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Abstract: The gradient method in function space is revisited and applied to the problem of optimizing the trajectories 
of aerodynamically maneuvering rockets. The optimization objective may be the maximal range or the 
minimal control effort for a given range. The method is shown to provide an implementable and fast 
algorithm for a good approximation to the optimal solution. It does not require any non-linear programming 
solver, and can be straightforwardly programmed in a flight computer. The method can also be used to 
provide an initial guess for more precise techniques, thus accelerating the computational process.

1 INTRODUCTION 

Numerical techniques for solving optimal control 
problems fall into two general classes: indirect 
methods and direct methods.  In an indirect method 
(Bryson and Ho, 1975; Kelley, 1962; Stryk and 
Burlich,1992; Keller, 1968), we rely on the 
Minimum Principle and other necessary conditions 
to obtain a two-point boundary-value problem 
(TPBVP), which is then numerically solved for 
optimal trajectories. The main advantages of indirect 
methods are their high solution accuracy and the 
guarantee that the solution satisfies the optimality 
conditions. However, indirect methods are 
frequently subject to severe convergence problems. 
Frequently, without a good guess for the missing 
initial conditions, and a priori knowledge of the 
constrained and unconstrained arcs, convergence 
may not be achieved at all, or may require some very 
long and tedious computational effort. In the direct 
methods  (Stryk, 1993; Benson, 2004; Elnagar et. 
al., 1995; Fraroo and Ross, 2001; Rao, et. al. 2010) 
the continuous optimal control problem is 
parametrized as a finite dimensional problem. Well-
developed algorithms for constrained parameter 
optimization - also called non-linear programming 
(NLP) solvers for historical reasons - then solve the 
resulting optimization problem numerically. There 
are several popular methods which transform the 
optimal control problem into a parameter 
optimization problem.  In present time the most 
popular methods are the collocation method and 

pseudo-spectral methods. Numerical optimization of 
the constrained parameter optimization typically 
involves finding hundreds of unknown parameters 
subject to hundreds of constraints. The computation 
time, especially when the initial guess is far from the 
solution, may become quite significant. This fact 
may be critical for real-time applications or in 
applications where the solution is needed for a huge 
number of cases (say with various terminal 
conditions). 

Gradient in function space (Kelley, 1962; Bryson 
and Denham 2010) is a well-known method which 
may be characterized as a hybrid method, merging 
direct and indirect methods. On the one hand 
necessary conditions for the adjoint system are met, 
whereas on the other hand the control function is 
directly sought by the method of gradients. The 
control function is iteratively updated based on the 
current state/adjoint solution by evaluating the 
corresponding Green’s function and using gradient 
correction (steepest descent) in function space. No 
further NLP solvers are needed for the solution. 
Guided rocket is a new field in rockets development, 
which offers several improvements such as 
extensions of existing rockets range, improved 
accuracy, trajectory shaping, etc. These 
improvements are achieved by providing the rockets 
maneuverability either by aerodynamics means or by 
using small pyrotechnical motors (pulsers). Some 
approximate methods have been employed in the 
past to this problem (e.g. Kelley et. al., 1982). 
However, finding the optimal trajectories for rockets 
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is still an important challenge. The computation time 
in these applications is of a particular importance for 
two main reasons: (a) fast calculation of trajectories 
is needed just before launching a rocket to a new 
target; (b) real time corrections in flight might be 
required due to disturbances and/or target 
movement.     

The main purpose of this work is to revisit the 
gradient method in function space in order to obtain 
easily implementable and fast, albeit less accurate, 
trajectories for maneuvering rockets. The method 
can be used either by itself or as an accelerating 
method for more accurate techniques. 

2 GRADIENTS IN FUNCTION 
SPACE 

For completeness will present here the methods of 
gradient based on (Kelley, 1962). Consider the 
following state-space representation of a dynamic 
system: 

)),(),(()( ttutxgtx   (1)

Where x(t) and u(t) are n-dimensional and m-
dimensional vectors, respectively. For a given initial 
condition, we want to minimize some terminal cost 
P(xf). For simplicity, let us assume that tf is 
specified.  Let u(t) and x(t) be some guess values for 
the state and control variables respectively, and 
consider a sufficiently small variation δu(t) and the 
resulting  δx(t)  determined by the linearized 
equation: 

0( ) ( ) ( ) ( ) ( ); ( ) 0T T
x ux t g t x t g t u t x t       (2)

Where gu and gx are Jacobian matrices. Consider 
now the adjoint system, defined by the linear time-
varying differential equations: 
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One can readily obtain, using (2) and (3), that: 
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On the other hand, the cost variation can be written 
(to first order) as: 
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where Pxf if the gradient of P with respect to xf. 
Using Eq. (3), with the following terminal 
conditions, 
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we get, from Eq. (4) and Eq. (5), and the fact the 
initial condition is given, that 
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The term µ(t) is the gradient of the cost in the 
control function space (Courant and Hilbert, 1953).  
Under control iterations, the steepest descent will be 
in its negative direction. This fact can be easily 
derived from Schwarz’s inequality, as follows: 
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For the case µ(t) ≠0  the upper limit on the left is 
obtained (under equality) for 

( ) ( )u t k t    (9)

k is any constant real number. For the minimization 
of P, this constant should have a sign opposite to the 
sign of function space.  

Hence µ(t) is in the (current) direction of the 
gradient in function space. For a different derivation 
the reader is referred to (Kelley, 1962). Notice that 
for the case µ(t)=0 the optimal control cannot be 
determined by this method! 

3 MAXIMAL ROCKET RANGE  

3.1 Problem Formulation  

The dynamic modeling of a lifting rocket will be 
introduced first. For simplicity, post-boost dynamics 
in a flat earth 2-D scenario is assumed, governed by 
the following continuous dynamic equations:  
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R is range, h is altitude, V is velocity, γ is the flight-
path angle, m is mass, S is a reference area, α is the 
angle of attack, ρ is air density; g is gravity,  CD0 and 
K are the parabolic drag coefficients, and finally CLα 
is the lift slope coefficient. 

The control in this problem is the angle-of-attack 
α. It assumed to be changed instantaneously without 
any time delay (point mass approximation).  
Increasing the angle-of-attack creates the required 
lift force, but it also increases the induced drag.  

The maximal range problem is to minimize the 
following cost by the control for a given x(0): 

( ) ( )f fP t R t   (11)

Remark: Notice that tf is not specified; in practice we 
should find it by the terminal condition of reaching 
the ground (see below).  

3.2 The Adjoint System and Green’s 
Function 

From (3) and (10) we readily obtain the following 
adjoint system: 
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λi is the adjoint (co-state) associated with the state 
variable i. As already explained, in the gradient 
method we use a present guess for the control, the 
state and the adjoint variables, where the terminal 
conditions for the adjoints (in this maximal range 
problem) are all zeros except for λR which is 1 (from 
Eq. 6). The Green’s function for this problem 
becomes: 

2
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The control function is updated, as follows: 

 (14)

The scalar k is some positive fixed number which 
determines the step size.  
As the terminal time is unknown, we also update its 
value in order to obtain h(tf)=0, thus: 

)()( ffoldfnewf ththbtt   (15)

where b is some positive fixed number. We iterate 
on the problem by resolving Equations (10) – (15) 
until some convergence condition is satisfied.     

3.3 Computational Results 

A fictitious 140 kg rocket with 94 km non-lifting 
range is considered. The initial end-of-boost angle is 
fixed to 53 deg. and the rocket flies a non-lifting 
trajectory up to its apogee. The maximal angle-of-
attack is set to 15°. The lift coefficient is CLα=8 
with the reference area of 0.0405 m2; and the drag 
coefficients CD0 and K are 0.14 and 0.127, 
respectively.  It is required to extend the range to its 
maximum (with the initial conditions set at the 
apogee). Fig. 1 presents in blue the optimal 
trajectories obtained by two direct approaches: 
GPOPS (Rao et. al. 2010) and the cubic-spline based 
collocation method (Stryk, 1993). Also shown in red 
is the trajectory obtained by the gradient-in-
function-space method. The first two solutions 
overlap and their maximal range is identical 171km. 
The gradient-in-function-space solution reaches 
somewhat shorter range (169 km) hence it should be 
considered sub-optimal. The optimal flight time is 
313 sec.  
Remark: The NLP solver for GPOPS was NPOPT or 
IPOPT, whichever runs faster. The NLP solver for 
the collocation method was IPOPT.  As already said, 
the gradient method does not use any NLP solver.  
The CPU computation times for this example were 
as follows: 27.4 sec for GPOPS; 35 sec for the 
collocation method; and only 2.4 sec for the gradient 
method. Note that these computation times are based 
on MATLAB implementations on an INTEL CORE 
i7vPro, hence are far from being minimal (efficient 
coding can reduce it by orders of magnitude). 
Evidently one can consider them only on a 
comparative basis.  There is at least one order of 
magnitude saving in the computation time for the 
gradient method. This result has been obtained in 
numerous other examples. At the very least it can be 
used as an accelerating method for the other 
approaches (Bryson, 1999). Trials based on this idea 
have reduced the computation time for the 
collocation method by a factor of three.   

 )()()( tktt oldnew  
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Figure 1: Maximal range trajectories. 

4 FIXED ROCKET RANGE 

4.1 Problem Formulation  

In most practical applications the range of the rocket 
is fixed. The optimization problem is therefore 
aimed at a different cost function. One plausible 
candidate is the control effort. The reasons are 
threefold: 

a.  The domain of static stability is typically 
small for rockets and they may stall at 
even medium angle-of-attack values. 

b. Wind gusts may increase the effective 
angle-of-attack causing even earlier stall 
conditions. 

c.  It will also minimize the requirements 
from the servos activating the control 
surfaces.  

Hence the following cost will be considered: 

2

0
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To obtain a Meyer’s formulation, a 5th state 
representing the accumulated control effort is 
introduced. Thus the system becomes: 
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And the cost is simply the terminal 5th state value: 

( )fJ P t  (18)

In order to obtain the required range, the problem 
can be simplified  by changing the independent state 
from time to range. This is advisable due to fact that 
it behaves monotonically with time and has fixed 
initial and terminal values (Kelley, 1962). Dividing 

(17) through by R the systems equations are reduced 
to:  
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The terminal altitude needs to be zero. To this end 
we introduce a penalty function (Kelley, 1962) 

2( ) ( ) ( )f f fP R P R W h R    (20)

for some large positive scalar W. 

4.2 The Adjoint System and Green’s 
Function 

Similarly to the previous section, the adjoint system 
is calculated by (3) with R being the independent 
variable. For each iteration we first integrate (19) 
forward, and then integrate the associated adjoint 
equations backward with two sets of terminal values: 
(0 0 0 1) yielding - from (5) - the control-effort 
influence function μ1(R); and (0 0 1 0) yielding the 
terminal altitude influence function μ2(R). We then 
combine them to obtain a single influence function 
for the total cost (21), as follows 

1 2( ) ( ) 2 ( ) ( )fR R W h R R       (21)

We proceed as before 

( ) ( ) ( )new oldR R k R      (22)

The scalar k is some positive fixed number which 
determines the step size.  

4.3 Computational Results  

Fig. 2 presents the trajectories obtained by the 
gradient method (red) and by GPOPS (blue), for a 
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rocket flying to the fixed range of 140 km.  The 
flight time is about 190 sec. As seen, the trajectories 
are fairly close to each other but the gradient method 
results are again sub-optimal, with some 
intermediate higher maneuver. This maneuver 
entails a total cost of 0.6769 sec, compared with 
merely 0.6242 sec of GPOPS. However, the CPU 
computation time for the latter was 28 sec, as 
opposed to 3 sec for the former. 

 

Figure 2: Fixed range trajectories. 

5 CONCLUSIONS 

Present day computational methods, in particular 
direct methods such as pseudo-spectral and 
collocation methods, are widely and successfully in 
use.  Bryson’s and Kelley’s old but powerful ideas 
of Gradients in Function Space are much less used 
today, perhaps under the impression that the current 
methods are superior and therefore these techniques 
belong to the past.    

The purpose of this position paper was to 
somewhat rectify this impression by claiming that, at 
least for fast computations and very simple 
implementations, Gradients in Function Space can 
still be an invaluable method. The computation time 
is, typically, one order of magnitude lower than for 
the direct methods, and the implementation (e.g. the 
number of code lines needed to perform the 
calculations, the required memory size, etc.) is also 
much less demanding as no NLP solver is required. 
Consequently, the algorithm fits very well with on-
board computations.  Optimal rocket trajectory is a 
problem where such advantages are important.  
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