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Abstract: In various circumstances, planning at trajectory level is very useful to generate flexible collision-free motions
for autonomous robots, especially when the system interacts with humans or human environment. This paper
presents a simple and fast obstacle avoidance algorithm that operates at the trajectory level in real-time. The
algorithm uses the Velocity Obstacle to obtain the boundary conditions required to avoid a dynamic obstacle,
and then adjust the time evolution using the non-linear trajectory time-scaling scheme. A trajectory local
replanning method is applied to make a detour when the static obstacles block the advance path of the robot,
which leads to failure of implementing time-scaling approach. Cubic polynomial functions are used to describe
trajectories, which brings sufficient flexibility in terms of providing higher order smoothness. We applied this
algorithm on reaching tasks for a mobile robot. Simulation results demonstrate that the technique can generate
collision-free motion in real time.

1 INTRODUCTION

To achieve a large variety of tasks in interaction with
human or human environments, autonomous robots
must have the capability to quickly generate collision-
free motions. Significant research has been per-
formed in the modeling of the path planning problem.
Sample-based planners such as rapidly-exploring ran-
dom trees (RRTs)(LaValle and Kuffner, 2001), or
probabilistic roadmaps (PRMs)(Kavraki et al., 1996)
generate the motion as collision-free paths, which the
robot is expected to follow. They are often fast, but
they generate a global path using an environmental
model and update the planned path when the planned
path is blocked by unmapped obstacles. As a result,
they can not deal with unknown environments with a
large number of dynamic obstacles.

To make the robot more reactive, it is reasonable
to replace paths by trajectories as the interface be-
tween planners and controllers, and to add a trajectory
planner as an intermediate level in the software archi-
tecture. To react to environment changes, the trajec-
tory planning must be done in real time. Meanwhile,
the robot needs to guarantee the human safety and the
absence of collision. So the model for trajectory must
allow fast computation and easy communication be-

tween the different components, including path plan-
ner, trajectory generator, collision checker and con-
troller. To avoid the replan of an entire trajectory, the
model must allow slowing down or deforming locally
a trajectory.

To assure the collision safety of an autonomous
robot in dynamic environment, the velocity of obsta-
cles should be considered when planning the robots
trajectory. The concept of Velocity Obstacle for ob-
stacle avoidance was proposed in (Fiorini and Shillert,
1998) and was later extended to the case of reactive
collision avoidance among multiple robots in (van den
Berg et al., 2011a),(van den Berg et al., 2011b). Ve-
locity obstacles (VOs) represent a subset of the veloc-
ity space where a mobile robot and a dynamic obsta-
cle collide in the future when the mobile robot moves
at a velocity of the VO.

Trajectory time-scaling methods are generally
used to adjust the speed or torque while maintain-
ing the tracking path. The trajectory time-scaling
schemes proposed in (Dahl and Nielsen, 1989) and
(Morenon-Valenzuela, 2006) are used in execution of
fast trajectories along a geometric path, where the
motion is limited by torque constraints. (Szadeczky-
Kardoss and Kiss, 2006) gives an on-line time-scaling
methods based on the tracking error. In this study, we
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Figure 1: Trajectory planner serves as an intermediate level
between the path planner and the low level controller. The
planner can generate both new trajectories Tn and time-
scaling functions s(t).

use the trajectory time-scaling schemes to avoid dy-
namic obstacles, which will not result in a change of
path of the robot. Moreover, we apply a non-linear
time-scaling to satisfy the kinematic constraints dur-
ing the collision avoidance.

In this paper, we use a sequence of cubic polyno-
mial functions to describe trajectories and we propose
an efficient obstacle avoidance method in the trajec-
tory level. We build an intermediate level between
the path planner and the low level controller, which
can read sensor information to generate non-linear
time-scaling functions or to replan new trajectories
for avoiding dynamic obstacles, as shown in Fig. 1.
The advantage of our algorithm is more reactive to
dynamically changing environments and temporally
distributes the computations, making it feasible to im-
plement in real-time.

The rest of the paper is organized as follow: We
present the trajectory representations and introduce
notations in Section 2. We describe the obstacle
avoidance algorithms in Section 3 and Section 4. Sim-
ulation results are highlighted in Section 5.

2 NOTATIONS AND
REPRESENTATIONS

2.1 Trajectory Representations

Let C = Rn denote the n-dimensional configuration
space. A trajectory T can be a direct function of time
or the composition P (u(t)) of a path P (u) and a func-
tion u(t) describing the time evolution along this path.
The background trajectory materials are summarized
in the books from Biagiotti (Biagiotti and Melchiorri,
2008) and Kroger (Kröger, 2010). A trajectory T is
then defined as:

T : [tI ; tF ]�! Rn (1)
t 7�! T (t)

where T (t) = X(t) = (1X(t);2X(t); � � � ;nX(t))T in
Cartesian space from the time interval [tI ; tF ] to Rn.
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Figure 2: (a) Two circular object with constant velocity. (b)
The collision cone of object A and B , any relative veloc-
ity lies in this cone will cause a collision. (c) The velocity
obstacle VOb on the absolute velocity of A .

We choose a particular series of 3rd degree poly-
nomial trajectories and name them as Soft Motion tra-
jectories. A Soft Motion trajectory is a type V trajec-
tory defined by Kröger(Kröger, 2010), which satis-
fies:

V (t) 2 Rn jV (t)j �Vmax

A(t) 2 Rn jA(t)j � Amax

J(t) 2 Rn jJ(t)j � Jmax

(2)

where V , A and J represent the position, velocity, ac-
celeration and jerk, respectively. Jmax;Amax;Vmax are
the kinematic constraints. Therefore, at a discrete
instant, the trajectory can transfer the motion states
while not exceeding the given motion bounds. The
continuity class of the trajectory is C 2. For the dis-
cussion of the next sections, a state of motion at an
instant ti is denoted as Mi = (Xi;Vi;Ai).

2.2 Velocity Obstacle (VO)

A VO (Fiorini and Shillert, 1998) represents a set of
velocities that create an obstacle collision. Consider
two circular objects A and B , shown in Fig. 2(a) at
time t0, with constant velocity va and vb. Let circle
A represent the robot, and B represent the obstacle.
The point bA is center of circle A , bB is mapped by
enlarging B by the radius of A , shown in Fig. 2(b).
The Collision Cone CCa;b is then defined as the set of
colliding relative velocities between bA and bB:

CCa;b =
n

va;b jla;b
\ bB = /0

o
(3)

where va;b is the relative velocity of bA with respect tobB , va;b = va�vb, and la;b is the line of va;b.
The shape of CCa;b is the planar sector with apex

in bA , bounded by the two tangent from bA to bB . Any
relative velocity lies in this cone will cause a colli-
sion. To deal with multiple obstacles, it is interesting
to consider the VO of the absolute veloctiy of A , This
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can be done simply by adding the velocity of B:

VOb =CCa;b�vb (4)

where� is the Minkowski sum. When the velocity of
robot A is included in the VOb, the robot will collide
with obstacle B in the future. In the case of multiple
obstacles, the collision-free velocity can be obtained
by selecting a velocity that is not contained in any VO.
Fig. 2(c) shows an illustration of an VO.

3 COLLISION AVOIDANCE BY
TRAJECTORY TIME-SCALING

3.1 Time-scaling Function

A time-scaling function s= s(t) is an increasing func-
tion of time. Using the time-scaling function a new
trajectory eT (t) can be defined such that eT (t) = T (s).
Applying the time scaling function does not change
the path taken by the robot, but brings the following
changes in the velocity and acceleration profile of the
trajectory.eV (t) =V (s)ṡ (5)eA(t) = A(s)ṡ2 +V (s)s̈ (6)eJ(t) = J(s)ṡ3 +3A(s)ṡs̈+V (s)

...
s (7)

where s(t) scales up the velocity and acceleration for
s(t)> 1 and scales it down for s(t)< 1.

In this current work, we use the concept of the Op-
timal Motion to describe the time variation. The Opti-
mal Motion is a motion with jerk, acceleration and ve-
locity constraints successively saturated (Herrera and
Sidobre, 2005). We use the velocity of an Optimal
Motion to represent the time variaiton. In this case,
we are able to control the time change by defining the
maximum jerk Jmax, acceleration Amax and velocity
Vmax, thus the motion of the robot can be bounded,
e.g. the kinematic constraints (Jmax, Amax, Vmax) of
the robot motion are linked to the Coefficient of the
time-scaling function (Jmax, Amax, Vmax). So we use a
non-linear time-scaling function as follow:

s(t) =

8><>:
s(t)i +At +J t2

2 ; J=�Jmax

s(t)i +At; J= 0;A= Amax

s(t)i +At +J t2

2 ; J= Jmax

(8)

In this study, we assumed that a mobile service robot
should not increase its speed to avoid moving ob-
stacles, because it could cause some people anxiety.
Thus Vmax = 1. It also should be noted that the
acceleration/de-acceleration produced by the scaling

transformation must respect the acceleration and jerk
bounds and hence the following inequalities are ob-
tained: jeV (t)j � Vmax, jeA(t)j � Amax, j eJ(t)j � Jmax.
With the framework for constructing scaling function
in place, the collision avoidance problem becomes of
choosing what scaling function to use for the robot at
any given instant.

3.2 Single Obstacle Case

The case of a robot avoiding a moving obstacle is
first considered. This is illustrated in Fig. 2(c) which
shows robot A in collision course with passively mov-
ing obstacle B . Collision is avoided if the veloc-
ity of A is out of VOb : va � vmax, where vmax is
the maximum velocity of A on the VOb boundary.
With the trajectory of robot, we could get the final
value of the time-scaling function s(t) f which satisfy
that: va(s) � vmax. Then we could define a Opti-
mal Motion for the time-scaling function. The ini-
tial condition and final condition of the motion are
(0;0;s(t)c) and (1;0;s(t) f ), respectively. s(t)c is the
current time-scaling factor when the robot start to ac-
celerate/decelerate. [0;Top] is the time interval of the
time-scaling function, where Top is the execution time
of the Optimal Motion . So J, A and s(t) are piecewise
functions:

J(t) =

8><>:
�Jmax

0
Jmax

A(t) =

8><>:
�Jmaxt
�Amax

�Amax +Jmax
t2

2

(9)

s(t) =

8><>:
s(t)c +A(t)t�Jmax

t2

2 t 2 [0; Amax
Jmax

]

s(t)c +Amaxt t 2 [Amax
Jmax

;Top� Amax
Jmax

]

s(t)c +A(t)t +Jmax
t2

2 t 2 [Top� Amax
Jmax

;Top]

(10)

Then from the Eqs 5-10, we can caculate the maximum
coefficients, Jmax and Amax, of the time-scaling func-
tion.

3.3 Multiple Obstacles Case

In the case of many obstacles, it may be useful to pri-
oritize the obstacles so that those with imminent col-
lision will take precedence over those with long time
to collision. We use the concept of imminent (Fiorini
and Shillert, 1998) which is a collision between the
robot and an obstacle if it occurs at some time t < Th,
where Th is a suitable time horizon, selected based on
system dynamics, obstacle trajectories, and the com-
putation rate of the avoidance maneuvers. To account
for imminent collisions, we compute the distance d
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between the robot A and an obstacle B at time instant
t. If the d < va;b �Th, we treat B as a imminent col-
lision and the avoidance procedure will be first con-
sidered. If not, even va lies inside the VO region, the
old time evolution will be maintained. If there ex-
ist many imminents, the minimal time-scaling factor
s(t) f will be applied to the original trajectory. Al-
gorithm 1 shows the overall pseudocode of collision
avoidance for multiple obstacles.

Algorithm 1: Trajectory time-scaling Based Collision
Avoidance.

Input: a trajectory T of robot A , number of obsta-
cles M, Th

1: for i = 0 to M do
2: Obtain the VOi, va on T at time t
3: if va

T
VOi 6= /0 then

4: Compute the relative velocity vi between the
robot and the obstacle i

5: Compute the distance di between the robot
and the obstacle i

6: if di < vi �Th then
7: Calculate the time-scaling factor s(t) f i for

the single obstacle
8: else
9: s(t) f = s(t)c

10: end if
11: end if
12: end for
13: return the minimal factor s(t) f min, then compute

the coefficients Jmax and Amax

4 COLLISION AVOIDANCE BY
TRAJECTORY LOCAL
REPLANNING

The global path planning method considers the sur-
rounding environment knowledge, and then attempts
to optimize the path. However, some problems are
existing in this method such as data are incomplete,
the real environment situations are unexpected and the
real-time operation of the robot.

Autonomous robots often operate in human envi-
ronment where the obstacles may block the robot’s
path. For example, an obstacle may have the same
path with the robot but with a very low velocity, or
an obstacle moves on the robot’s path and then halts
there. In the first case, the time-scaling function will
return a extreme small value, which leads to a quite
slow robot motion. In the second case, the time-
scaling function will stop the robot and goal position
cannot be reached. Thus, the robot needs to be able to

Va
Goal

Pm

Pr

B

VbVOA
^

ra

Figure 3: Choice of the middle and return waypoints for
trajectory replanning.

replan quickly as the knowledge of the environment
changes. This can be done simply by adding a middle
waypoint where the robot can pass through to avoid
the obstacle. Fig. 3 illustrates a situation of the first
case. Robot A and the obstacle B have the same path
P (u) while Vb is small. To replan a new trajectory, we
need to find a middle waypoint Pm to make a detour,
and a return point Pr to go back the original path.

To avoid the obstacle, the middle waypoint must
be out of VO. Waypoint on the boundaries of VO
would result in A grazing B . For sake of simplicity,
we can enlarge the VO region slightly by increase the
radius of bB by a constant r (the black dashed circle in
Fig. 3). In this study, we choose Pr as:

Pr = bB \
P (u)B � ra

va;b

jva;bj
(11)

where P (u)B is part of the path P (u) that is behind
the obstacle B . Then the middle waypoint Pm is the
point of intersection between the two tangents lbA ;bB
and lPr ;bB .

4.1 Trajectory Generation Through
Waypoints

Now the problem becomes to generate a trajectory
that traverse these waypoints. We consider a solu-
tion to plan point-to-point (straight-line) trajectories
that halt at each via-point where the direction of the
path changes. Then we smooth the edges of the tra-
jectory to produce smoother motion defined by kine-
matics conditions.

The first step is to convert a piecewise linear
path to a time-optimal trajectory that stops at each
waypoint. The trajectory along a straight-line path
should be a phase-synchronized motion(Broquere
et al., 2008). To achieve that, we compute the final
time for each dimension. Considering the largest mo-
tion time, we readjust the other dimension motions
to this time. Time adjusting is done by decreasing
linearly Jmax;Amax;Vmax. In other words, the motion
consumes minimum time for one direction. At other
directions, the motions are conditioned by the mini-
mum one.

The point-to-point (straight-line) trajectory Tpt p
obtained in the first step is feasible, but is not sat-
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isfactory because the velocity varies greatly at each
waypoint, which stops the motion. These stops can
be avoided by drawing shortcuts between random
points on the trajectory. Without loss of generality
we consider three adjacent points (Ps;Pm;Pr) and the
smoothing at the intermediate via-point Pm. Firstly,
the two straight-line trajectories TPsPm and TPmPr are
computed respectively. Then we choose two points
(Pstart ;Pend) based on the parameter l, which is the
distance from the point Pm on the trajectory. Then
we compute a trajectory to connect Pstart and Pend .
(lstart ; lend) are used to denote the two distances and
they defines the limits of the smoothed area. The pos-
sible choices of these two points are infinite, and the
resulting trajectories can vary greatly due to the differ-
ent choices. In this study, we choose the two points
considering the distance between the trajectory and
the obstacle. We discuss how to choose the points in
this paragraph and then detail the smooth trajectory
generation in the next part.

Considering the case of three adjacent points
Ps;Pm;Pr, see Fig.4, �!ni being the normal unit vectors
to the straight line PsPm, and Ts(t) the smoothed tra-
jectory. Then the error e can be defined as:

e(t) = min
t2[tI ;tF ]

([Ts(t)�Pm] ��!ni ; [Ts(t)�Pm] ���!ni+1)

e = max(e(t)) (12)

To compute this error, we introduce another parame-
ter ev, which is represented by the minimum distance
between the vertex Pi and the trajectory Ts(t):

ev = min
t2[tI ;tF ]

d(Pi;Ts(t)) (13)

As the start and end points of the blend we choose
locate at the symmetric segments on each straight-line
trajectory, the error Ev happens at the bisector of the
angle a formed by the 3 adjacent points, Therefore,

ev = d(Pm;T tI+tF
2

) (14)

e = ev � sin
a

2
(15)

To avoid the collision, a simple possibility is to
change the distance l to make the error satisfy that:

e < d(pm;B)� rA (16)

where d(pm;B) is the distance between the point Pm and
the obstacle B . To achieve Eq. 16 we introduce a
parameter d, for a general case, it is defined as:

d =
lstart

jPsPmj
=

lend

jPmPrj
(17)

Thus d 2 [0;1]. Then we can compute in a loop and
get the dmax.

4.2 Smooth Trajectory Generation

In this part, we describe how to generate a smooth
motion to connect Pstart and Pend . The motion state
of these two points are Ms and Me respectively. Since
each aixs variable is assumed to be independent, the
minimum execution time between Ms and Me is de-
termined by the slowest single-aixs trajectory. Then
the motion on the rest of the axis must be interpo-
lated to this imposed time which is called Timp. More
precisely, f (Ms;Me;Jmax;Amax;Vmax) is used to com-
pute the time of the time-optimal interpolant between
motion states Ms and Me under the kinematic bounds
Jmax, Amax and Vmax. Thus,

Timp = max( f (M j
s ;M

j
e ;J

j
max;A

j
max;V

j
max)) j 2 [1;n]

The interpolation problem becomes one of building a
motion with predefined time. We propose three meth-
ods by computing different parameters of the trajec-
tory.

Three-segment Interpolants. If we consider states
Ms and Me defined by a starting instant ts and an end-
ing instant te, the starting and ending situations to be
connected are: (Xs;Vs;As) and (Xe;Ve;Ae). An inter-
esting solution to connect this portion of trajectories is
to define a sequence of three trajectory segments with
constant jerk that bring the motion from the initial sit-
uation to the final one within time Timp. We choose
three segments because we need a small number of
segments and there is not always a solution with one
or two segments.

The system to be solved is then defined by 13 con-
straints: the initial and final situations (6 constraints),
the continuity in position velocity and acceleration for
the two switching situations and time. Each segment
of a trajectory is defined by four parameters and time.
If we fix the three durations T1 = T2 = T3 =

Timp
3 ,

we obtain a system with 13 parameters where only
the three jerks are unknown(Broquère and Sidobre,
2010). As the final control system is periodic with
period T , the time Timp=3 must be a multiple of the
period T , and in this study, Timp is chosen to be a mul-
tiple of 3T .
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Three-segment Interpolants with Bounded Jerk.
The three-segment interpolants solves the problem of
trajectory generation with fixed duration for each seg-
ment. However, it cannot be guaranteed that the com-
puted jerk is always bounded. Here, we introduce a
variant three-segment method with defined jerk.

Same as the three-segment method, the system
is also defined by 13 constraints. With the variant
method, however, we fix the jerks on the first and third
segments as jJ1j= jJ3j, which have the value bounded
within the kinematic constraints. Then, the unknown
parameters in the system are J2 and the three time du-
rations. Thus we obtain a system of four equations
with four parameters (J2, T1, T2 and T3):

Ae = J3T3 +A2 (18)

Ve = J3
T 2

3
2

+A2T3 +V2 (19)

Xe = J3
T 3

3
6

+A2
T 2

3
2

+V2T3 +X2 (20)

Timp = T1 +T2 +T3 (21)

where

A2 =J2T2 + J1T1 +As

V2 =J2
T 2

2
2

+(J1T1 +As)T2 + J1
T 2

1
2

+AsT1 +Vs

X2 =J2
T 3

2
6

+(J1T1 +As)
T 2

2
2

+(J1
T 2

1
2

+AsT1 +Vs)T2

+ J1
T 3

1
6

+As
T 2

1
2

+VsT1 +Xs

To choose the values of jerks on each dimension, we
resort to the velocities Vs and Ve. The jerks are fixed
by J1 = �J3 = Jmax when Vs�Ve > 0, and by J1 =
�J3 = �Jmax when Vs�Ve < 0. If Vs�Ve = 0, we
compare the values of As and Ae instead.

Jerk-bounded, Acceleration-bounded, Velocity-
bounded Interpolants. Now we derive the all-
bounded trajectory given a fixed duration Timp. The
method in the previous paragraph can directly bound
the jerk, but have to readjust the jerk values by a pre-
defined resolution to bound the velocity and accelera-
tion. As we detect the longest execution time Timp by
computing the time-optimal trajectory on each aixs,
the jerk is saturated and the acceleration and velocity
may be saturated, depending on different cases. Thus,
we can extend the duration of all axis (except the one
with the longest duration) to Timp by unsaturated in-
terpolants while maintaining the number of segments
N j on each aixs. We name it a Slowing Down Motion.
Algorithm 2 shows the generation of all-bounded in-
terpolants.

Algorithm 2: All-Bounded Interpolants Generation.

Input: Motion states: Ms, Me; number of DOFs: n;
Timp

Output: Jerk-Bounded, Acceleration-Bounded,
Velocity-Bounded Interpolants

1: for j = 1 to n do
2: Compute the time-optimal interpolants between

Ms and Me, then get the execution time Tj
3: Get N j and the execution time on each segment

T N
j

4: if N j = 0 then
5: No motion on this axis, maintain the time-

optimal interpolants
6: else
7: Enlarge T N

j by T N
j = T N

j + Timp�Tj

N j

8: Compute the new Jerk on each segment JN
j

9: end if
10: Generate the interpolants with JN

j and T N
j

11: end for
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Figure 5: A robot avoids an obstacle that is moving along
the same trajectory as the robot (a)-(d): The original tra-
jectory collides with the obstacle at 6-7.51 s, (e)-(h): The
scaled collision-free trajectory.
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Figure 6: Time-scaling function and scaled trajectory of
Fig. 5. (a): Time-scaling function, (b): position, velocity,
acceleration and jerk profile of the scaled trajectory along
X axis.

5 SIMULATION RESULTS

The initial trajectories from start (0;0) to the goal
(10;0) for the robots were obtained by modeling the
robots as unicycle. The maximum velocity, accelera-
tion and jerk of the robot was set to 1.5 m=s, 3 m=s2

and 9 m=s3, respectively.
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(h) t = 5 s
Figure 7: A robot avoids multiple obstacle. (a)-(d): The
original trajectory collides with all the obstacles, (e)-(h):
The scaled collision-free trajectory.

5.1 Single Obstacle Avoidance

Fig. 5 shows the simulation results for an obstacle
moving along the path of the robot. The blue and
green circles represent the robot and the obstacle re-
spectively. The situation shown in Fig. 5 takes place
when the robot moves along a corridor. The obstacle
moves at a velocity of vx = 1 m=s from the initial lo-
cation (3;0). As shown in Fig. 5(a)-5(d), the robot
collides with the obstacle at 6-7.51 s. Fig. 5(e)-5(h)
demonstrates the time-scaled results. Obstacle avoid-
ance was achieved by decelerating the robot. The du-
ration of the trajectory was extended to 9.21 s. Fig.
6 illustrates the time-scaling function and scaled tra-
jectory along the X axis. Results show that the robot
decelerated to a safety velocity very fast (in less than
1 s), and all kinematic variables were well bounded
during the construction of the scaled trajectory.

5.2 Multiple Obstacles Avoidance

Fig. 7 depicts a multiple collision situation. The ob-
stacles O1, O2 and O3 moved at a velocity of vy = 2
m=s, -1.15 m=s and 0.9 m=s, and started at the loca-
tion (3,-5), (5,5), and (7,-5), respectively. The robot
collided with the three obstacles at t = 2 s, t = 4 s
and t = 5 s respectively when it followed the origi-
nal trajectory. The trajectory was scaled at t = 0:3
s to pass obstacle O1 through the trajectory, and was
scaled at t = 1:5 s to avoid O2. After the second time-
scaling function, the VO became an empty set, then
the system switch to the original trajectory by setting
s(t) = 1. Fig. 8 shows the time-scaling function and
the time-scaled trajectory.

5.3 Trajectory Replanning

Fig. 9 describes the obstacle avoidance using trajec-
tory replanning. The time-scaling function returned to
0 because the velocity of the robot always lied in VO.
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Figure 8: Time-scaling function and scaled trajectory of
Fig. 7. (a): Time-scaling function, (b): position, velocity,
acceleration and jerk profile of the scaled trajectory along
X axis.
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Figure 9: Simulation of trajectory local replanning. (a): The
final path of the robot, (b): Time-scaling function, (c): The
kinematic profile of the replanned trajectory along X axis.

The system replanned a new trajectory when s(t) = 0
and s(t) was set to 1 immediately while the new tra-
jectory was executed. Fig. 9(a)-9(c) illustrates the
robot path, time-scaling function and the kinematic
variables, respectively.

6 CONCLUSIONS AND FUTURE
WORKS

This paper presents a simple and fast obstacle avoid-
ance algorithm that operates at the trajectory level in
real-time. It uses the trajectory time-scaling functions
and trajectory replanning scheme to compute C 2 tra-
jectories that are bounded in velocity, acceleration and
jerk. The proposed algorithm is based on the use of
pre-planned trajectories. The Velocity Obstacle con-
cept was used to obtain the boundary conditions re-
quired to avoid a dynamic obstacle. The simulation
results validate the effectiveness of this algorithm to
deal with typical collision states within a short pe-
riod of time. Future work will include extending the
trajectory time-scaling scheme to the robot manipu-
lators. Real-time collision-free trajectory planning is
more complex for many-DOFs manipulators because
time-scaling functions should be considered for each
joint. Velocity Obstacle are not suitable anymore and
new criterions for collision boundary conditions must
be implemented.
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