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Abstract: The computation load remains the main challenge facing the control techniques of hybrid systems with 
discrete and continuous control signals. In this paper, a new hybrid controller based on Analytical Nonlinear 
Model Predictive Control (ANMPC) and Particle Swarm Optimization (PSO) for nonlinear hybrid systems 
is presented. The proposed controller offer sub-optimal solution in reasonable time while respecting the 
given constraints. The new developed technique is not considered as a computation burden, thus real-time 
implementation is possible for many hybrid systems. Besides, it can be applied directly to the nonlinear 
models, avoiding linearization which may lead to inaccurate model and unexpected behaviour. An 
application of the proposed controller to a three tanks example is presented. 

1 INTRODUCTION 

Many real systems can be modelled as hybrid 
systems with discrete and continuous input signals. 
Several control techniques have been proposed in 
literature to control hybrid systems, among them 
Model Predictive Control (MPC) has been 
considered as one of the most effective techniques 
that can control linear hybrid systems. However the 
computation burden associated with the mixed 
integer linear/quadratic optimization problems 
remains the main challenge facing real-time 
application. Several techniques and algorithms have 
been proposed in literature to reduce the 
computation load; for example (Thomas et al., 2003, 
2004) proposed using multi-MLD models rather 
than using one global Mixed Logical Dynamical 
(MLD) (Bemporad and Morari, 1999) model with 
bigger number of variables, in (Thomas et al., 2006) 
a MPC for state partition based MLD model is 
proposed to use simpler models. A techniques based 
on genetic algorithm is proposed in (Olaru et al, 
2004) and in (Thomas et al., 2005). Explicit-MPC is 
proposed in (Bemporad et al., 2000a and 2000b) 
where the optimization problem is treated as a multi-
parametric problem solved off-line; and hence on-
line computation reduces to a function evaluation.  
However, all these techniques have been developed 
for linear hybrid systems. 

An Analytical Nonlinear Model Predictive 
Control (ANMPC) technique for linear induction 
motor is proposed in (Thomas and Hansson, 2010 
and 2013), and ANMPC for nonlinear hybrid 
systems with discrete inputs only is presented in 
(Thomas, 2012). The proposed ANMPC controller 
based on enumerating all possible inputs 
combination and calculating analytically the cost 
function and then selects the input combination 
which minimizes the cost function. The author of 
(Thomas, 2012) shows that ANMPC lead to MPC 
with lower computation load compared to other 
techniques proposed in literature i.e. standard B&B, 
explicit MPC for the considered classes of hybrid 
systems with discrete inputs only, and that ANMPC 

an take into account state and output constraints.  
This paper propose extending the ANMPC 

controller by integrating it with Particle Swarm 
Optimization (PSO) (Kennedy and Eberhart, 1995) 
and show that the new proposed controller can be 
applied effectively to nonlinear hybrid systems with 
discrete and continuous inputs. This algorithm 
reduces efficiently the computation load while 
respecting the given input, states and output 
constraints. Besides, the new proposed technique 
can control directly nonlinear hybrid systems 
avoiding linearization which may lead to inaccurate 
model and unexpected behaviour. 

The rest of the paper is organized as following; 
section 2 briefly presents the concepts of MPC and 

294 Thomas J..
Integrating Particle Swarm Optimization with Analytical Nonlinear Model Predictive Control for Nonlinear Hybrid Systems.
DOI: 10.5220/0005570702940301
In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO-2015), pages 294-301
ISBN: 978-989-758-122-9
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



PSO. The proposed ANMPC integrated with PSO 
controller is developed in section 3. Application of 
the proposed controller to a three-tanks example is 
considered in section 4. Finally conclusion and some 
remarks are given in section 5. 

2 CONCEPTS OF MPC AND PSO 
CONTROLLERS 

2.1 Model Predictive Control 

Predictive control was first developed at the end of 
1970s, and was published by Richalet et al., (1978). 
In the 1980s, many methods based on the same 
concepts are developed. Those types of controls are 
now grouped under the name Model Predictive 
Control (MPC) (Camacho and Bordons, 1999). MPC 
has proved to efficiently control a wide range of 
applications in various industries. 

The main idea of predictive control is to use a 
model of the plant to predict future outputs of the 
system. Based on this prediction, at each sampling 
period, a sequence of future control values is 
developed through an on-line optimization process, 
which maximizes the tracking performance while 
satisfying constraints. Only the first value of this 
optimal sequence is applied to the plant. The whole 
procedure is repeated again at the next sampling 
period according to the ‘receding’ horizon strategy 
(Maciejowski, 2002). The objective is to lessen the 
future output error to zero with minimum input 
effort. The cost function to be minimized is 
generally a weighted sum of square predicted errors 
and square future control values, e.g., in Generalized 
Predictive Control (Clarke et al., 1987): 
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where uy,ˆ  are the predicted output and the control 

signal respectively. uNN,  are the prediction 

horizons and the control horizon, respectively. λβ ,  
are weighting factors. The control horizon permits a 
decrease in the number of the calculated future 
control assuming 0)( =+Δ jku  for uNj ≥ . 

)( jkw +  is the reference trajectory. 

Constraints over the control signal, the outputs 
and the control signal changing, can be added to the 
cost function: 
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The solution of (1) gives the optimal sequence of 
the control signal over the horizon uN  while 

respecting the given constraints of (2). 
A fundmental difficulty of the MPC approach is 

the requirement to solve constrained nonlinear, 
nonconvex optimization problems. A linearized 
model of nonlinear systems is commonly used for  
MPC controller. However, this lineariza-tion 
introduce model mismatches which affect the 
control performance, as the MPC performance 
depends largely on the accuracy of the process’ 
model. 

2.2 Particle Swarm Optimization 

The particle swarm optimization (PSO) algorithm is 
a population-based search algorithm inspired by the 
social behavior of birds within a flock (Kennedy and 
Eberhart, 1995). Particle Swarm has two primary 
operators: Position and Velocity. Each particle 
representing a potential solution is maintained 
within a swarm. The position of each particle is 
adjusted according to the experience of itself and its 
neighbours. During each generation, each particle is 
accelerated toward the particle’s previous best 
position p , and the global best position g . At each 

iteration, a new velocity value for each particle is 
calculated based on its current velocity, the distance 
from its previous best position, and the distance 
from the global best position. The new velocity 
value is then used to calculate the next position of 
the particle in the search space. This process is then 
reiterated a set number of times, or until a minimum 
error is achieved. The PSO with Constriction 
Coefficient is considered where velocity and 
position are updated according to the following 
equations (Clerc and Kennedy, 2002): 
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)()1()( tvtxtx ijijij +−=  (4) 

where )(txij , )(tvij  and ijp  are the position, 

velocity and best personal position of particle i , in 
dimension xnj ,,2,1 =  at iteration t , where xn  is 

the dimension of the system inputs. jg  is the global 

best position in dimension j . 1c  and 2c  are 
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constants, and 1r , 2r  are random values in the 

range [0;1]. χ  is the constriction coefficient. 

PSO has been found to be robust in solving 
continuous nonlinear optimization problems as well 
as capable of generating high quality solutions with 
more stable and faster convergence characteristics, 
and shorter calculation times than other stochastic 
methods. It has been shown in the literature that 
PSO can efficiently control wide range of systems 
especially those with continuous control signals, see 
for example (Sedighizadeh and Masehian, 2009), 
(Poli, 2008) and references therein.  

3 INTEGRATING PSO WITH 
ANMPC FOR NONLINEAR 
HYBRID SYSTEMS 

The main ideas of the proposed controller; 
integrating Particle Swarm Optimization with the 
Analytical Nonlinear Model Predictive Control 
(PSO-ANMPC), for nonlinear hybrid systems are: 

• Using the PSO algorithm, find iteratively the 
optimal/sub-optimal solution for the continuous 
control signals that minimize the fitness function. 

• For each solution (particle) of the continuous 
control signals, find the best combination of the 
discrete control signals using the ANMPC. 

• The fitness function of the PSO is the 
optimization cost function of the MPC controller. 

Each particle’s position in the swarm integrated 
with its best combination of discrete inputs, together, 
represents a solution to the NMPC optimization 
problem. i.e., the inclusion of the control sequence 
over the control horizon. Thus, each particle 
dimension is uc Nn × , and the dimension of the 

optimization vector of the ANMPC is ud Nn × , 

where dc nn ,  are the number of continuous input 

variables and discrete input variables respectively. 
The effectiveness of each solution is calculated 
through the fitness function, which in this case is the 
considered cost function of the NMPC controller. 
However, it is important to mention here that PSO is 
a gradient-free technique, thus any cost function that 
represents the desired behavior can be chosen. The 
proposed technique avoids any linearization 
technique for minimization, albeit at an increased 
computational complexity.  

The global best PSO is considered where each 
particle is connected to and able to obtain 
information from every other particle in the swarm. 

(Bratton and Kennedy, 2007). Global best PSO 
exhibits very fast convergence rates which are much 
needed for predictive control application.  

Considering the discrete input variables, there 
are limited or finite numbers of possible input 
combinations for the discrete input variables i.e. 

d
u

d k χu ∈)( , where d
uχ  is the set of possible 

discrete input combinations. Thus the optimal 
control signal for these variables will be one 
combination of the possible input combinations. 

The PSO-ANMPC can be implemented through 
the following Algorithm: 

 

Algorithm 1 
1- Let kp  is a particle in the swarm for 

dNk ,,2,1 = , where dN  is number of 

particles in the population. 

[ ])1(,),1(),(: −++== Nkkkp cccckk uuuu 

 and let: 
[ ] d

u
ddddi Nkkk χuuuu ∈−++= )1(,),1(),( 

is the i-th possible discrete control sequence 
over horizon N 

2- Initializing the particles position and velocity 
of the PSO, and let ∞=optJ  

3- For tNj :1=  ( tN  max. number of iterations) 

4- For each kp  

5- while d
uχ  is non empty,  where d

uχ  is 

the set of possible input combinations 
over horizon N 

6- Select d
u

i χu ∈  , and remove it from 

the set d
uχ  

7- Compute iJ  the cost function 
according to the control combination 

, where: [ ]Tdci uuu = . 

8-  If opt
i JJ <  

i
opt JJ =  , and iuu =* , 

 End 
end 

End 
9- update the particles position and velocity 
End 

10- i
opt uu =*  the optimal control signal 

 

This technique which we call it PSO-ANMPC has 
many advantages. It reduces the computation time 
significantly; because from one hand: computing 
analytically the cost function is faster than building 
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or reformulating the problem as MIQP or MILP 
problem and then solving it, and from the other hand 
the proposed analytical NMPC has often less 
number of possible input combination than 
formulating it classically in a hybrid system 
framework, e.g. MLD systems (Bemborad and 
Morari, 1999); to explain that in a simple way, 
consider a system with one discrete input variable 
which may have a value among m  possible discrete 
values, this will be modeled in the MLD form by m  
binary variables which leads to a number of possible 
input combinations over control horizon N  equal 

Nm×2 , while the number of possible input 
combinations with the proposed PSO-ANMPC 

controller for the same system will equal Nm  only. 
One of the main advantages of the proposed 

controller is its ability to deal directly with nonlinear 
hybrid systems, where modeling and controlling of 
nonlinear hybrid systems is normally a hard task and 
it is very common to linearize the model, but this 
linearization could lead to a complex system with 
many different linear models around different 
operating points and/or could introduces uncertainty 
which may lead to inaccurate model affecting the 
efficiency of designed or used controller. The 
advantage of the technique presented here is that we 
do not need to linearize the system, and non-linear 
dynamics can be directly used to calculate the new 
states and outputs. Moreover, The proposed 
controller is easy to construct, to tune and to 
implement. 

3.1 Reduction Algorithm 

To avoid examining all possible discrete input 
combinations over the control horizon N  the 
flowing Algorithm is proposed. 
 

Algorithm 2 
1- Initializing with 0)(, =∞= kJJ i

opt  

2- For { }sii ,,2,1, ∈u  where  is the total 

number of possible input combinations over 
horizon  
3- For Nj :1=   

4- Compute )( jkJ i +  the cost function 

according to the control combination iu  
for horizon j as follows: 

( ) ( )( )1,

)1()(

−+++

+−+=+
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where ( ) ( )( )1, −++ jkjkf iux  is the cost 

at instant ( )jk +  due to the control signal 

( )1−+ jkiu . 

5-  If opt
i JjkJ >+ )(   

Break and go to step 2 
end 

end 
6- At Nj =  

If )()( NkJJJNkJ i
optopt

i +=→<+   

end 
End 

7- optopt JJ =*  the optimal solution 
 

Algorithm 2 stops the cost function calculations 
at prediction step ( )jk +  where Nj <<1  for the 

control sequence iu  over the horizon N  if the cost 
function at this prediction step is higher than the 
current upper boundary optJ  . 

Algorithm 2 could also be used as suboptimal 
solution if the computation time is higher than the 
sampling time, the Algorithm could stop at any 
instant and send the control signals according to the 
current optJ  as a suboptimal solution. 

3.2 Constraints 

In this section, we describe how system constraints 
can be included in the optimization problem so that 
PSO-ANMPC can offer a suboptimal solution while 
respecting the given constraints. 

3.2.1 Input Constraints 

Constraints over the control signal 
c
j

c
j

c
j ukuu maxmin )( ≤≤  can be implemented by 

limiting the search space in the PSO algorithm: 
[ ]maxmin,)( jjij xxtx ∈ , where maxmin , jj xx  are the 

control signal constraints c
j

c
j uu maxmin , , 

respectively, given that the discrete control signals 
are limited by their discrete values. 

Constraints over the control signal variation 

max)( jj uku Δ≤Δ  can be represented through the 

particles velocity limits, as follows: 


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where maxjV  is the maximum allowable control 

variation for the control element j . 

3.2.2 Output and System States Constraints 

Output signals and system states can be subject to 
hard and/or soft constraints. Hard constraints could, 
for example, relate to safety or physical constraints, 
while soft constraints may be related to economic 
constraints or better working conditions.  

Both of hard and soft constraints can be included 
in the proposed controller. Hard constraints on 
output and state variables can be simply considered 
by adding the following line to Algorithm 2: 

∞=+→> )()()( maxmax jkJyxyxif i   (6) 

Thus any control combination which will lead to 
violation of the output or state hard constraints will 
be avoided.  

Soft constraints which allow, at a prise, 
temporary the violation of some constraints, can also 
be included as following:  

ε+≤ )()( maxmax xyxy   (7) 

Adding the following term to the cost function: 

( ) ( )jkQjkjkJ Ti +++=+ εε)(   (8) 

where Q  are positive definite weighting matrix. 

This additional term in Equation (8) penalize the 
violation of soft constraints, pushing the system to 
have zeros=ε . Effectively, we are saying that the 
constraints are allowed to be violated to a degree, 
but doing so costs, and should thus be avoided if 
possible. 

4 APPLICATION 

The proposed control strategy is applied on the three 
tanks example. The simplified physical description 
of the three tanks system is presented in Figure 1 
(see Dolanc et al., 1997, for more details). 

The system consists of three tanks, filled with 
water by two independent pumps acting on tanks 1 
and 2. These two pumps are continuously 
manipulated from 0 up to a maximum flow 1Q  and 

2Q  respectively. Four switching valves 1V , 2V , 13V  

and 23V  control the flow between the tanks, those 

valves are assumed to be either completely opened 
or closed ( lyrespective 0or  1=iV ). The 3NV  

manual valve controls the nominal outflow of the 

middle tank. It will be assumed in further 
simulations that the 1LV  and 2LV  valves are always 

closed and 3NV  is open. The liquid levels to be 

controlled are denoted 1h , 2h  and 3h  for each tank 

respectively. 

 

Figure 1: COSY three tank benchmark system. 

The conservation of mass in the tanks provides 
the following differential equations: 
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where the sQ'  denote the flows and A is the 

cross-sectional area of each of the tanks. The 
Toricelli’s law provides the expressions of the flows 
through the valves, which are given by the relations: 
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2
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From these expressions, a model is derived with 
the following variables: 

 ']23132121[

']321[

  V  V  V  V  QQ

  h  hh

=

=

u

x

    (11) 

The following specifications are considered: 
starting from zero levels (the three tanks being 
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empty), the objective of the control strategy is to 
reach the liquid levels m 5.01 =h , m 5.02 =h  and 

m 1.03 =h .  

As presented in (Thomas et al., 2006), studying 
the dynamic behavior of the three tanks, starting 
from zero levels to the desired ones, enables to 
divide the state space into three main regions, each 
one with its adequate simple MLD model; for 
example in the sub-region where the liquid level in 
the three tanks are less than the valves level, it 

clearly appears that the two valves 1V  and 2V  of the 
input vector are not in progress, thus 

']231321[   V V  QQ=u . 

Obviously the particles of PSO will consider the 
continuous signals (the two pumps), while ANMPC 
will investigate the best position combination of the 
four valves. The proposed PSO-ANMPC has been 
implemented in simulation to reach the level 
specification with the following parameters: The 
parameters of the PSOMPC controller that give a 
good response are: 05.221 == cc , 73.0=χ , with 

10 particles per swarm and a maximum number of 
iterations 10. A control horizon 2== uNN  is 

chosen. Weights in the objective function (1) have 
been chosen as )100000,1000,10000.(diag=β  and 

1=λ . Search space and velocity limits are chose 

according to the pumps limits as follows: 
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The global best PSO is used for the PSO with a 
constriction coefficient. The solution at instant 1−k  
is memorized and introduced as a particle in the 
initial population at instant k . The results are 
presented on Figure 2 for the tanks levels and on 
Figure 3 for the control signals.  The level of the 
third tank oscillates around 0.1 as 1.03 =h  does not 

correspond to an equilibrium point. Consequently, 
the system opens and closes the two valves 1V  and 

2V  to maintain the level in the third tank around the 

desired level of 0.1m. The system has been 
simulated in Matlab envirement. 

The computation times per step is in order of ms. 
i.e. is much smaller than the sampling time (the 
sampling time of the three tanks benchmark is 10 s.). 
Thus real-time application is possible even for 

longer horizon. The PSO-ANMPC technique 
reduces the computation time and provides 
opportunities for real-time implementation; avoiding 
exponential explosion of the algorithm.  

 

Figure 2: Water levels in the three tanks. 

 
Figure 3: Controlled variables. 

Figures 4 and 5 respectively present the three 
tanks levels and the control signals with PSO-
ANMPC technique, where the desired level in the 
third tank is changing. It can be seen that the 
proposed controller can successfully tracking the 
desired levels. It must be noticed that the variation 
of the third tank level from 0.15 to 0.1 takes more 
time than the variation from 0.1 to 0.15, due to the 
benchmark physical features. 

Increasing the number of particles per swarm 
and the maximum number of iteration will improve 
 

 

Figure 4: Water levels in the three tanks – 3h changes. 
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Figure 5: Controlled variables – 3h changes. 

the suboptimal solution, and increases the 
opportunities to find the optimal solution; however 
this will increase the computation time. The 
selection of the number of particles and the 
maximum number of iteration is a trade-off, and is 
based on the dynamics of the process to be 
controlled. 

5 CONCLUSIONS 

This paper presented integrating Particle Swarm 
Optimization with Analytical Nonlinear Model 
Predictive Control (PSO-ANMPC) for constrained 
nonlinear hybrid systems with discrete and 
continuous control signals. The proposed PSO-
ANMPC controller offers a suboptimal solution in 
reasonable time, thus increases the opportunities of 
real-time application for many nonlinear hybrid 
systems. It can be applied directly to nonlinear 
hybrid systems, thus no need to linearize the 
nonlinear dynamics as usually done with other 
techniques. PSO-ANMPC can be applied to some 
classes of hybrid systems including constrained 
nonlinear systems, constrained non-convex 
optimization problems and fast dynamic hybrid 
systems. The proposed controller has the ability to 
consider hard and soft constraints. However, there is 
no guarantee to find the optimal solution. 

An application of the PSO-ANMPC controller to 
a three-tanks example showed that it reduces 
significantly the computational time, which is an 
inherent drawback of classical MPC controllers. 
Therefore, real-time implementation of the proposed 
PSO-ANMPC controller is possible. 

Future work will include experimental works to 
validate this technique in practice, as well as, 
improving the algorithm and applying it to other 
classes of hybrid systems. 
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