
Scargos: Towards Automatic Vulnerability Distribution

Florian Rhinow1;2 and Michael Clear1

1School of Computer Science and Statistics, Trinity College Dublin, Dublin 2, Ireland
2SAP Business Intelligence R&D, 1012-1014 Kingswood Ave., Citywest Business Campus, Dublin 24, Ireland

Keywords: Dynamic Taint Analysis, Self-certifying Alerts, Vulnerability Distribution, Zero Day Attacks.

Abstract: Recent work has suggested automated approaches to vulnerability distribution, but their usage has been lim-
ited to local networks and memory corruption detection techniques and has precluded custom vulnerability
response processes. We present Scargos, a novel approach to automate the distribution and verification of
vulnerabilities across the internet, while allowing for automatic, custom countermeasures without the need
to trust a central authority. By leveraging collaborative detection, vulnerability reports can be contributed by
anybody and are announced to an open network by using packet-based self-certifying alerts (SCA), which
are a proof of the existence of a vulnerability by capturing the original, unmodified attack. We show that our
approach allows for detection of previously unknown attacks, while an entire life cycle including distribution
and verification is achieved on average in under 2 seconds.

1 INTRODUCTION

The security of companies and organisations relies
heavily on their security departments. Often spe-
cialised incident response teams are employed to
surveil the state of the network. These teams react
to intruders or analyse past attacks. However they
also take action if a new vulnerability is announced
for one of their used applications. New vulnerabil-
ities are conventionally first announced by the ven-
dor of an application and are later redistributed by
secondary sources such as a CVE. The time from a
vulnerability announcement until it is known by an
incident response team is critical, yet it often relies
on manual checking of websites or newsletters, or
is heavily reliant on secondary sources. The situa-
tion becomes worse when considering full-disclosure
announcements, which can be made by virtually ev-
erybody. As a consequence, the number of primary
sources seems indefinite. Automated software exists,
but likewise, relies on the publication by a primary
source. Furthermore, vendors often know about a vul-
nerability much earlier, but delay its announcement in
order to write an appropriate patch in time – time in
which applications are vulnerable in companies and
organisations, without their knowledge. Informed at-
tackers can intrude and steal valuable assets, while
there is no effective way to ensure protection.

However, there are vulnerabilities which remain

unknown for an even longer period: zero-day vul-
nerabilities. These vulnerabilities are not known to
the public, but only to attackers. A recent study by
Symantec (Bilge and Dumitras, 2012) involved the
development of the worldwide intelligence network
environment (WINE) to collect data from over 11 mil-
lion hosts around the world. The data was analysed in
retrospect from 2008 until 2011 to determine whether
vulnerabilities were previously used by attackers prior
to their official discovery. In total, 18 zero-day vul-
nerabilities were found and the data suggests that the
attacks remained undetected for between 19 days to
30 months; on average 312 days (Bilge and Dumitras,
2012).
The motivations for engineering a solution are clear:

� Detection of zero-day attacks or other attacks that
are unknown to a group of entities

� Interested entities are notified automatically and
fast (within seconds) about such an attack and can
verify its existence

� Verified attacks can be automatically processed by
the entities to e.g. set up countermeasures

In this work, we present Scargos, a framework for
automatic vulnerability distribution. Scargos can de-
tect zero-day attacks by using dynamic taint analysis
in a honeypot. The information about the vulnerabil-
ity is then decoded as a packet-based self-certifying
alert and verified by all interested parties. As we will

369Rhinow F. and Clear M..
Scargos: Towards Automatic Vulnerability Distribution.
DOI: 10.5220/0005566203690376
In Proceedings of the 12th International Conference on Security and Cryptography (SECRYPT-2015), pages 369-376
ISBN: 978-989-758-117-5
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



show in this work, the entire process can be accom-
plished in on average less than 2 seconds, while not
requiring that the participants trust each other.

Self-certifying alerts (SCAs) have been proposed
previously by (Costa et al., 2005) as a way to dis-
tribute vulnerabilities in local networks without the
need of a trusted central authority. The solution in
(Costa et al., 2005), known as Vigilante, uses a form
of SCAs that involve modifying the content of the
original attack and then sending it as a broadcast mes-
sage. It can only be used in conjunction with memory-
violation detection engines. In contrast, Scargos em-
ploys packet-based SCAs, which preserve an attack
in its original form. Additionally, Scargos allows for
distribution of vulnerabilities across the internet, en-
ables a custom vulnerability response process by end
users, and can be used with any attack detection en-
gine.

2 RELATED WORK

Dynamic taint analysis (DTA) also known as dy-
namic dataflow analysis or dynamic information flow
tracking has been proposed independently by multiple
groups (Newsome and Song, 2005; Costa et al., 2004;
Crandall and Chong, 2004; Suh et al., 2004). DTA
taints all external data in-memory and recognizes if
the data is used to change the execution flow to detect
attacks. Experiments that have been conducted with
DTA suggest that its false-positive rate is extremely
low. Newsome et al. (Newsome and Song, 2005) and
Clause et al. (Clause et al., 2007) independently con-
ducted accuracy experiments, which both resulted in
no false positives. However, slowdown depends on
the application and implementation that is being used
ranging from 300-100.000% – TaintCheck(Newsome
and Song, 2005), 4.000% – Dytan (Clause et al.,
2007), 1.500%-3.000% – Minemu (Bosman et al.,
2011), 1%-9% – FlexiTaint (Hardware) (Venkatara-
mani et al., 2008).

Argos (Portokalidis et al., 2006) is a honeypot that
attempts to mitigate many of the drawbacks that ac-
company conventional high-interaction honeypots. It
decreases the risk and maintenance of honeypots by
using DTA to accurately detect attacks. Therefore,
Argos can stop intrusions before a compromise of the
system occurs.

CWSandbox (Willems et al., 2007) is a tool that
is developed for the Win32 platform to automatically
generate malware analysis reports (Willems et al.,
2007; Provos and Holz, 2009).

Honeycomb is a plug-in for the low-interaction
honeypot Honeyd (Provos, 2003). Using Hon-

eyd, Honeycomb collects malicious traffic to au-
tomatically create IDS signatures of the received
data (Kreibich and Crowcroft, 2004).

Roleplayer (Cui et al., 2006) is a tool which ob-
serves and mimics interactions with network services.
It operates protocol independently and heuristically
adjusts network addresses, ports, cookies.

The network of affined honeypots (NoAH) is a
network of honeypots which occupies unused IP-
addresses on the internet. Automated attacks which
scan portions of the Internet’s IP-addresses are de-
tected by using Argos as a DTA honeypot. The results
from Argos are then converted into IDS signatures
and are intended to be used by third parties (Kontaxis
et al., 2010; Kohlrausch, 2009). NoAH allows for de-
tection of zero-day attacks by using DTA honeypots.
However, the system has a significant drawback: IDS
signatures cannot be verified and discard the original
content of the attack. This disallows any alternative
vulnerability response process. Furthermore, mali-
cious IDS signatures could be injected into the sys-
tem by compromising Argos, which can have serious
ramifications. The possibility of such an attack is fair,
taking into account (1) that we have found real-world
attacks that have remained undetected by Argos, as
shown in Section 6.1, and (2) that there have been
vulnerabilities that have allowed a VM escape from
QEMU, the VM used by Argos.

Vigilante (Costa et al., 2005) is a proposed sys-
tem to stop worms and viruses from spreading in a
local network. Vigilante uses so called self-certifying
alerts (SCAs) as a means to transfer information
about a software vulnerability. SCAs are unique be-
cause they contain some parts of the exploit code it-
self. SCAs are generated when a host detects an attack
by using DTA or non-executable pages. Other hosts
then verify SCAs by executing modified parts of the
attack code in a virtual machine. If the exploit suc-
ceeds, the host sets a custom filter onto its network
interfaces to protect against the worm (Costa et al.,
2005).

In contrast to Scargos, Vigilante has fundamen-
tal disadvantages for sharing vulnerability informa-
tion globally:

A) Engineered for local networks – Vigilante was
engineered for usage in local networks/production
networks. The system uses flooding to propagate vul-
nerability alerts across networks, which is unsuitable
for distribution across the internet. Additionally, Vig-
ilante modifies the original attack before encoding it
as a SCA and verifies it with further modifications.
Therefore, they cannot be processed by other services
because information about the original attack might
be missing.

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

370



B) Binary Instrumentation – Vigilante relies on bi-
nary instrumentation of its network facing services for
the usage of DTA. The drawback of this is that calls to
other programs or kernel vulnerabilities cannot be de-
tected because only the binaries of the network-facing
service are surveilled. In contrast, using honeypots
with in-built attack detection engines such as Argos
allows for full-system protection.

C) Limited to Memory-Based Detection Tech-
niques: Any detection mechanisms that Vigilante
uses must be translated prior to use into binary in-
strumentation algorithms. This essentially limits the
choices for Vigilante’s detection engines to memory
violation-detection techniques. In contrast, Scargos’
usage of packet-based SCAs allow for virtually any
detection engine.

3 ARCHITECTURE

The Scargos architecture is an approach to detect,
distribute and verify the existence of previously un-
known network-based attacks, conventionally called
zero-day attacks. By combining very accurate de-
tection engines such as dynamic taint analysis (DTA)
and honeypots with traffic replaying, zero-day attacks
can be distributed and verified much faster than non-
automatic approaches. Figure 1 shows the relation-
ship between all of Scargos’ components. A prereq-
uisite for Scargos’ process is the detection of an at-
tack; the process continues with SCA publishing, dis-
tribution and verification. Vulnerability response is
optional and depends on the need of the end user.

By using highly accurate detection engines such
as DTA, the detection component detects previously
unknown network-based attacks. The goal of the
detection component is not necessarily to gather as
many threats as possible but rather to gather the most
recently developed attacks. After a threat has been de-
tected, all attack information is decoded into a custom
format: packet-based self-certifying alerts.

New SCAs are submitted and aggregated in
SCA repositories. The SCA repository stores self-
certifying alerts and distributes them. User groups
which are interested in receiving the newest attacks
can subscribe to SCA repositories. For every unique
payload that the repository receives, subscribers re-
ceive a notification.

Subscribers will usually verify a SCA before it is
further processed to initiate an individual vulnerabil-
ity response process, given the SCA is valid. SCA
verification is done by leveraging the same methods
that were used for SCA generation, by using highly
accurate attack detection systems such as DTA. What

happens after a SCA has been verified depends on
the needs of the user group. There are different user
groups which may benefit from using Scargos:

� Researchers: can study new threats to comple-
ment their vulnerability research for academia, se-
curity vendors, ISPs, institutes or corporations.

� Incident Response Teams: need to be aware of the
newest attacks in order to take appropriate action.

� IT-security Processes: Scargos can be operated in
a fully-automated fashion. As such, Scargos can
be part of a larger IT process to automate handling
of new vulnerabilities in a predefined manner.

Detec-
tion

Pub-
lisher

Repos-
itory

Veri-
fier

Re-
sponse

Figure 1: Scargos’ life cycle. Detection is usually handled
by a DTA honeypot and handling of vulnerability response
depends on the needs of the end user.

4 PACKET-BASED
SELF-CERTIFYING ALERTS

Packet-based SCAs store the transport-protocol pay-
load of all packets of an attack in binary format. Each
transport-protocol payload that has been made during
the conversation which led to the compromise is sep-
arated as an element in a list. As such, packet-based
SCAs lead to many simplifications when compared to
conventional SCAs.

In contrast to Vigilante, Scargos uses packet-
based SCAs, which preserve the original attack. This
requires us to use new approaches to verify an SCA.
We propose that verification of an attack is done in
the same manner as that in which the original attack
compromised the system. Using this approach we al-
low for a custom vulnerability response process by
end users and any attack detection engine can be used
with Scargos.

SCAs always refer to a vulnerability of a specific
network-facing service. By using unique application
IDs, all mentioned components can address a specific
application. The IDs are assigned by each repository
individually and SCA publishers and subscribers need
to be aware of existing IDs for their surveilled appli-
cation or create a new entry, if one of the used appli-
cations has not been registered yet. Figure 2 shows
an SCA for WFTPD Server, which has been given the
application ID of 1 in this example.

Attacks on network-facing services are usually
conducted by sending a series of malicious packets.

Scargos:�Towards�Automatic�Vulnerability�Distribution

371



Application ID: 1
Version: 3.23
Port: 21
Transport: TCP
Layer-5 PDUs: VVNFUiBhbm9ueW1vdXMNCg==nn

UEFTUyBtb3ppbGxhQGV4YW1wbGUuY29tDQo=nn
U0laRSAvHUc0JUIcs6kURvm4Q0sEtJE1t

. . .

Figure 2: An example SCA of the application WFTPD
Server. The attack consists of three Layer-5 PDUs, which
are encoded using Base64. The last PDU has been truncated
and is 727-Bytes long.

Weidong et. al (Cui et al., 2006) have demonstrated
that simple replaying of captured malicious traffic is
sufficient to trigger a vulnerability using Roleplayer
Replay. Given multiple conversations of a protocol,
dynamic fields of the target conversation are identi-
fied and changed accordingly. The conversation is re-
played based upon a ”script” of a dialogue between
the two communicating systems (Cui et al., 2006).

In contrast to Roleplayer we developed Exact
Stream Replay as part of our contribution: Given only
the layer-5 PDU conversation, which led to the com-
promise of one host, a second host that has the same
vulnerability can be compromised by replaying the
entire conversation as it was previously recorded. It
requires no previous training, leads to smaller SCAs
and is for all of our tested attacks sufficient to trigger
the vulnerability. While exact stream replay requires
dynamic replacement of fields such as URL, Host
name and IP source/destination, it seems to be bet-
ter suited for detection of zero-day attacks, because
roleplayer might fail to categorise conversations with
scrambled attack code. Also training might not be
available and can be manipulated.

5 GENERATING PACKET-BASED
SCAS

With the implementation of server architecture and
replay mechanisms being trivial, we now turn our at-
tention to the process of generating packet-based self-
certifying alerts with a suitable detection engine. As
discussed earlier, any type of highly accurate detec-
tion engine can be used to verify and generate non-
packet based SCAs. The process is divided into four
steps:

1. The detection engine alarms us of an intrusion;

2. We retrieve the packet which led to the intrusion;

3. Using this packet we reconstruct the entire attack;

4. Given the attack stream we marshal the data into
a SCA.

Argos provides an in-built functionality to find the
malicious packet which was used to taint the mem-
ory. As this packet is in fact on the second layer
of the OSI stack we refer to it as an Exploit Layer-
2 Frame. Although this information is helpful to us
in some cases, we will show in our evaluation that
Argos is often unable to trace back to the malicious
packet. Consequently, we developed a combination
of algorithms to significantly increase the probabil-
ity of finding the correct packet stream of an attack
by analysing two additional memory footprints of Ar-
gos: Compromised Memory Block and Jump Target
Memory Block.

6 EXPERIMENTAL RESULTS

This section evaluates Scargos by discussing a variety
of experiments. We implemented Scargos as a proto-
type on a x86 machine running GNU/Linux 3.5.0 and
using Argos 0.5.0 as the DTA honeypot. Experiments
were carried out on a machine with 4GB of RAM
and an Intel(R) Core(TM) i3 CPU M 370, which is
a 2.40GHz dual-core processor.

For our evaluation we chose to concentrate on one
of the most severe attacks: Remote Command Execu-
tion vulnerabilities on server applications. Scargos is
evaluated with 24 real attacks, which we describe in
more detail in the full version. We have included high
profile attacks against Windows including vulnerabil-
ities MS03-026 (RPC) used in the Blaster Worm (Bai-
ley et al., 2005), MS04-011 (LSASS) used in the
Sasser (Sullivan, 2004) worm, and MS08-067 (Ne-
tAPI) used more recently by Conficker (Faulhaber
et al., 2011). We expanded our selection of attacks by
including attacks on services such as Windows SMB,
HTTP and FTP.

6.1 Accuracy

A high accuracy rate is vital to ensure Scargos’
widespread use. The accuracy of Scargos is defined as
its success rate in both correctly generating and ver-
ifying SCAs. When evaluating accuracy it is impor-
tant to look at all parts which can affect the result. In
Scargos, accuracy depends on three components:

� Argos: We use Argos as our DTA honeypot and
rely on the correct detection of attacks. An SCA
cannot be created, if attacks remain undetected.

� Packet Extraction: The SCA publisher relies on a
robust algorithm to extract the needed packets. If

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

372



packet extraction fails, no SCA can be published.

� Packet Replay: The SCA verifier needs a replay
algorithm which can successfully replay SCAs
such that honeypots become compromised. If
packets cannot be replayed or are replayed in a
manner such that the attack fails, false negatives
occur because correct SCAs are not verified.

In our accuracy experiment, we tested all three
components and subcomponents by conducting 10
runs for each of our selected applications. The results
are shown in Table 1 and we analyze them as follows.

6.1.1 SCA Generation

Argos uses DTA which is known to have a very low
false negative rate. However, the results from Table 1
show that out of our 24 applications an attack against
Mercury Mail and Mdeamon Pro was not detected
by Argos and successfully circumvented its DTA. We
can not say with certainty why Argos did not detect
the attack, but can only suspect that it is either due to
under-tainting; a bug in the implementation or Argos
was trusting input which should not be trusted. Due
to the detection failure, we cannot create a SCA and
the subsequent steps fail accordingly.

In conclusion, we can say that the best approach
to finding a matching packet of the attacker’s conver-
sation is by combining all three methods in the fol-
lowing order: compromised memory block search,
jump target memory block search and exploit layer-
2 frame search. This way we only use the more risky
exploit layer-2 frame search when the other methods
have failed.

6.1.2 SCA Verification

SCA verification can only be successful if there exists
a SCA for the attack. In Table 1 we show that we are
always successful in triggering the vulnerability when
an SCA was available, which indicates that our replay
method works accurately.

6.2 Performance

In the following, we want to measure the performance
of verifying and generating packet-based SCAs as
well as the overall performance of Scargos. We
then compare our results with the results of Vigi-
lante (Costa et al., 2005). We define performance as
the speed in which a process finishes successfully.

We compiled the results of evaluating SCA gen-
eration and verification in Table 2. When evaluating
exact stream replay, the results seem at first glance
quite mixed and a general pattern is not easily found.

1,000 3,160

Kolibri
Dream FTP Server

Win.: MS08-067 (NetAPI)
Win.: MS04-011 (LSASS)

Sami FTP Server
WFTPD

WAR-FTPD
Win.: MS05-039 (PnP)
Apache HTTP Server

Xitami
FileCopa FTP Server

Win.: MS03-026 (RPC)
PCMan’s FTP Server

3CDaemon
freeFTPd

KNET
IntraSrv Web Server
Light HTTP Daemon
FreeFloat FTP server

freeSSHd
BadBlue Enterprise
Savant Web Server

6,094.11
2,990.15
2,902.54
2,739.64

2,268.10
2,185.15
2,046.17
2,025.04

1,832.23
1,725.20
1,687.96
1,665.41
1,606.09
1,566.56
1,559.19
1,428.57
1,357.55
1,324.04
1,276.32
1,265.24
1,199.13
1,120.87

Time of Scargos’ Lifecycle (ms)

Figure 3: Total time from SCA generation to successful ver-
ification including distribution. The results are the average
of 10 runs.

The application vulnerabilities that can be verified the
fastest targets FreeFloat FTP server, while the slow-
est is targeting Kolibri. At first glance, there is not
much difference between the two SCAs, as both need
only one request to compromise the target. While
Kolibri’s SCA does carry twice as many bytes as
FreeFloat FTP server, other attacks such as the at-
tack against freeFTPd carry 20x more bytes and are
still much faster than Kolibri. This implies that there
is another factor that affects the performance of ex-
act stream replay, which is the performance of the at-
tacked applications and its time to process the attack.

Applications that should have a high performance
and behave quite uniformly are system services of-
fered by Windows itself. Yet, if we look at the per-
formance of these applications, we see quite a fluctu-
ation. The reason for this lies in our implementation.
Exact stream replay waits 100ms after each request
was sent for a reply from the server. This enables
exact stream replay to be very accurate and protocol-
independent, since the attacked application transitions
into its next input state automatically. However, the
downside of a timeout is poorer performance.

Figure 3 show the results of our experiments for
Scargos’ full life cycle. It shows that Scargos oper-
ates fast. The majority of vulnerabilities of our appli-
cations could be verified and thus detected in under
2 seconds. On average, it takes 1993:88ms from the
first detection of an attack by a honeypot until all in-

Scargos:�Towards�Automatic�Vulnerability�Distribution

373



Table 1: Success or Failure of each component/subcomponent to process its previous input correctly. The symbolJ signifies
success, — signifies failure. Failure in packet extraction is either due to the fact that no logs were generated successfully or
that no matching packet could be found in the session packet capture.

Packet Extraction Packet Replay

Application Name
Argos
DTA

Jump
Target
Memory
Block

Compro-
mised
Memory
Block

Exploit
Layer-2
Frame

Combination
Exact
Stream
Replay

Mercury/32 Mail — — — — — —
Mdeamon PRO — — — — — —
3CDaemon J J — — J J
Dream FTP Server J J — — J J
FileCopa FTP Server J — J J J J
FreeFloat FTP server J — J J J J
Sami FTP Server J — J J J J
WAR-FTPD J — J J J J
WFTPD J — J J J J
Savant Web Server J — J J J J
MS05-039 (PnP) J J — — J J
PCMan’s FTP Server J — J J J J
freeSSHd J — J J J J
freeFTPd J — J J J J
Apache HTTP Server J J J — J J
BadBlue Enterprise J J — — J J
Light HTTP Daemon J — J J J J
KNET J — J J J J
Kolibri J — J J J J
Xitami J — J J J J
MS03-026 (RPC) J — J J J J
MS04-011 (LSASS) J — — J J J
IntraSrv Web Server J J J — J J
MS08-067 (NetAPI) J — J J J J

terested SCA verifiers have verified the vulnerability
on their systems. In the worst case, the process takes
6094:11ms (Kolibri), which should still give enough
leeway to safely initiate a vulnerability response pro-
cess.

6.2.1 Comparison to Vigilante

In this section we want to compare our solution to
Vigilante in terms of performance. Scargos and Vig-
ilante are not easily comparable because Vigilante’s
performance is worse the bigger the SCA file size,
while Scargos’s performance is mainly influenced by
the number of layer-5 PDUs. The performance of the
attacked application does also play a role for the per-
formance of both frameworks. Additionally, compari-
son is hampered because Vigilante is not open-source
or otherwise available.

In the original paper by Costa et. al (Costa et al.,
2005), only three applications were evaluated. All
three were either system services or a well-known

windows application: Microsoft SQL Server, Mi-
crosoft IIS Server and Microsoft Windows (MS03-
026 (RPC)). To enable a fair comparison we se-
lected equally well-known applications and service
vulnerabilities: Apache HTTP Server, Microsoft Win-
dows MS03-026 (RPC), Microsoft Windows MS04-
011 (LSASS), Microsoft Windows MS05-039 (PnP)
and Microsoft Windows MS08-067 (NetAPI). We
compared the total time needed for SCA generation
and verification in relation to SCA file size. The re-
sults are depicted in Figure 4.

We can see that Vigilante performs better for
smaller SCA file sizes while Scargos performs bet-
ter for bigger file sizes. Even taking into account
that the SCA file size of Vigilante is truncated and
in fact bigger than in the graph shown (reduction of
about 20%), Scargos outperforms Vigilante. Our re-
sults from Table 2 and the data given by Costa et.
al (Costa et al., 2005) indicate that Vigilante performs
consistently better than Scargos in SCA verification,
while SCA generation takes much more time in Vigi-

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

374



Table 2: Performance of stream extraction and exact stream replay in relation to number and size of layer-5 PDUs (L5-PDUs).

Application Name
Number
of L5-
PDUs

Length
of all
L5-PDUs
(bytes)

SCA Generation
(ms)

SCA Verification
(ms)

3CDaemon 1 2055 927.12 171.08
Dream FTP Server 1 1049 488.5 1937.52
FileCopa FTP Server 3 815 475.34 238.68
FreeFloat FTP server 1 571 684.73 126.47
Sami FTP Server 1 567 696.28 822.31
WAR-FTPD 1 1031 697.91 890.91
WFTPD 3 579 471.96 727.71
Savant Web Server 1 401 487.75 164.26
Win.: MS05-039 (PnP) 13 3266 487.42 442.1
PCMan’s FTP Server 1 5007 839.07 297.76
freeSSHd 1 20272 504.1 241.8
freeFTPd 1 20609 500.86 229.17
Apache HTTP Server 1 7145 851.3 498.38
BadBlue Enterprise 1 4285 537.43 185.54
Light HTTP Daemon 1 782 702.87 128.81
KNET 1 1039 716.1 242.09
Kolibri 1 1013 485.1 5103.76
Xitami 1 857 854.32 401.56
Win.: MS03-026 (RPC) 2 2272 488.12 207.06
Win.: MS04-011 (LSASS) 27 11287 980.18 494.18
IntraSrv Web Server 1 4792 505.89 180.28
Win.: MS08-067 (NetAPI) 36 7711 760.74 754.17

0 5,000 10,000

0

1,000

2,000

3,000

695.18
929.52

1,349.68
1,514.91 1,474.36

28
224

2,742

SCA Filesize (Bytes)Ti
m

e
fo

rS
C

A
G

en
er

at
io

n
an

d
V

er
ifi

ca
tio

n
(m

s)

Scargos
Vigilante

Figure 4: Comparing Vigilante’s and Scargos’ performance
for the combined times of SCA generation and verification
excluding distribution.

lante than in Scargos.
Although both data sets are hard to compare, an

observation can be made that in our data set, the
worst-case performance in Scargos is about 45% bet-
ter than that of Vigilante, while Vigilante has a better
best-case performance. Due to space limitations, ad-
ditional results are presented in the full version.

7 CONCLUSION

In this work, we presented Scargos, a framework to
distribute vulnerabilities in seconds without needing
a central authority. We proposed packet-based SCAs,
which are engineered to be distributed in the inter-
net and differ from previously presented SCAs due
to the fact that an attack is in its original form, in
packets; furthermore, they are independent from the
detection engine used and allow for a custom vul-
nerability response process. Packet-based SCAs re-

Scargos:�Towards�Automatic�Vulnerability�Distribution

375



quire different verification methods compared to pre-
viously known approaches. We presented the replay
mechanism “exact stream replay” as a way to verify
SCAs. Our proof-of-cocept implementation used the
DTA honeypot Argos and it was evaluated with 24
real-world attacks using exact stream replay. SCAs
were successfully generated and verified for 22 of
these attacks (the remaining 2 could not be detected
by Argos), and the overall life cycle from detection to
verification was shown to be on average less than 2
seconds. Finally, we showed that packet-based SCAs
perform better for bigger SCA file sizes and seem to
have a much better worst-case performance than con-
ventional SCAs. For future work we plan to investi-
gate accuracy and performance of client-side attacks
and attacks on newer operating systems and mobile
devices.

REFERENCES

Bailey, M., Cooke, E., Jahanian, F., Watson, D., and
Nazario, J. (2005). The blaster worm: Then and now.
Security & Privacy, IEEE, 3(4):26–31.

Bilge, L. and Dumitras, T. (2012). Before we knew it: an
empirical study of zero-day attacks in the real world.
In Proceedings of the 2012 ACM conference on Com-
puter and communications security, pages 833–844.
ACM.

Bosman, E., Slowinska, A., and Bos, H. (2011). Minemu:
The worlds fastest taint tracker. In Recent Advances
in Intrusion Detection, pages 1–20. Springer.

Clause, J., Li, W., and Orso, A. (2007). Dytan: a generic
dynamic taint analysis framework. In Proceedings of
the 2007 international symposium on Software testing
and analysis, pages 196–206. ACM.

Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Shan-
non, C., and Brown, J. (2004). Can we contain inter-
net worms. In Proceedings of the 3rd Workshop on
Hot Topics in Networks (HotNets-III). Citeseer.

Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou,
L., Zhang, L., and Barham, P. (2005). Vigilante:
End-to-end containment of internet worms. In ACM
SIGOPS Operating Systems Review, pages 133–147.
ACM.

Crandall, J. R. and Chong, F. T. (2004). Minos: Control
data attack prevention orthogonal to memory model.
In Microarchitecture, 2004. MICRO-37 2004. 37th In-
ternational Symposium on, pages 221–232. IEEE.

Cui, W., Paxson, V., Weaver, N., and Katz, R. H. (2006).
Protocol-independent adaptive replay of application
dialog. In NDSS.

Faulhaber, J., Lambert, J., Probert, D., Srinivasan, H., Fel-
stead, D., Lauricella, M., Rains, T., and Stewart, H.
(2011). Microsoft security intelligence report. Techni-
cal Report 11, Microsoft Corporation, Redmond, WA
98052-6399.

Kohlrausch, J. (2009). Experiences with the noah hon-
eynet testbed to detect new internet worms. In IT Se-
curity Incident Management and IT Forensics, 2009.
IMF’09. Fifth International Conference on, pages 13–
26. IEEE.

Kontaxis, G., Polakis, I., Antonatos, S., and Markatos,
E. P. (2010). Experiences and observations from the
noah infrastructure. In Computer Network Defense
(EC2ND), 2010 European Conference on, pages 11–
18. IEEE.

Kreibich, C. and Crowcroft, J. (2004). Honeycomb: cre-
ating intrusion detection signatures using honeypots.
ACM SIGCOMM Computer Communication Review,
34(1):51–56.

Newsome, J. and Song, D. (2005). Dynamic taint analysis
for automatic detection, analysis, and signature gener-
ation of exploits on commodity software. In Network
and Distributed System Security Symposium (NDSS
2005).

Portokalidis, G., Slowinska, A., and Bos, H. (2006). Argos:
an emulator for fingerprinting zero-day attacks for ad-
vertised honeypots with automatic signature genera-
tion. In ACM SIGOPS Operating Systems Review,
pages 15–27. ACM.

Provos, N. (2003). Honeyd-a virtual honeypot daemon. In
10th DFN-CERT Workshop, Hamburg, Germany, vol-
ume 2.

Provos, N. and Holz, T. (2009). Virtual honeypots: from
botnet tracking to intrusion detection. Addison-
Wesley Professional, third edition.

Suh, G. E., Lee, J. W., Zhang, D., and Devadas, S. (2004).
Secure program execution via dynamic information
flow tracking. In ACM SIGPLAN Notices, pages 85–
96. ACM.

Sullivan, B. (2004). Sasser infections begin to subside.
NBC News. http://www.nbcnews.com/id/4890780/ns/
technology and science-security/t/sasser-infections-
begin-subside/#.UhANu3byrUI.

Venkataramani, G., Doudalis, I., Solihin, Y., and Prvulovic,
M. (2008). Flexitaint: A programmable accelerator
for dynamic taint propagation. In High Performance
Computer Architecture, 2008. HPCA 2008. IEEE 14th
International Symposium on, pages 173–184. IEEE.

Willems, C., Holz, T., and Freiling, F. (2007). Toward au-
tomated dynamic malware analysis using cwsandbox.
Security & Privacy, IEEE, 5(2):32–39.

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

376


