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Abstract: In this paper, we present a new method for range data fusion from two heterogeneous range scanners for
accurate surface modeling of rough and highly unstructured terrain. First, we present the segmentation of
RGB-D images using the new framework of the GMM by employing the convex relaxation technique. After
segmentation of RGB-D images, we transform both the range data to a common reference frame using PCA
algorithm and apply the ICP algorithm to align both data in the reference frame. Based on a threshold criterion,
we fuse the range data in such a way that the coarser regions are obtained from Kinect sensor and finer regions
of plane are obtained from the Laser range sensor. After fusion, we apply Delaunay triangulation algorithm to
generate the highly accurate surface model of the terrain. Finally, the experimental results show the robustness
of the proposed approach.

1 INTRODUCTION variable lighting conditions using a Kinect sensor and
commodity graphics hardware. They have fused all

The multi-range sensor data fusion is the processthe streamed depth data into a single global implicit
of combining the range information from redundant Surface model of the observed scene. In (Lai et al.,
and/or complementary sensors, to produce a complete2011), the authors have presented a new method for
and accurate description of the targeting region. The RGB-D based object recognition and detection using
range data fusion has a special significance to gen-color and depth information. In (Johnson and Man-
erate the good quality surface. Nowadays, the gen-duchi, 2002), the authors have proposed a probabilis-
eration of dense 3D representations of the environ- tic rule for adaptive resolution integration of 3D data
ment has gained more attention. Some of the first which has collected from multlple distributed sensors.
work focused on the fusion of range data by mak- In (Singh et al., 2014), the authors have proposed a
ing an implicit function (Wheeler et al., 1998) and New method for range data fusion from two heteroge-
then polygonizing it using the marching cubes algo- N€OUS range scanners. They have exploited the terrain
rithm for high resolution surface reconstruction. In characteristic (i.e. coarser and finer region) to fuse the
(Trevor et al., 2012), the combination of 2D lines and range data and generated accurate 3D fused surface of
3D planes with a high level representation and easy the planner environment.

to be annotated with semantic data have generated an In this paper, first we present the segmentation of
accurate 3D map with its high level features. As dis- RGB images using the new framework of the Gaus-
cussed in (An et al., 2012), the authors have presentedsian mixture model by applying the convex relaxation
a fast incremental method of extracting planes using technique. After segmentation of RGB-images, we
2D lines from 3D point clouds acquired sequentially extract the corresponding location in Depth images
from a tilted LRF over mobile robot. In (Kla3 et al., by calibration RGB and depth images (Herrera et al.,
2012), the authors have built the 3D surface element2012). Now we are able to detect the finer location in
grid maps and present Monte Carlo localization with Kinect frame. Also, we obtain the range data of the
the probabilistic observation models for 2D and 3D same environment from the Laser range scanner. Us-
sensors in this map. In (Newcombe et al., 2011), the ing the PCA algorithm, we transform both the range
authors have presented a new method for real-time 3Ddata into a common reference frame, and apply the
modeling of complex and arbitrary indoor scenes in ICP algorithm to align both range data. Based on a
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threshold criterion, we have fused the range data in

such a way that the coarser regions are obtained from | T L |
Kinect sensor and finer regions of plane are obtained | R - S
from the Laser range sensor. After fusion, we ap- - ﬂ‘._ ==

ply the Delaunay triangulation method to generate the @ ®)
highly accurate surface model of the terrain. . ) . ,
The remainder of this paper is oraanized as fol- Figure 1: (a) Laser Range sensor designed at our robotics
. IS pap 9 . lab (b) The Microsoft Kinect system.
lows: Section Il describes the proposed method in
detail. Section Il presents the experimental results.

Finally, we conclude this paper in Section IV. from the sensor otherwise the quality of data is dete-

riorated by noise and low resolution.

2.2 RGB-D Segmentation
2 THE PROPOSED METHOD

In this section, we describe the method to unsu-
The steps of the proposed method are described agpervised segmentation of RGB-D images using new
follows: framework of GMM using by employing convex re-

laxation approach.

2.1 Range Data Acquisition Systems _ _
221 Gaussian Mixture Model and EM

For the fusion of range data, we have used two het- Algorithm

erogeneous range sensor, i.e. Laser range scanner and , _ _ I
Microsoft Kinect. -The figure 1(a) shows the Laser A Gaussian mixture model is a pr_obablllstlc model
range scanner which is deigned at our robotics lab. that presumes all the sample points are generated

In the Laser scanner system, the Laser projects Iaser];)ro'fn a m|.x:]ure |?f a fixed number of (hSausfS|an distri-
line on the plane and camera captures the laser ling®Utions with unknown parameters. Therefore a Gaus-

profile. When range scanner moves over the object Sian mixture model is a weighted sumMfGaussian
surface, the camera acquires images of the distortedc°mMPonent densities of which is aD-dimensional
pattern which are reflected by the object surface. The Me@surement vector as given by the equation,
height of the objects are obtained by taking into ac- N

count the distortion of the laser light stripe caused P(X/W,0i) = ziooig(x;w,ciz) (1)
by their shapes. The designed Laser range scanner i=

gives accurate range measurements of the large anyhere oy denote the mixture ratiop is the Gaus-
gular field with angular resolution.012%. The ac- sian pdf parameterized by megnand variance?.
curacy of the range scanner is approximate-3  Given data, the paramete®s= {w, 1,0%} can be ef-
mm throughout ts range. The major advantage of de- ficiently estimated through maximum likelihood es-
signed range scanner: it gives accurate result, verytimation (MLE) using the EM algorithm, then clus-
high angular resolution, no correspondence issue be-ters will be obtained through estimated parameters.

cause the camera acquires the illuminated scene toThe |og-likelihood function for GMM is given by
obtain the dense 3D geometric information in a sin- (McLachlan and Krishnan, 2007)

gle exposure. The disadvantage is its high scanning

time due to sequentially scan the terrain. The fig.1(b) N 5

shows the Kinect sensor that was introduced in Nov £(0) :/ng.zl Wi exp{— [f(xgo—zui] }dx
1= 1

2010 by Microsoft for the Xbox-360 video game sys- V2110,

tem. The detail description of Microsoft Kinect is de- (2)
scribed in the papers (Zhang, 2012; Khoshelham andwe drive the conclusion from EM algorithm that the
Elberink, 2012). In(Khoshelham and Elberink, 2012), E-step and M-step can guaran@é@tJrl) > ¢(0h
the authors have investigated the accuracy and resoluguring the updating process (i.e—t t+1), which de-

tion of Kinect depth data for indoor mapping applica- notes the local convergence of the EM algorithm.
tions. They have presented that the random error of

depth measurement increase quadratic-ally with in- 2.2.2 GMM using Convex Relaxation Approach
creasing the distance from the sensor and it ranges

from few millimeters up to 4 cm at the maximum In this section, we present GMM algorithm us-
range of the sensor. For the mapping application, theing a convex relaxation approach. The optimiza-
working range should be within 1-3 meter distance tion of logarithm and summation function like
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equation (2) is difficult task because the opera-
tions of these functions are not non-commutative.
However, the solution of these function could
be achieved by adding a convex relaxation term.
(u,v) represent the a vector valued function such
as v(x) = (vi(x),v1(x),v3(X)......vn(X)) and A =
{vlo<vi < 1,5 ,vi =1}. The symbol is defined

as the convex relaxation term for non binary vector
spacev) = {v|vi = {0,1}, ¥ , v = 1}. For commu-
tativity of log-sum function, we have used a deduction
of convex analysis (Rockafellar, 1997)

Lemma 1. The Log-sum Commutativity operations of
given a functior; (x) > 0, for any functiorf;(x) > 0,
we have

N
{z [Bi (%) — ati ()] i (%)

1
+_ZIVi (x)logv (X)} @)
X) |2

f(x
T = 0i(X), I o7~ = Bi(x) and
apply lemma in equation (2). The optimization prob-
lem becomes

~log %m(x)exp[—& (¥)] = min
i=1

v(x)eA

Now we set:

6= argmeaxL (@)= —argminL (©)

—argmm{/ ernenA{ [Bi (x) — logay (X)] vi(x)
+ 'zi\/i (x)logv (x)} dx} 4)

Now we introduce a function&l(©, v) with two vari-
ablesO, v.

. _ [ [0 -l w |,
s(e,v)_/QiZ{ 552 —Iog\/zncri vi(x)dx

+ /Q ivi (X)logwvi (x)dx

Then we compute the minimizer &f(©,v) via the
following alternating algorithm:

VI+1

(5)

= argminé (@', v)

ue
et+l: ing (© Vt+l
argnzama( MV

(6)

Wheret = 1,2. .. is the iteration number ar@® is an

initial guess.

2.2.3 TheBasic Mod€

Now we consider the non-uniform intensity problem

of unstructured terrain, which can be mathematically
modeled as:

FO) = y(x)g(x) (7)

where g(x) is the ground truth imagé(x) refers the
observed data angx) refers to a smooth varying bias
field. From (Li et al., 2008), we have taken assump-
tions that the bias field is non-negative and smoothly
varying. In the nearest neighborhood circle centered
atxi.e.y(y) =y(x), forally € Ox.

Here we describe method in (Li et al., 2008) with
statistical interpretation. Let us first focus on the
neighborhoo®y centered ay , all the intensityf (y)
within.neighborhoodOy have same pfdp(x) with
the parametep;,0?,B(y). If we deal with different
contributions to the cost functional®,v) in terms
of distance to centering point, then we consider to
add some weights for each pixel. We have taken
the Gaussian function with std, Gg(x) ~ 0 when
x & Oy. Therefore, integral domain @y is expanded
to whole domaim. i.e.,

N 12
ff/QGU(yfx)IogiZl \/%exp{[f(xz)oizw }dx
(8)
For the desirable segmentation result, we have
taken the global information and the total cost func-
tional becomes

£(0) = | & (0)ay ©

The segmentation problem can be solve by the mini-
mization problem

O@=arg ngains(e) (10)
However, the above optimization problem is very dif-
ficult to solve due to the presence of the log-sum func-
tion. As a result, we construct the above cost function
with two variables mention in previous section. Ac-
cording to lemma 1, the final data term becomes

eV = %/Q/Qiea(y—x) {w
—Iog\f;wi} (x)dxdy

/Zl i(X)logaw (x dx+2/ le )logoZdx
+/£;|Og[3(y)dy+/£;izivi(x)mgvl(x)zdx

(11)

we have to minimize€ (©,v) under the constraint

because Kinect sensor capture the RGB-D imagesv € A to get the optimized*, ©*. Inspired by (Wang
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et al., 2009), we have introduced another regulariza- On the other hand the random depth error in Kinect
tion term which is guarantee the precise close-form (Khoshelham and Elberink, 2012) increases with in-
solution ofv. The regularization term define as creasing distance from the sensor, but it is low cost,
N compact range sensor and very fast relative to de-

R (V) :/ ZVi (x)e(x)/ [1—vi(y)]dydx (12) §|gned Laser range sensor. The terrain charactepsﬂc
Q& N(xn) is determine in terms of surface elevation. The finer

regions of terrain are determined as the regions whose
. : . elevation is greater than 4 cm. Therefore, the thresh-
neighborhood centelred awith radiusn. Inthe pa- 4 criterion for finer regions is determined in terms
per, we take = =g . Therefore combiningthe ¢ ojovation. We use Kinect to scan the coarser re-
data term and regularization term, we introduce our gions of terrain and the finer regions are scanned from

new model as follows a Laser range scanner. Since the range data obtain
(©*,v*) =arg min £:=£(0,v) +AR(v) (13) from both the range scanners are in different coordi-
O,veh nate systems. Thus, it is necessary to transform both

the range data into a common reference frame. We ap-

ply the Principal component analysis (PCA)(Jolliffe,

2005) to both range data sets that orthogonality trans-
form the data set to the new coordinate system such
0= {0)1~~~0N,,L11---HN,0§---Cﬁ}U{B(Y)} (14) that the largest variance of the data is defined as first
y coordinate (i.e. first principle component) and so on.

This new model is inherently different from clas- This new coordinate system is defined as a common

sical GMM. Firstly, the classical GMM is very sen- - reference frame. Both range data are transformed
sitive to noise and lacks in spatial smoothness con-into this reference coordinate system. With the help
straint while the above new model has a controlling of segmented depth data, we find their correspond-
parameter that makes it robust to noise. Secondly,ing points in the transformed reference frame. The
the data term in traditional GMM is only works well ~ finer detailed regions are identified in the reference
for images that have almost piece-wise constant andframe. Now we apply the ICP algorithm (Elseberg

it can not handle the images with non-uniform inten- et al., 2012) to align both the data set in this frame.

sity. However, the new model incorporates local bias This alignment of the two heterogeneous range data
function information, global intensity and edges in- in reference frame is much faster than alignment of
formation. Therefore, it works well on the images the range data in different coordinate system. Based
with non-uniform intensity. The minimizing eq. (15), ©n a threshold criterion, we fuse the finer region of

where e is the edge detector functibi{x; n)give the

whereA > 0 is a regularization parameter that con-
trols the trade-off between these two function. The
parameter séd becomes

starting from a given initial valu®® such that data which is obtained from Laser range scanner to
i1 _ " Kinect’s coarser regions data. The fused range data

u = arQTE'QL (e4hv) eliminate the demerits of the range scanners by com-

i1 _ 41 plementing each other. To generate the surface, we

©"" =argminL (©,v*) (15)  apply the Delaunay algorithm to the fused range data.

. o . In this way, we reconstruct the accurate, realistic sur-
The stopping criteria of above proposed method is t5ce of the terrain.

| £t — Leya)|? < 8| L |%. In this way, we segment the

RGB-images obtained from Kinect. Now our aim to

correlate the segmented the RGB-images to their cor-

responding Depth images. For calibration of as dis- 3 EXPERIMENTAL RESULTS
cussed in (Herrera et al., 2012), the calibration of

Depth and the color image pair is done using planar The proposed fusion method is tested on real world
surface and a simple checkerboard pattern. The samejata by creating different types of environmentin our
calibration method is used to establish the relation be- Jab. In the experiment, we have used the two hetero-

tween two range sensors. After calibration, we can geneous Laser range scanner and Kinect shown in Fig

easily locate the objects in the environment. (1). The purpose of the range data fusion is to gen-
_ erate the accurate, realistic, and a fast 3D surface of
2.3 DataFusion the terrain and eliminates the demerits of both range

scanners by complementing each other. In the experi-
The time cost of data acquisition from Laser range ments, two range data sets of the same environment
scanner is high, but it provides a very high quality are obtained from both scanners (i.e. Laser range
range data i.e. 2 mm precision throughout the range.scanner and Kinect). First Kinect captures the RGB
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@ (b) (© (d)
Figure 2: (a) Figure of different types of object placed ian# (b) Active contour map (c) Segmented blocks of RGB image
and(d) Corresponding depth image.

(d) (e)
Figure 3: (a) The 3D surface of plane is obtained from KinbEafter applying ICP algorithm the aligned surface from &

and (c) from Laser range scanner (d) The Segmented fine refjgnface from Laser range scanner (e) The accurately fused
3D surface model from both range sensors.

) (h)
Figure 4: (a) Figure of different objects are placed on sagpidye (b) Figure of rectangular aluminum log (c) The plywood
board consist of several stick’s is placed (d) The diffeddsjects are placed (e) Shows the fused accurate 3D modédferftit
objects (f) Shows the fused 3D model of aluminum log (g) Shihesused 3D surface of plywood board (h) Shows the fused
3D surface of different objects.

and Depth image of the environment. The Fig 2(a) ICP algorithm. The alignment of both range data in
shows the RGB-image, The Fig 2(b) shows the ac- the common reference frame using ICP algorithm is
tive contour with new approach of GMM and Fig 2(c) much faster than directly apply the ICP algorithm for
shows the segmented objects in the image. To estab-alignment of the range data in two different frames.
lish the relation between rgb image and depth image, We have defined the threshold for selecting fine re-
we have used the calibration method given by (Her- gion based on height data variation. Since Laser scan-
rera et al., 2012). The Fig 2(d) shows the segmentedner time cost is high, therefore we have scanned the
objectsin the depth image. The finer regions of terrain finer region of terrain using Laser scanner based on
are defined as the points of range data whose elevatiorsegmented depth data obtained from Kinect and rest
is greater than 4 cm which is the threshold criterion. regions are taken from Kinect i.e. we have retained
The range data acquired from both the range sensorghe coarser detailed regions and erase the fine detailed
are in different coordinate system. Therefore, it is region of Kinect range data. Now we have fused fine
necessary transform both range data into one commorregion range data acquired from Laser scanners to
reference frame. We transform the both range data tothe coarser regions range data obtained from Kinect.
a new coordinate system such that new set of uncorre-Using Delaunay algorithm, we have generated sur-
lated variables axis, called principle components. The face of the terrain. The Fig. 3(e) shows the finally
axis's of common reference frame are defined as thefused surface. In 3D fusion experiment, the relative
largest variance after transformation of data set to first sensor disparity of Laser range sensor relative to the
coordinate system and so on. The figure 3(b-c) showsKinect in the reference frame is as the rotation matrix
the aligned 3D surface of the terrain after applying the R=[ 0.9704 0.2418 0;-0.2418 0.9704 0; 0 0 1.0000]J;
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and translation vectdr=[119.4117 127.9851 0]. The segments for 3d mapping. Intelligent Robots and
alignment root mean square error of the fused data is Systems (IROS), 2012 IEEE/RSJ International Con-
approximately 3.2 mm. Many range data fusion ex- ference onpages 4530-4537. IEEE.

periments have been performed with different objects Elseberg, J., Magnenat, S., Siegwart, R., and Nuchter,
A. (2012). Comparison of nearest-neighbor-search

in thg enwronme_nt. Fig 4(2) shovys the different kind strategies and implementations for efficient shape
of objects place in the plane and its accurate fused 3D registration. Journal of Software Engineering for

terrain model is shown in Fig 4(e). Again the rectan- Robotics 3(1):2-12.

gular aluminum log is placed in plane as shown in Fig Herrera, C., Kannala, J., Heikkila, J., et al. (2012). floin
4(b) and its fused terrain model is shown in Fig 4(f). depth and color camera calibration with distortion cor-
Similarly, now we place the plywood board that has rection. Pattern Analysis and Machine Intelligence,

IEEE Transactions or34(10):2058—-2064.

15 rectangular log and different objects in the plane . o
son, A. E. and Manduchi, R. (2002). Probabilistic

; _ ; _ John
gSDFr:?(;(;re(ICo(:)tlhzlgtJéﬁa(\?n hzrir:eoxssfﬂt? nacfuusr:éelsifrtfjjfs 3d data fusion for adaptive resolution surface genera-
) 9 tion. In 3D Data Processing Visualization and Trans-

shows, the proposed method is applied to accurately,  mjssion, International Symposium,grages 578-578.

realistically and rapidly represent the real-world envi- IEEE Computer Society.

ronment. Jolliffe, 1. (2005). Principal component analysis Wiley
Online Library.

Khoshelham, K. and Elberink, S. O. (2012). Accuracy and
resolution of kinect depth data for indoor mapping ap-
4 CONCLUSIONS pIications.Sensorle(g):l437—l454. — I
KlaR, J., Stuckler, J., and Behnke, S. (2012). Efficient mo
In this paper, we have presented a new approach for bile robot navigation using 3d surfel grid maps. In
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ners (i.e. Laser range scanner and Microsoft Kinect)y ~ Man Conference opages 1-4. VDE.
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the GMM using convex relaxation approach for seg- j, ¢, Kao, C.-Y., Gore, J. C., and Ding, Z. (2008). Min-
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