 ¢

10000

8000 |

frequency

6000

4000

2000

0 5 0 15 20 25 30 35 40
rank

Figure 3: Zipf law on James Joice’s Ulysses.

0.7

06

05

04

03

02

rate of non-zero components

01

0 2000 4000 6000 8000 10000

frequency threshold

Figure 4: Matrix Sparsity — test corpus.

0.08

0.07 r

0.06

0.05 r

0.04 ¢

0.03 r

0.02 r

rate of non-zero components

0.01 r

0

0 20000 40000 60000 S0000 100000 120000
frequency threshold

Figure 5: Matrix Sparsity — full corpus.

5.2 SOM Results

In our test corpus, a threshold of 10,000 yielded 73
candidates graphemes; only one 4-gram, “ de ’, and

664

six 3-grams (‘de ” “ de” ‘ait’” ‘es” “ le” ‘it ’). In our full
corpus, a threshold of 25,000 yielded 88 candidates,
with the same 4-gram and ten 3-grams (adding ‘le ’
‘nt’ ‘ent’ * qu’). These contains graphemes or gram-
matical markers (le, de). The exemples given below
are taken from the full corpus with thresholds between
10,000 and 25,000.

Preliminary remarks: we tested the following
SOM parameters: neighbourhood, topology, number
of epochs and neighbourhood learning curve. The
best results were with hexagonal topology (6 neigh-
bours), a neighbourhood starting with 25% of the map
and finishing with 0 (the winner itself), with a gaus-
sian neighbourhood learning, and 30.000 epochs (if
not we indicate it explicitly).

In nearly all results four classes of data emerge:
(a) vowels (including vocalic graphemes); (b) conso-
nants (including qu); (c) true syllables (“il ra la”); (d)
false syllables: written syllables usually pronounced
as consonants, mostly at the end of words (“re se te”).
Then there are leading and trailing items (ex. “ a’ is
leading a, ‘a,” or ‘a ’ are trailing a), mostly in cate-
gories (a, b, d).

Figures 6-8 show excerpts of a map 7*7, full cor-
pus, 10.000 epochs, euclidian distance.

s . "de' i
ne' 'de’
it 'ue’
'es' "ui’
o wf i e
i s 'le!
-
ri ‘us’
en! on' - 'me'
e 'te’
‘an’ ‘er'
‘ail’ 'se’
a ‘eu’ ‘ou’
ra '‘pa’
ol
o W

!

Figure 6: Vowels cluster.

Vowels, including vocalic graphemes, are located
in one cluster (in grey neurons containing only vow-
els, light grey for vowels and others). Most nasal vo-
calic graphemes (“en an on in”) are concentrated on
three neurons (“in” is in the first neuron on the second
line from the top, not visible here). Grapheme ‘un’ is
far from the others (not in the excerpt), probably due
to its being mostly used as an article, with spaces as
context. One could argue that in those cases ‘un’ is
not a phonetic grapheme, but one with pure morpho-
logical meaning, as ‘@’ or “‘ou’ (which are not frequent
enough to exceed the threshold). Leading ‘e’ is in one



An Experimentation Line for Underlying Graphemic Properties - Acquiring Knowledge from Text Data with Self

of the central cluster, while ‘e’ (a mute vowel apart
from initial position) is in a cluster containing “false
syllables”.

Figure 7 has a very homogeneous consonant clus-
ter (only ‘un’, apostrophe sign, and “hollow” ngram
‘e d’ are not consonants).

qu’ c
qu’ o
dr i:
‘e d v
e
e
- b
un' i
o
!

m g e
ot " "
he
0

Figure 7: Consonants cluster.

Figure 8 shows the false syllable repartition in the
same map. Leading ‘ le” and * de’ have been classified
with normal ‘le’ and ‘de’ ; trailing ‘de ’ and isolated *
de *are classified together, farther away.

. . ' de' il
'ne’ ‘de’
it ‘ue'
‘es’ "ui'
'de n' ‘au’ 't 'le!
'de i 's' 'le!
gt
ri ‘us’
‘en' ‘on' ‘e ‘me’
‘e 'te’
‘an’ ‘er'
‘ai' 'se’

Figure 8: False syllables repartition.

True syllables do not form a cluster, they are dis-
persed in the whole map (as “ra pa ro il” here). But
punctuation and spaces are grouped together in figure
9.

'ar'

de
de

Figure 9: Punctuation cluster.

Vocalic and consonant clusters are to be found in
most runs. False syllables can be encountered in more
or less clear clusters; true syllables are rarely found in

Organizing Maps

clusters. This holds even for very little maps, as the
one presented in figure 10 (2*2, 30,000 epochs) on
the left: neuron (0,0) false syllables, (0,1) trailing ele-
ments and punctuation, (1,0) consonants, (1,1) vowels
(similar repartition on the right, with cosine similar-
ity).

With a threshold of 10,000, yielding 255 candi-
dates, the clearest category is punctuation, nearly al-
ways grouped in adjacent neurons without mixing.
The consonant one is second to it, being in its own
clusters. A bigger set of true syllables confuses a lit-
tle the results for the other categories, and the nasal
vocalic graphemes are not as clearly distributed as in
the 22.000 threshold data.

The threshold of 19,000, selected to contain the
grapheme “ch”, show very similar results to those al-
ready seen, with “ch” rightly incorporated in the con-
sonant cluster. Not much difference either with the
threshold of 25,000.

it o
e " t o'
i 's " ‘en’
'te! ‘e ‘g n'
‘er' 'de! ‘e 'a'
's' de ' de 'ie!
'me' i 'de it
'se' ! ! ‘@'
re' ! -3
' de' T' a'
'de’ ¥ ! ‘an’
il it L 'co'
e’ e it ri*
' ‘es ! "ou’'
is '3’ e in
i ‘es’
r ‘o' T e
c u' 'c! 't
b ‘en’ b’ 'te’
g ' g’ ‘er’
- b
d 'ie! d' 'me’
m i 'm' 'se'
ed =3 ‘ed re'
d ‘ar' td ' de'
I e ' "de’
| 'a' il il
h ‘an’' 'k le!
f 'co’ '
f ri' ' ‘ar’
t 'ou’ 't 'is’

Figure 10: Complete maps, euclidian / cosine.

Cosine similarity works nearly as well as euclid-
ian distance (see figure 10 for a comparison); as re-
gards vocalic clusters, it performs slightly worse (sep-
arating clusters). Manhattan distance performs quite
badly here, as it tends to group more data in less neu-
rons and confuses the categories. So it seems SOM is
immune to the curse of dimensionality.

665



ICINCO 2015 - 12th International Conference on Informatics in Control, Automation and Robotics

6 CONCLUSIONS

The feasibility of a raw-unicode text-based ap-
proach for detecting at least phonemic properties of
graphemes is illustrated by those results. Much still
has to be done, as generalizing to other languages, es-
pecially poorly described ones. We focused here on
the experimentation protocol, ensuring that no short-
cut was taken which would violate our first constraint:
do not put information into data that you want to get
information from.

We began trials on the Gutenberg Project French
utf-8 files (approx. 330 Mo), and are devising a strat-
egy to be able to process it in reasonable time. As the
results for our full corpus were much more to the point
than the results for the test corpus, we hope that it will
yield a highest rate of correct classification (getting
rid of spurious data and of the influence of writer’s
style).

We have in immediate perspective an extension
outside the Unicode Basic Multilingual Plane. But
this-will complexify the code; as low and-high surro-
gates have each the size of a BMP Unicode character
and the prefix trie must be modified to support that,
which will modify its breadth (but not its depth).

An extension including Spectral Clustering (Ng
et al., 2002) and Hidden Markov Model analyses is
planned in a near future. Our aim is to be able to re-
produce the experiments in (Goldsmith and Xanthos,
2009) and to permit the crossing of clustering with
neural networks as proposed in (Bassani and Araujo,
2014).

REFERENCES

Aggarwal, C. C., Hinneburg, A., and Keim, D. A. (2001).
On the surprising behavior of distance metrics in high
dimensional spaces. In 8th International Conference
on Database Theory - ICDT.

Bassani, H. and Araujo, A. (2014). Dimension selective
self-organizing maps with time-varying structure for
subspace and projected clustering. In IEEE Transac-
tions on Neural Networks and Learning Systems.

Bernard, G. (1997). Experiments on distributional catego-
rization of lexical items with self organizing maps. In
WSOM’97 International Workshop on Self Organizing
Maps. Espoo, Finland.

Bernard, G. and Mariage, J.-J. (2005). Post-processing
of grammatical patterns produced by self organizing
maps. In 8th Conference on Pattern Recognition and
Information Processing PRIP’05, Minsk, Belarus.

Goldsmith, J. and Riggle, J. (2012). Information theoretic
approaches to phonology: the case of finnish vowel
harmony. Natural Language & Linguistic Theory,
30(3).

666

Goldsmith, J. and Xanthos, A. (2009). Learning phonolog-
ical categories. Language, 85(1).

Guy, J. B. M. (1991). Vowel identification: An old (but
good) algorithm. CRYPTOLOGIA, 15(3).

Harris, Z. (1968). Mathematical Structures of Language.
Interscience Publishers New York, 1st edition.

Honkela, T., Lagus, K., and Kohonen, T. (1997). Websom:
Self-organizing maps of document collections. Neu-
rocomputing, 21.

Jones, M. and Mewhort, D. (2004). Case sensitive letters
and bigram frequency counts from large-scale english
corpora. Behavior Research Method, Instruments &
Computers, 36(3).

Kohonen, T. (1995). Self-Organizing Maps.  Springer,
Berlin, 1st edition.

Mandelbrot, B. (1957). Etude sur la loi d’Estoup et de Zipf :
fréquence des mots dans le discours. Logique, langage
et théorie de I’information.

Mayer, R., Roigel, A., and Rauber, A. (2008). Map-based
interfaces for information management in large text
collection. Journal of Digital Information Manage-
ment, 6(4).

Mayer, T. and Rohrdantz, C. (2013). Phonmatrix : Visual-
izing co-occurrence constraints of sounds.

Ng, A., Jordan, 1., and Weiss, Y. (2002). On spectral cluster-
ing: Analysis and an algorithm. Advances in Neural
Information Processing Systems 14.

Petruszewycz, M. (1973). L’histoire de la loi estoup-zipf :
documents. Mathmatiques et Sciences Humaines, 44.

Pham, M. and Lee, J.-L. (2015). Combining successor and
predecessor frequencies to model truncation in brazil-
ian portuguese.

Powers, D. (1997). Unsupervised learning of linguistic
structure: an empirical evaluation. International Jour-
nal of Corpus Linguistics, 2.

Sukhotin, B. (1962). Experimental’noe vydelenie klassov
bukv s pomoju evm. Problemy strukturnoj lingvistiki,
236.

Tsimboukakis, N. and Tambouratzis, G. (2007). Self-
organizing word maps for context-based document
classification. In WSOM’07, International Workshop
on Self-Organizing Maps. Neuroinformatic Group
Bielefeld, Germany.

Weingarten, R., Nottbusch, G., and Will, U. (2004). Mor-
phemes, syllables and graphemes in written word pro-
duction. Multidisciplinary Approaches to Language
Production.



