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Abstract: In this paper, inventory control problem in goods distribution networks with non-negligible transshipment 
delay is addressed. In contrast to the majority of earlier approaches, system modeling and policy design do 
not assume simplified system structure, such as a serial, or a tree-like one. The network nodes, in addition to 
satisfying market demand, answer internal requests with delay spanning multiple periods. The stock in the 
network is refilled from uncapacited outside sources. A dynamic model of the considered class of goods 
distribution systems is constructed and a new inventory policy is formulated. The proposed policy shares 
similarity with the classical order-up-to one, yet provide improved performance owing to the networked 
perspective assumed in the design process. 

1 INTRODUCTION 

The formal and computational difficulties have 
directed the research effort in logistic system 
optimization and control mainly to single stage 
(Hoberg et al., 2007; Ignaciuk & Bartoszewicz, 
2011), serial (Song, 2009, Movahed & Zhang, 
2013), or tree-like configurations (Kim et al., 2005; 
Ignaciuk, 2014). The new information and 
communication technology advancements permit 
now large-scale deployment of management 
solutions in more complex – networked – settings. 
However, as is the case of simplified structures 
considered so far in the literature, the crucial aspect 
behind the efficient operation and cost reduction in a 
networked system is implementation of an 
appropriate inventory control policy. 

In this work, logistic networks with arbitrary, 
mesh topology are considered in periodic-review 
mode of operation. The stock replenishment orders 
are realized with non-negligible lead-time delay that 
may span multiple review periods. The external 
demand is represented by uncertain, time-varying 
functions, accepting any stochastic process typically 
considered in inventory control problems. A 
dynamic model of network node interactions is 
constructed. Since the localized view of the goods 
flow process reflected in the classical ordering 
policies, e.g. order-up-to (OUT) one, may generate 
significant cost increase in a real-world installation 

(Cattani et al., 2011), an alternative – networked – 
policy is proposed. The designed policy, while 
sharing functional similarities with the classical one, 
shows improved dynamical characteristics and 
generates smaller costs. 

2 PROBLEM SETTING 

2.1 System Dynamics 

The goods distribution system to be controlled 
encompasses N nodes with the indices from the set 
ΩN = {1, 2, ..., N}. The overall amount of goods in 
the system is refilled from external sources. The set 
of all node indices, including the controlled nodes 
and external sources, ΩM = {1, 2, ..., M}, M ≥ N. 

Let k = 0, 1, 2, ... be the independent variable 
denoting subsequent review periods. The stock 
balance equation at controlled node c, c ∈ ΩN: 

goods delivered to node c goods served by node 

( 1) ( ) ( )

( ) ( )
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where: 
 xc(k) is the amount of goods (on-hand stock) 

readily available at node c in period k; 

498 Ignaciuk P..
Order-up-to Networked Policy for Periodic-Review Goods Distribution Systems with Delay.
DOI: 10.5220/0005561604980503
In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO-2015), pages 498-503
ISBN: 978-989-758-123-6
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



 uc(k) is the amount of goods requested by node 
c in period k to replenish its stock; 

 asc is the part of the overall order uc(k) to be 
acquired from node s ∈ ΩM by node c; 

 Lsc = Ts + Tsc is the lead-time delay in providing 
the goods from node s to node c, Lsc ∈ {2, 3, 
..., L}, L denotes the maximum lead-time 
delay in goods transfer between any two 
neighboring nodes; 

 Ts is the order processing time at node s, 
including all the activities related to preparing 
the order for the requesting node, Ts ∈ {1, 2, 
..., L – 1}, 

 Tsc is the time of transporting the goods from 
node s to node c, Tsc ∈ {1, 2, ..., L – 1}, 

The (external) demand is modeled as an 
uncertain, bounded function of time 
0 ≤ dc(k) ≤ max

cd , where max
cd ≥ 0 denotes the upper 

estimate of dc(k). No assumption is taken regarding 
the nature of stochastic process describing the 
evolution of dc. 

Without loss of generality the network is 
assumed connected (there is no isolated node) and 
full order partitioning takes place, i.e. 

  1.
M

sc
c s

a
∈Ω

=∀  (2) 

When treated as a graph, although arbitrary flow 
orientation is permitted, the network is also assumed 
directed, i.e. if asc ≠ 0, then acs = 0 for c, s ∈ ΩN. 
Moreover, for any c ∈ ΩN, acc = 0, so that no 
controlled node is a source of goods for itself. 

According to (1), the goods to other nodes within 
the controlled network are sent with at least one 
period delay that covers the time to prepare all the 
necessary documentation and shipment. Meanwhile, 
the demand is served immediately in period k, which 
implies that answering the external requests 
(demand) takes precedence over the internal goods 
traffic. Each node may serve the requests coming 
from other nodes inside the managed network as 
well as answer the external demand, which closely 
reflects the actual real-life settings (Cattani et al., 
2011). 

2.2 Classical Out Policy 

In order to replenish the stock depleted according to 
market demand (and internal requests) at a network 
node, the OUT policy may be applied. When 
demand forecasting is not used, the OUT policy 
calculates the order quantities according to (Silver et 
al, 1998): 

 
1

( ) ( ) ( ),
M sc

k
out

c c c sc c
s j k L

u k x x k a u j
−

∈Ω = −
= − −    (3) 

where the sum represents the work-in-progress (the 
order placed but not yet realized as a result of delay). 

In the serial and tree-like topologies, it can be 
shown that with sufficiently large out

cx , for k > 0, the 

orders generated by the OUT policy according to (3) 
satisfy (Ignaciuk & Bartoszewicz, 2012) 

 ( ) ( 1),c cu k d k= −  (4) 

i.e. the ordering signal issued in a current period 
matches the demand from the previous one. In 
consequence, the bullwhip effect is prevented. 
Unfortunately, in the case of networked system with 
full (mesh) connectivity this favorable property does 
not hold. In order to mitigate the negative influence 
of demand variability on the costs in the network, 
one may apply alternative (local) strategies with 
smoothing properties, e.g. (Ignaciuk, 2012), or, as is 
proposed in this work, construct a new policy taking 
into account the network dynamics. 

3 NETWORKED MODEL 

In order to formulate a networked inventory policy, 
it is convenient to describe model (1) in an 
appropriately chosen state space. The following 
state-space representation is proposed: 
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where: 
 x(t) = [x1(t) ... xN(t)]T is the vector of on-hand 

stock levels inside the controlled network; 
 u(t) = [u1(t) ... uN(t)]T is the vector of stock 

replenishment signals; 
 d(t) = [d1(t) ... dN(t)]T is the vector of demands 

imposed at the controlled nodes with 
dmax = [ max

1d ... max
Nd ]T grouping the 

information about the demand upper bounds; 
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for j = 1, ..., L hold the information about the node 
interconnections; the elements on the main diagonal 
reflect the goods acquisition with lead time j 
(incoming shipments), whereas the off-diagonal 
ones  

 
,  if ,

0,  otherwise,
iw i

iw

a T j
b

− =
= 


 (7) 

with w ∈ ΩN, correspond to the goods provision with 
processing time j (the outgoing shipments inside the 
network).  

For further derivations, it is also convenient to 
define 

 
1

.
L

j
j =

=B B  (8) 

It follows from (2) that B = I + E, where I denotes 
an N × N identity matrix and E is a hollow matrix 
with entries aij ∈ [–1, 0] column-wise summing at 
most to –1, is invertible. 

4 NETWORKED OUT POLICY 

4.1 Proposed Inventory Policy 

Let xd = [ 1
outx ... out

Nx ]T denote the vector of target 

inventory levels. The proposed policy for the 
considered goods distribution system establishes the 
orders using the equation 

 1

1

( ) [ ( ) ( )].
L L

j
i j i
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= =
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4.2 Policy Properties 

Assuming zero initial input, i.e. u(k) = 0 for k < 0, 
from (5), the stock level in arbitrary period k > 0 can 
be expressed as 
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At the initial time, u(0) = B–1[xd – x(0)]. 
Afterwards, for any k > 0, the ordering signal 
satisfies the condition specified in the following 
theorem. 

Theorem 1. For k > 0, the stock replenishment 
signal established according to (9) for system (5) 
satisfies 

 u(k) = B–1d(k – 1). (11) 

Proof. First note that (9) can be equivalently 
written as 
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Substituting (10) into (12), yields 
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and using (8), 
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Then, applying (14), u(k + 1) can be expressed as 
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which ends the proof. 

Let 

 
1
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j
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which represents a network analogue of inventory 
position (sum of on-hand stock and open orders). 

Proposition 2. The dynamics of z(t) can be 
described by 

 ( 1) ( ) ( ) ( ).k k k k+ = + −z z Bu d  (17) 

Proof. Taking into account the zero initial input, 
directly from the definition of z one obtains 
z(0) = x(0). In turn, applying (5) to (17), yields 
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thus showing that (17) is satisfied in period k = 0. 
Then, using (5), for arbitrary k > 0 the following 
relation can be established 

1
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 (19) 

which ends the proof. 

ICINCO�2015�-�12th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

500



Theorem 3. System (5) under the control of 
policy (9) is bounded-input-bounded-output stable. 

Proof. Since finite u and x yield finite z, and d 
influences (5) and (17) in the same way, the stability 
assessment of both systems subject to policy (9) is 
equivalent. Substituting u(k) = B–1d(k – 1) into (17) 
yields 

 ( 1) ( ) ( 1) ( ),k k k k+ = + − −z z d d  (20) 

which implies that z(t) (and thus x(t)) is bounded for 
any bounded demand. This conclusion ends the 
proof. 

4.3 Selection of Target Stock Level 

A successful control policy in modern supply 
networks is expected to achieve a high service level. 
In this work, the service level is quantified by the 
demand fill rate, i.e. the part of imposed demand 
realized from readily available resources at the 
nodes. The fill rate is influenced by the choice of 
target stock level. Owing to the overall complexity 
of the networked system interconnections, the 
optimal target stock xd needs to be determined 
through numerical computations for given network 
parameters – demands imposed at the nodes and 
inter-node lead time. Below, an intuitive procedure 
to calculate xd for minimizing backlog and thus 
obtaining high fill rate is shown. The procedure 
assumes only the knowledge about the demand 
upper estimate dmax (not its statistical parameters). 

It follows from Theorem 1 that steady-state 
replenishment signal uss in response to steady-state 
demand dss satisfies 

 1 .−=ss ssu B d  (21) 

Then, using (9) and (21), the steady-state stock level 
is determined as 
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In the worst case, dss = dmax. Thus, setting 

 1

1
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L
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=

> +d maxx B B I d  (23) 

will result in reduced backlog. 
On the other hand, in the absence of external 

demand xss = xd. It follows from the numerical 
analysis presented in the next section that the 

proposed policy provides oscillation and overshoot 
free stock level evolution. Therefore, setting the 
warehouse capacity at the network nodes equal to xd 
gives enough space to store the goods locally. The 
stock level x(k) ≤ xd and costly emergency storage 
outside the controlled network is not required. 

5 SIMULATION EXAMPLE 

Let us consider the goods distribution network 
illustrated in Fig. 1. Nodes 1–5 are managed by a 
single organization – they constitute the controlled 
elements – while nodes 6–8 are the exogenous 
sources used to replenish the stock inside the 
network. Nodes 1 and 2 constitute the contact points 
with the external market, responding to demands d1 
and d2. Nodes 3 and 5 serve as intermediate 
suppliers and node 4 represents a distribution centre. 
The arrows in the graph indicate the flow of goods. 
With each connection there is associated a pair of 
values (aij, Lij): aij denotes the fraction of stock 
replenishment signal issued by node j for node i and 
Lij is the delay in procuring orders from node i to j. 
The processing time at each node equals one period. 

 

Figure 1: Goods distribution system. 

The initial condition x(0) = [80 80 60 60 60]T 
units and the target stock level, selected according to 
(23) with dmax estimate [20 20 0 0 0]T units as  
xd = [125 100 80 110 50]T units. It is also assumed 
that there is no goods in transit before the control 
process commences, i.e. u(k) = 0 for k < 0. 

The performance of proposed networked policy 
(9) is compared with benchmark local policy (3). 
The test proceeds in two phases: for k < 15 – the 
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goods accumulation phase (from x(0) to xd) in the 
absence of demand; for k ≥ 15 – reaction to the 
highly variable, uncertain demand following the 
Poisson process with mean equal to 15 units. 

Table 1: Bullwhip indicator. 

Policy Network Local 
Node 1 2 1 2 

BI 0.974 1 1.024 1 

The graphs depicted in Figs. 2 and 3 indicate that 
both policies make the stock level converge to the 
target value and, afterwards, follow the trend set by 
mean demand. Local OUT policy (graph b) requires 
larger safety stock to prevent backlog (occurring for 
negative stock level) which translates to higher 
holding costs with respect to the networked policy 
(graph a). The local OUT policy also generates a 

larger ripple in response to highly variable demand. 
According to the bullwhip indicator (BI) data – 
order-to-demand variance ratio (Chen et al., 2000) – 
grouped in Table 1, the networked policy 
successfully counteracts demand variations from 
affecting the ordering signal. 

6 CONCLUSIONS 

The paper presents a new inventory control policy 
for networked goods distribution systems. The 
policy ensures stable system performance in the 
presence of arbitrary delay in goods provision. The 
proposed policy outperforms the classical OUT one 
by avoiding oscillations and backlog, thus showing 
the benefits of adopting networked perspective in 
 

 

Figure 2: Control input: a) networked policy, b) local policy. 

 

Figure 3: Stock level at the nodes: a) networked policy, b) local policy. 
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The paper presents a new inventory control policy 
for networked goods distribution systems. The 
policy ensures stable system performance in the 
presence of arbitrary delay in goods provision. The 
proposed policy outperforms the classical OUT one 
by avoiding oscillations and backlog, thus showing 
the benefits of adopting networked perspective in 
control scheme design. However, the internal traffic 
may still lead to the bullwhip effect. If order 
smoothening is of priority, one should seek 
alternative networked strategies. Also new, more 
realistic measures of the bullwhip effect in the 
networked environment should be developed. 
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