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Abstract: This paper proposes an Adaptive Unscented Kalman Filter (AUKF) for nonlinear systems having non-
additive measurement noise with unknown noise statistics. The proposed filter algorithm is able to estimate 
the nonlinear states along with the unknown measurement noise covariance (R) online with guaranteed 
positive definiteness. By this formulation of adaptive sigma point filter for non-additive measurement noise, 
the need of approximating non-additive noise as additive one (as is done in many cases) may be waived. 
The effectiveness of the proposed algorithm has been demonstrated by simulation studies on a nonlinear two 
dimensional bearing-only tracking (BOT) problem with non-additive measurement noise. Estimation 
performance of the proposed filter algorithm has been compared with (i) non adaptive UKF, (ii) an AUKF 
with additive measurement noise approximation and (iii) an Adaptive Divided Difference Filter (ADDF) 
applicable for non-additive noise. It has been found from 10000 Monte Carlo runs that the proposed AUKF 
algorithm provides (i) enhanced estimation performance in terms of RMS errors (RMSE) and convergence 
speed, (ii) almost 3-7 times less failure rate when prior measurement noise covariance is not accurate and 
(iii) relatively more robust performance with respect to the initial choice of R when compared with the other 
nonlinear filters involved herein. 

1 INTRODUCTION 

Adaptive state estimation techniques have got more 
attention of researchers in recent few years due to 
their renowned superiorities (Almagbile, 2010) over 
non adaptive state estimators. In this paper an 
Adaptive Unscented Kalman Filter (AUKF) has 
been proposed which is applicable for the situation 
where non-additive measurement noise is present.  

In earlier stages adaptive filters were mostly 
formulated on linear Kalman Filtering framework 
(Mehra, 1972). However recent trends of research 
are directed towards adaptive nonlinear estimation 
techniques. The earliest adaptive nonlinear filter 
reported in literature is Adaptive Extended Kalman 
Filter (AEKF) (Busse, 2003; Meng, 2000). AEKF is 
found to fraught with dificulties like singularity 
problems, complex jacobian calculations (Wan, 
2000; Fathabadi, 2009) etc. which further leads 
toward an alternate adaptive nonlinear estimation 
technique named as Adaptive Sigma Point Kalman 
Filter (ASPKF) (Das, 2013). Adaptive Unscented 
Kalman Filter (AUKF) (Das, 2014; Soken, 2011; 
Chai, 2012), Adaptive Central Difference Filter 
(ACDF) (Das, 2015) or Adaptive Divided 

Difference Filter (ADDF) (Dey, 2015) all belong to 
the class of ASPKF. The present work in this paper 
is formulated on Unscented Kalman Filtering (UKF) 
framework as it is able to exhibit better estimation 
performance compared to Extended Kalman Filter 
(EKF) and first order Central or Divided Difference 
Filter (CDF/ DDF) (Norgaard, 2000; Ito, 2000). 

The proposed filter herein determines the 
covariance (R) online of the nonadditive 
measurement noise and therefore it fits into R-
adaptive filter category. There are several existing 
methodologies of adapting R in literature (Mehra, 
1972; Das, 2014). Direct covariance matching 
method depending on the innovation or residual 
sequence is the simplest and straight forward 
technique among them (Mehra, 1972; Mohamed, 
1999). The rudimental idea of R adaptation in the 
present work is adopted from (Mohamed, 1999) 
where direct covariance matching method of 
adaptation depending on residual sequence is 
utilized for linear signal models. 

However, adaptive formulation of sigma point 
filters considering non-additive measurement noise 
is very rare in literature. In (Dey, 2015) an adaptive 
Divided Difference Filter (ADDF) for nonlinear 
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systems with non-additive measurement noise has 
been proposed. Our current work presented in this 
paper focuses on adaptive formulation of another 
sigma point filter named as Unscented Kalman Filter 
(UKF) considering non-additive measurement noise. 

To demonstrate the performance of the proposed 
filtering algorithm a two dimentional bearing-only 
tracking (BOT) problem with non-additive 
measurement noise as may be found in (Sadhu, 
2006; Lin, 2002) has been chosen. Although in 
(Sadhu, 2006; Lin, 2002) the non-additive 
measurement noise has been approximated as 
additive one, in our current work this approximation 
is waived to circumvent the approximation errors. It 
may be discerned from the simulation results 
presented herein that waiving this additive noise 
approximation may enhance the estimation 
performance significantly in some particular cases. 

The significant contributions of this paper may 
be summarized as follows: 
 An Adaptive Unscented Kalman Filter (AUKF) 

has been formulated which utilizes the 
augmented form of UKF and is applicable for 
nonlinear systems with non-additive 
measurement noise. 

 Residual sequencees in lieu of innovation 
sequences have been utilized for guaranteed 
positive definiteness of the adapted R matrix. 

 The proposed algorithm has been exemplified 
with a 2-D bearing-only tracking (BOT) test 
problem with non-additive measurement noise. 

The organization of the paper is as follows. 
Section 2 describes the proposed Adaptive 
Unscented Kalman Filter (AUKF) in augmented 
form applicable for non-additive measurement noise. 
In section 3 case studies on 2-D bearing only 
tracking (BOT) problem have been illustarted. 
Discussions and conclusions are presented in section 
4. 

2 PROPOSED AUKF 
ALGORITHM 

2.1 Problem Statement 

Nonlinear state estimation problem with non-
additive noise where the prior knowledge of 
measurement noise covariance is unavailable is 
considered here. The dynamic equations of process 
and measurement therefore may be represented by 

equations (1) and (2). Where, n
k Rx  , m

k Rz   

and kw , kv are the non-additive process and 

measurement noise with covariance kQ and kR
respectively.  

)w,x(fx kkk 1  (1) 

)v,x(hz kkk   (2) 

Here kQ is assumed to be known and constant 

(therefore it will be represented by Q  in the rest of 

the paper) whereas kR is assumed to be unknown. 

The adaptive nonlinear filter designed for this 
particular problem is able to adapt the covariance 

kR  of the non-additive measurement noise kv .  

2.2 Filter Algorithm 

As non-additive noise is considered here, the 
augmented form of UKF (Wan, 2000) has been 
utilized here and the adaptive version of augmented 
UKF has been formulated. The weight values (Wan, 
2000) are calculated as given below: 
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Where, an  is the dimension of augmented state 

vector,   is a scaling factor given by 
aa n)n(  2 , the parameters   and   

determines respectively the spread of the sigma 
points and a prior knowledge about the noise 
distribution. The values of the tuning parameters  , 
  and   are considered to be 0.5, 2 and 0 in the 

present work. 

2.2.1 Initialization 

Initialize, State error covariance (Pk-1), Estimated 
states ( 1

ˆ kx ) and measurement noise covariance  

( 1kR̂ ). 

2.2.2 Prediction (Time Update) 

Form augmented state vector as: 
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Where, w  and v  are respectively mean of 

process and measurement noise and 
ana

k Rx̂ 1 . 

Form augmented state error covariance matrix 
as: 
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It is assumed here that the state errors, process 
noise and the measurement noise are not correlated 
to each other. Hence the off-diagonal sub-blocks of 
the matrix in equation (5) are considered as zero. 

Calculate the sigma points of a
kx̂ 1  as: 



























v
k-

w
k-

x
k-

a
k

a
k

a

a
)n(n

a
k

a
k

a
k-

ˆ

ˆ

ˆ

]PP)n(zeros[

)n(]x̂.....x̂[ˆ
aa

1

1

1

11

12111

 1

X

X

X

X 
 

(6) 

Propagate the sigma points ( x
k-

ˆ
1X  and w

k-1X̂ ) 

through the function f as: 
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Project the state ahead as: 
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Project the state error covariance ahead as: 
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Propagate the sigma points ( 
kX̂  and v

k-1X̂ ) 

through the function h as: 
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Predict the measurement as: 
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2.2.3 Correction (Measurement Update) 

Calculate the innovation covariance as: 
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Calculate the cross covariance as: 




 
an

i

T
ki,kki,k

c
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Calculate the Kalman gain as: 
1 zzxzk PPK  (14) 

Estimate the state as: 

)ẑz(Kx̂x̂ kkkkk
   (15) 

Calculate the estimated state error covariance as: 
T
kzzkkk KPKPP    (16) 

2.2.4 Adaptation of ‘R’ 

Form augmented state vector a
kx̂  by augmenting the 

estimated state kx̂  with mean of process and 

measurement noise as is done in equation (4).  
Form augmented state error covariance matrix 
a
kP1  and a

kP2  as given below: 
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Calculate the sigma points: 
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Propagate the sigma points ( x
k

ˆ 2X and v
k2X̂ ) 

through the function h as: 
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Estimate the measurement as: 
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Calculate residual as: 
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Calculate the residual covariance with in sliding 
window (of size ‘ws’) as: 
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Now propagate the estimated state and sigma 
points of measurement noise ( v

k1X̂ ) through the 

function h as: 
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Similarly, propagate sigma points of estimated 
states ( x

k
ˆ 2X ) and mean of measurement noise through 

the function h as: 
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Calculate the covariance matrix TDD  (this 
matrix is analogous to TDRD  of Extended Kalman 
Filter where R is considered as unity) as: 
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Where, kẑ1 is calculated as:  
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Find the matrix D by Cholesky factorization of 
TDD . 

Calculate the covariance matrix C (which is 
analogous to THPH  of Extended Kalman Filter) as: 
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Where, kẑ2 is calculated as:  
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Estimate ‘R’ as: 
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2.2.5 Comments on the Algorithm 

Following specific comments can be made about the 
proposed filter algorithm. 

 A sliding window has been utilized here to 
calculate the residual covariance as shown by 
equation (24). However, if the current instant 
(k) is less than the window size (ws) defined by 
the user, the residual covariance should be 
calculated from all the available residual 
sequences. 

 The window size should be chosen carefully. 
Too small window size may lead to quick 
adaptation in the cost of noisy performance. 
Whereas choosing too large window may 
provide very smooth R adaptation 
compromising in the speed of adaptation. 

 In equation (5) 1kR̂  has been utilized due to 

the unavailability of adapted R at kth instant. 
Once adaptation of ‘R’ at kth instant is 
completed, an iteration of the filtering steps can 

also be carried out by utilising kR̂ . However, 

due to increased calculation burden this 
iterative structure is not included in the 
proposed algorithm. 

 Due to the use of augmented state vector and 
additional calculation steps for R adaptation, 
computation burden of the proposed AUKF is 
more compared to normal UKF. But the 
effectiveness of the proposed algorithm for 
nonlinear state estimation at the presence of 
non-additive noise (with unknown noise 
statistics) compensates the shortcoming related 
to extra calculation burden. 

3 CASE STUDY 

3.1 2-Dimensional BOT Problem 

3.1.1 Process Model 

Two dimensional bearing only tracking (BOT) 
problem (Sadhu, 2006) consists of two components, 
platform kinematics and target kinematics, as shown 
in figure 1. The target moves along x axis and the 
platform accompanied with a sensor moves parallel 
to the target with constant velocity. 
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Target motion is considered here as the process 
model and is given by 

)k(w
T

)k(Tx)k(x)k(x
2

11
2

211   (32) 

)k(Tw)k(x)k(x  122  (33) 

Where, )k(x1
is target position along x axis and 

)k(x2
is target velocity which is also assumed to be 

constant. T=1 sec. is the sampling time and w(k) is 
process noise with covaraiance Q=0.01m2/sec4. 
Values of these parameters are adopted from (Sadhu, 
2006). 

 

Figure 1: BOT trajectory. 

3.1.2 Measurement Model 

Platform position (along x and y axis) and bearing 
between x axis and line of sight from sensor to target 
are considered as measurement equations and are 
given by: 
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First two measurement variables are the platform 
positions along y axis and x axis respectively. ‘k’ is 
the current time instant. It is evident from the 
measurement model that the third measurement 
variable is a nonlinear function of state as well as the 

measurement noises ( )k(v1 and )k(v2 ). However, 

)k(v3 is the additive measurement noise. 

Measurement noise vector v therefore may be 

formed as [ )k(v);k(v);k(v 321 ] with true 

covariance Rk. Where Rk is given by: 
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1v , 2v  and 3v  are the standard deviation of 

three measurement noises with nominal values of 1 

meter, 1 meter and 3  respectively. All initial values 
of the model and the filters are same as in (Sadhu, 
2006). 

3.2 Simulation Results 

To assess the performance of the proposed filter, it 
has been compared with non adaptive UKF, AUKF 
with additive noise (Chai, 2012) approximation and 
ADDF for non-additive noise (Dey, 2015). For 
AUKF with additive noise (Chai, 2012), the non-
additive measurement noise has been approximated 
to additive one in the same way as is done in (Sadhu, 
2006). When the appropriate knowledge of 
measurement covariance (R) is available, it has been 
found that performances of all the considered 
filtering algorithms are closely comparable. Since 
the main aim of the paper has been to propose an 
adaptive algorithm when the proper knowledge of 
measurement noise covariance (R) is unavailable, 
the results presented here have considered the prior 
knowledge of R as wrong. Two simulation scenarios 
have been considered here (i) when prior knowledge 
of R is scaled up (true R X 100) and (ii) when prior 
knowledge of R is scaled down (true R / 100). Figure 
2, 3 and 4 shows respectively the RMS errors of 
position, velocity and track losses (as defined in 
(Sadhu, 2006)) for 10,000 Monte Carlo runs when 
prior knowledge of R is (true R) X 100. 

 

Figure 2: RMSE of position (m) when prior knowledge of 
R is (true R) X 100. 
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Figure 3: RMSE of velocity (m/sec.) when prior 
knowledge of R is (true R) X 100. 

 

Figure 4: Number of track losses when prior knowledge of 
R is (true R) X 100. 

Figure 4, 5 and 6 shows respectively the RMS 
errors of position, velocity and track losses for 
10,000 Monte Carlo runs when prior knowledge of R 
is (true R) / 100. 

It may be found from all these simulation results 
that the proposed adaptive filter provides less RMS 
errors compared to the other filtering algorithms 
involved in both the simulation scenarios. Track loss 
counts are also less in the proposed filter algorithm 
compared to the other filtering algorithms involved. 

 

Figure 5: RMSE of position (m) when prior knowledge of 
R is (true R) / 100. 

 

Figure 6: RMSE of velocity (m/sec.) when prior 
knowledge of R is (true R) / 100. 

 

Figure 7: Number of track losses when prior knowledge of 
R is (true R) / 100. 

The chosen 2D-BOT problem is infamous for the 
track loss problem associated with it. However it has 
been found that the track loss counts (failure rate) in 
the proposed Adaptive UKF is less in all simulation 
scenarios compared to the other nonlinear filtering 
algorithms considered here. The steady state values 
of the RMS errors provided by the proposed 
algorithm are also found to be less compared to the 
other considered adaptive and non adaptive 
nonlinear filtering algorithms. 

4 CONCLUSIONS 

The problem of nonlinear state estimation at the 
presence of non-additive measurement noise with 
unknown noise covariance has been considered here. 
Towards the solution of the above stated problem an 
Adaptive Unscented Kalman Filter (AUKF) has 
been proposed which utilizes the augmented form of 
state vector. It has been found from the total corpus 
of simulation results that the proposed adaptive filter 
provides less RMS errors and is more robust to the 
initial uncertainties associated with the measurement 
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noise covariance (R) compared to few selected 
existing adaptive and non-adaptive filtering 
techniques. Probability of failure in the proposed 
filtering technique has also been observed to be 
negligible compared to the other filtering techniques 
involved. The results provided in this paper to 
demonstrate the superiority of the proposed adaptive 
filter are expected to encourage further studies on 
Adaptive Unscented Kalman Filtering techniques for 
non-additive noise. 
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