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Abstract: Today, a multitude of highly-connected applications and information systems hold, consume and produce huge
amounts of heterogeneous data. The overall amount of data is even expected to dramatically increase in the
future. In order to conduct, e.g., data analysis, visualizations or other value-adding scenarios, it is necessary to
integrate specific, relevant parts of data into a common source. Due to oftentimes changing environments and
dynamic requests, this integration has to support ad-hoc and flexible data processing capabilities. Furthermore,
an iterative and explorative trial-and-error integration based on different data sources has to be possible. To
cope with these requirements, several data mashup platforms have been developed in the past. However, existing
solutions are mostly non-extensible, monolithic systems or applications with many limitations regarding the
mentioned requirements. In this paper, we introduce an approach that copes with these issues (i) by the
introduction of patterns to enable decoupling from implementation details, (ii) by a cloud-ready approach to
enable availability and scalability, and (iii) by a high degree of flexibility and extensibility that enables the
integration of heterogeneous data as well as dynamic (un-)tethering of data sources. We evaluate our approach
using runtime measurements of our prototypical implementation.

1 INTRODUCTION AND
BACKGROUND

Data mashups are used for the ad-hoc, flexible access
to interesting data sources and for the dynamic, data-
driven integration of relevant data (Daniel and Matera,
2014). Due to user requirements, such data mashups
have to offer a scalable, tenant-aware solution that sup-
ports heterogeneous data, i.e., structured as well as
unstructured data. However, existing solutions have
several limitations. To analyze their shortcomings, we
compared the existing mashup solutions Yahoo Pipes1,
IBM Mashup Center2, Intel Mashmaker3 and OpenIoT
Mashup4 regarding the mentioned aspects. We found
out that there are several limitations regarding (i) cop-
ing with different requirements of various scenarios,
i.e., universality of the implementation, (ii) usability
by non IT-experts, (iii) handling of heterogeneous – es-
pecially unstructured – data, and even if basically sup-
ported, (iv) scalability due to an oftentimes complex,

1http://pipes.yahoo.com/pipes/
2http://pic.dhe.ibm.com/infocenter/mashhelp/v3/
3http://intel.ly/1BW2crD
4http://openiot.eu/

monolithic architecture. Furthermore, the handling of
“live data”, e.g., sensor data streams, is only supported
by one of these solutions – OpenIoT Mashup. How-
ever, this implementation can cope with sensor data,
exclusively. In this paper, we tackle these limitations
by an approach that (i) uses patterns to abstract from
implementation details, which enables using a tailor-
made implementation specific to a respective scenario,
(ii) enables usage by non IT-experts by exclusively us-
ing means specific to their domain, (iii) enables avail-
ability and scalability by providing our solution in the
cloud using web technologies and stateless, scalable
services, exclusively, (iv) facilitates the integration of
various kinds of data through a generic, extensible
approach, and (v) enables dynamic (un-)tethering of
data sources. To prove the feasibility of our approach,
we created a prototype that implements the introduced
concepts. Furthermore, an evaluation of our approach
is conducted through runtime measurements.

The remainder of this paper is structured as follows:
in Section 2, the basics of data mashups are described.
In Section 3 to Section 5, the main contribution of our
paper is presented: we introduce extended techniques
for flexible modeling and execution of data mashups.
In Section 6, we present a prototype of our concepts
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Figure 1: Motivating Scenario based on (Kassner and Mitschang, 2015).

as well as a runtime-based evaluation and in Section 7,
we describe related work. Finally, we give a summary
and present future work in Section 8.

1.1 Motivating Scenario

To further clarify our approach, we introduce the fol-
lowing motivating scenario, which is based on (Kass-
ner and Mitschang, 2015) and shown in Figure 1: a
car company producing a large amount of cars per
day operates a multitude of IT systems that produce
heterogeneous data. The data sources in this produc-
tion environment are: (i) the sensors of the manufac-
turing machines, (ii) enterprise information systems
(EIS) (e.g., to coordinate processes), (iii) structured
databases (e.g., containing logs), and (iv) unstructured
text e.g., submitted by factory workers. In this pro-
duction environment, an occurring exception in one
of these systems oftentimes leads to a complete pro-
duction stop, which results in high costs. Solving
these exceptions in an efficient manner would reduce
these costs severely due to enabling a fast resumption
of the production process. However, to realize such
an efficient exception resolution, we need a means to
automatically recognize occurring exceptions and to
initiate their solution. For example, a damaged ma-
chine could be recognized based on the machine’s log
data, its sensor data and additional textual input of a
worker describing the error. Once the damage is rec-
ognized, a corresponding repair worker can be called
automatically to repair it.

To realize this scenario, exceptions have to be rec-
ognized based on the factory’s data sources. To do
so, we need a means to integrate highly heterogeneous
data sources and conduct data analysis on the inte-
grated result. Each exception could be recognized
based on the integration of different kinds of data

sources. As a consequence, static Extract-Transform-
Load (ETL) processes should not be used in this sce-
nario. Furthermore, the integration has to cope with a
huge amount of data (e.g., sensor data), handle their
heterogeneity, i.e., structured and unstructured data,
process the integration efficiently, and has to allow an
easy adding or removing of data sources to be inte-
grated, depending on which sources are necessary to
recognize a specific exception. For example, if the
integration of log files and sensor data do not lead to
the recognition of an exception, another data source
has to be added such as textual input of a worker. As a
consequence, ad-hoc processing and flexibility are an
important requirement in this scenario. The integrated
result is used for data analysis of occurred exceptions.
In case no exception has been recognized, additional
data sources have to be integrated. The introduced
approach in this paper enables such scenarios by pro-
viding extended techniques for flexible modeling and
execution of data mashups. In the following, we de-
scribe our concepts based on this motivating scenario.

2 CHARACTERISTICS OF DATA
MASHUPS

Data mashup platforms aim at enabling the flexible, ad-
hoc integration of heterogeneous data sources (Daniel
and Matera, 2014). In contrast to application mashups,
they focus on the data layer, exclusively. Data mashups
are usually defined by the execution of data operations,
such as filter or join operations, which extract, alter
and integrate data from different sources. The result is
a single data source that holds the integrated data. The
data to be extracted and mashed up is specified by the
user before the mashup is executed.

Figure 2(a) displays the typical steps to create and
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Figure 2: Comparison of Traditional Mashup Approaches and our Extended Approach.

execute a data mashup. In the first step, the user de-
fines the data sources to be integrated as well as the
specific data to be extracted. In the second step, the
data operations for the mashup and their execution or-
der are determined. By doing so, the user specifies how
the extracted data should be altered, enhanced, filtered
or aggregated to achieve the desired result. After that,
the automated steps of the data mashup are processed.
In step three, the mashup application receives the user
input, extracts the data from the sources and executes
the data operations in the specified order. After that,
in step four, the result is usually visualized or stored
into a suitable data store.

The interested reader is referred to the work of
Hoyer et al. (Hoyer et al., 2011) that describes the
benefits of data mashups regarding financial, business,
operational and user aspects. Furthermore, we recom-
mend the work of Daniel et al. (Daniel and Matera,
2014), summarizing the state of the art of mashups.

3 EXTENDED DATA MASHUP
APPROACH

This section contains an overview of the main contri-

bution of our paper, introducing extended techniques
for data mashups that enable “click & run” for inte-
gration scenarios. To enable an effective provisioning
of our solution in the cloud as well as usability by
domain-experts, we subdivide the approach into three
abstraction levels that are shown in Figure 2(b): (i)
the modeling level, (ii) the transformation level, and
(iii) the execution level. In the context of this pa-
per, a domain-expert is, e.g., a scientist or a business
person such as a sales analyst, lacking necessary pro-
gramming skills or technical knowledge about data
integration.

In contrast to traditional data mashups as shown in
Figure 2(a), our extended approach (depicted in Fig-
ure 2(b)) offers highly-increased flexibility for model-
ing and executing data mashups. In the first two steps
of our extended approach, a domain-expert defines the
data sources as well as the data operations to be exe-
cuted for the mashup, using a domain-specific model
called Mashup Plan. In step 3, so called transforma-
tion patterns are selected to choose an implementation
suitable for the respective scenario (e.g., time critical
or robust). After that, in step 4, the Mashup Plan is
transformed into an executable model depending on
the transformation pattern that was selected in step 3.
In step 5, this executable model is executed using a
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suitable engine. After execution, the integrated result
is stored into a data store (step 6) and it is available
for visualization, data analysis or other value-adding
scenarios (step 7).

Each of the introduced abstraction levels focuses
on one of the main requirements of our solution that
were introduced in Section 1. The modeling level,
representing the user interface, mainly focuses on the
usability issue. Thereby, a domain-specific model is
introduced to define data sources and data operations
for the mashup in a non-technical manner, i.e., suit-
able for domain-experts. In addition, transformation
patterns are defined to enable choosing a suitable im-
plementation for respective use case scenarios. The
transformation pattern “Time-Critical Mashup” e.g.,
ensures an efficient execution of the mashup, whereas
the transformation pattern “Robust Mashup” refers
to an implementation that guarantees some kind of
robustness, e.g., regarding stability and communica-
tion problems. The transformation level enables the
support of various kinds of data by means of a flexi-
ble, automatic transformation of the domain-specific
model into an executable model. Furthermore, the
selection of a corresponding implementation depends
on the transformation patterns defined on modeling
level. Finally, the execution level mainly focuses on
the scalability of our solution. Therefore, all system
components are provisioned in a cloud environment.
That is, the solution is composed of stateless cloud
services, exclusively, which can be automatically pro-
visioned (Binz et al., 2014) as well as scaled and man-
aged, independently.

4 MASHUP PLAN MODELING

The modeling level offers a cloud service to the end
user of our approach, i.e., to a domain-expert. The
user’s goal is to define and execute mashup scenarios
by exclusively using means specific to the domain s/he
is familiar with. By doing so, all technical and im-
plementation aspects should be abstracted in order to
remove the burden to deal with such low-level details
from domain-experts. We introduce three concepts at
this abstraction level that are displayed in Figure 3: (i)
Data Source Descriptions (DSD) that describe the data
sources to be used for the mashup in a non-technical
manner, (ii) domain-specific Data Processing Descrip-
tions (DPD), representing data operations (e.g., filter
or aggregation operations) to be executed, and (iii)
Mashup Plans, defining the order of Data Source De-
scriptions and Data Processing Descriptions. DPDs
and DSDs can be arranged as modeling patterns, how-
ever, this is part of our future work.

4.1 Mashup Plans

As mentioned before, mashups are realized by extract-
ing data from their sources and by executing an ar-
bitrary number of data operations in a predefined or-
der. To enable domain-specific modeling, we intro-
duce Mashup Plans that are related to the Pipes and
Filters (Meunier, 1995) pattern and contain descrip-
tions of the data sources to be integrated as well as
an arbitrary number of Data Processing Descriptions,
abstracting from fine-grained data operations. Simi-
lar to existing work, e.g., of Zweigle et al. (Zweigle
et al., 2009), a Mashup Plan is a directed, cohesive
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flow graph containing nodes and edges. A node in the
Mashup Plan is either a DSD or a DPD and the edges
connecting these nodes describe the data and control
flow. Mashup Plans are modeled manually by domain-
experts. Because of that, it is reasonable to simplify
the plan creation by enabling graphical modeling. The
format of Mashup Plans is arbitrary, however, using
existing languages such as XML or JSON can ease
modeling and processing due to available tool support.

We further define the following restrictions for the
Mashup Plan: (i) a completely modeled Mashup Plan
contains at least one Data Source Description and at
least one Data Processing Description, (ii) the modeled
Data Source Descriptions represent the starting points
of the flow-based Mashup Plan, thus, may only contain
outgoing data flow connections, the DPDs may be
connected in an arbitrary manner, and (iii) a Mashup
Plan has a single output represented by an endpoint
node (depicted in Figure 3). The DSDs and DPDs used
to model Mashup Plans are stored in corresponding
repositories, which can be accessed by the user during
modeling (cf. Figure 3).

4.2 DSD Modeling

When modeling Mashup Plans, the user first defines
the data sources to be integrated using Data Source
Descriptions. These descriptions are predefined and
contained in the DSD repository. Each DSD contains
information about the data source location and its
access information, e.g., a database port, a URL, a
sensor API path etc. The data source access infor-
mation have to be predetermined in the DSD repos-
itory by a technical expert, e.g., an IT expert of an
enterprise. The DSD repository enables extensibility
of these descriptions. Once a sufficient set of Data
Source Descriptions is available, usually no more ex-
pert interaction is necessary. In addition to the access
information, the Data Source Descriptions determine
the data to be integrated in a human-readable format
tailor-made for domain-experts. This can be accom-
plished using artifact-centric approaches (Künzle et al.,
2011), (Cohn et al., 2009). The data is represented by
so-called business artifacts that correspond to business-
relevant objects and abstract from the specific data. In
the motivating scenario introduced in Section 1, this
includes production machines, machine logs, infor-
mation systems and factory workers. The artifacts
manage relevant information about these business ob-
jects and about their life cycle in a domain-specific
and thus abstract way. The specific data of a machine
artifact, e.g., is produced by a multitude of sensors, the
artifact of an information system contains structured
production process information, and the artifact of a

worker incorporates references to a machine, an infor-
mation system and contains unstructured textual input
describing a problem that occurred. These artifacts
and their domain-specific descriptions make the mod-
eling of data sources tailor-made to domain-experts.
Using mapping approaches, they can be bound to vari-
ous kinds of underlying data structures – ranging from
traditional relational databases to unstructured text
data (Sun et al., 2014).

In conclusion, the use of an artifact-centric ap-
proach enables domain-experts to model domain-
specific business objects (e.g., a specific production
machine) in the Mashup Plan without any necessary
knowledge of low-level data structures such as sensors,
relational databases or unstructured data formats.

4.3 DPD Modeling

Existing mashup and data integration solutions often-
times require the user to define technical data opera-
tions to be executed, including low-level details. This
leads to applications that cannot be directly used by
domain-experts. To cope with this issue, we introduce
abstract, parameterized Data Processing Descriptions,
which are specific to the user’s domain and describe
data operations for the mashup in a non-technical man-
ner. DPDs can be further divided into several abstrac-
tion levels as described by Reimann et al. (Reimann
et al., 2014) to enable a separation of concerns. We
describe two examples of such descriptions:

Data Selection DPD. The data selection DPD can
be used as a filter in the Mashup Plan. This DPD
is connected to exactly one data source and selects
specific data from it. Information about the data to be
selected is determined by the user during modeling of
the Mashup Plan and is attached as a parameter to the
DPD. In the motivating scenario, a domain-expert may
use this DPD, associate it with artifacts of a production
log, and specify it to select relevant entries, exclusively
(e.g., within a specific time frame).

Data Combination DPD. The data combination
DPD can be used to combine data of two or more
sources. The actual implementation of the DPD can be
realized by technical data operations, such as data join,
union or aggregation, which depend on the kind of
data being combined. When modeling the data combi-
nation DPD, the artifact-centric models introduced in
Section 4.2 are combined. In the motivating scenario
for example, data from machine-, log- and worker-
artifacts may be grouped according to a specific failure
type or time frame.

The introduced DPDs and artifact-centric DSDs
represent domain-specific means for the Mashup Plan
modeling, which lead to high usability and it allows
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non-technical users to model mashup scenarios they
are interested in.

5 MASHUP PLAN
TRANSFORMATION AND
EXECUTION

The proposed approach to a modeling of Mashup Plans
needs to be complemented by a transformation of the
non-technical, domain-specific Mashup Plans into an
efficiently executable model. Figure 4 shows this trans-
formation. In the following, the transformation result
is referred to as executable Mashup Plan. An exe-
cutable Mashup Plan is also in the format of a directed
graph, exclusively containing executable data process-
ing nodes (eDPN) as nodes and the data and control
flow between them as edges.

An eDPN represents an implementation, i.e., a
piece of code, to be invoked (e.g., a Java Webservice)
that executes data extraction (i.e., serves as data source
adapter), data processing, e.g., implementing filter or
join operations, or data storage operations. Informa-
tion about the eDPN access (e.g., a Web Service URL)
and their input parameters are described by the eDPN
Repository, which is also implemented as a cloud-
ready service. We recommend using existing data flow
languages for the executable description. This pre-
vents efforts for the creation of a self-made format and,
as a consequence, a self-made execution engine (cf.
Section 5.3).

Besides traditional workflow languages and en-
gines (e.g., BPEL and ApacheODE), event processing
engines such as CEP-Esper5 or other data processing

5http://www.espertech.com/

engines such as Node-RED6 are also highly suitable
for the definition and execution of executable Mashup
Plans. Note that we are not restricted to a specific
technical execution language at the execution level
since we generate the right execution plans depending
on the respective use case, i.e., on the transformation
patterns.

5.1 Transformation Patterns

The transformation level allows the selection of trans-
formation patterns that contain additional information
about the scenario the mashup is executed in. As
mentioned in (Daniel and Matera, 2014), different
implementations are necessary for different mashup
scenarios. Note that a detailed definition of transforma-
tion patterns as well as the creation of a transformation
pattern catalog are part of our future work.

The following transformation patterns could, e.g.,
be selected: the transformation patterns Time-Critical
Mashup or Real-Time Mashup define scenarios in
which the run time of the mashup is an important fac-
tor. It is crucial that the corresponding implementation
is chosen to be efficient rather than being robust. The
transformation pattern Robust Mashup requires a ro-
bust execution, of course, the time-critical and robust
transformation patterns cannot be both annotated to
a Mashup Plan. A robust mashup has to be highly-
available and has to offer exception handling as well
as data persistence. The transformation pattern Big
Data Mashup requires that the corresponding imple-
mentation has to support the processing of huge data
sets in reasonable runtime. Note that more than one
transformation pattern can be annotated to a Mashup
Plan, however, some of these transformation patterns

6http://www.nodered.org/
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cannot be combined. In future work, we detail on this
approach.

The implementation, e.g., the used data flow lan-
guage and execution engine is chosen according to the
selected transformation patterns (cf. Section 5.2).

5.2 Mashup Plan Transformation

During the mashup plan transformation, first the trans-
formation pattern is selected (e.g., “Robust Mashup”,
“Time-Critical Mashup”). The selection can be done
statically, e.g., for all Mashups within a domain or it
can be done for each mashup transformation individu-
ally by any user.

Afterwards, the DSDs and DPDs of the Mashup
Plan are transformed to eDPNs that can be executed
using a suitable execution engine. We use data source
adapters, i.e., eDPNs implementing the extraction of
data from given data sources. In the first step of the
transformation, data source adapter eDPNs for each
of the artifact-centric DSDs of the Mashup Plan are
inserted into the executable model. As discussed in
Section 4.2, a mapping of such artifact-centric descrip-
tions to adapter eDPNs can be done, e.g., according to
Sun et al. (Sun et al., 2014). By doing so, the domain-
specific artifact models, e.g., an enterprise information
system, are mapped to technical data structures such
as a database table, a file-based storage or an unstruc-
tured text document. To support various kinds of data
structures, the eDPN repository describes several data
source adapters, each coping with different technical
data structures. During the transformation, adapters
suitable for given data structures are selected and in-
serted into the executable model. Next, eDPNs are
inserted for the DPDs modeled in the Mashup Plan.
Each DPD can be realized by an arbitrary number of
eDPNs with a predefined execution order, depending
on its context and the data to be processed. The corre-
sponding eDPNs are taken from the eDPN repository.
A mapping of DPDs to eDPNs through several ab-
straction levels could, e.g., be realized by a rule-based
approach, as described by Reimann et al. (Reimann
et al., 2014) or by Falkenthal et al. (Falkenthal et al.,
2014). In our approach, the inserted eDPNs depend
not only on their parameterization, but also on the
position of the corresponding DPD in the Mashup
Plan, i.e., on its predecessors and successors. In other
words, the mapping of DPDs to eDPNs has to consider
the given context. Furthermore, the mapping has to
consider the selected transformation patterns. In our
prototype, we implemented a mapping of two different
transformation patterns to corresponding implementa-
tions: (i) implementing the “Robust Mashup” trans-
formation pattern by realizing the executable model

as workflow containing web service invocations (the
eDPNs) as workflow steps and (ii) implementing the

“Time-Critical Mashup” transformation pattern using
the data processing engine Node-RED by implement-
ing adapter eDPNs as HTTP REST resource calls and
executable DPDs as JavaScript nodes (cf. Section 6).
In the future, we will introduce further transformation
patterns, e.g., suitable for CEP engines.

5.3 Mashup Plan Execution

After the Mashup Plan has been transformed into an ex-
ecutable one, it is executed by a suitable execution en-
gine. We use a scalable, cloud-based execution engine
like Node-RED or a workflow engine as described by
Vukojevic-Haupt et al. (Vukojevic-Haupt et al., 2013)
to process the executable Mashup Plan. An execution
engine is a data flow-, workflow- or event processing-
engine that invokes eDPNs in the order defined in
the executable model. Furthermore, the execution en-
gine controls the eDPN orchestration, data transfer and
error handling. The eDPNs that are invoked by the
execution engine have to be up and running, so they
can be accessed efficiently during execution. We use
a cloud-based, scalable runtime environment (e.g., a
cloud-based web server), hosting the executable imple-
mentations of all available eDPNs. The input parame-
ters and the paths to the implementations are described
by the eDPNs. Their concrete implementation as well
as the used execution engine depends on the selected
transformation patterns. Using the OASIS standard
TOSCA (OASIS, 2013) and the results of our previous
work (Hirmer et al., 2014), we are able to deploy and
execute the needed components (e.g., a workflow en-
gine, a web server etc.) for each transformation pattern
implementation automatically in a cloud environment.
This enables a high degree of flexibility regarding the
usage of different implementations, depending on the
use case scenario.

6 PROTOTYPICAL
IMPLEMENTATION AND
EVALUATION

We implemented the Time-Critical Mashup and the
Robust Mashup transformation patterns using different
execution models and engines to prove the feasibility
of our approach. These implementations are based
on the motivating scenario described in Section 1. A
paper describing the second transformation pattern im-
plementation is – among other concepts – published
in (Hirmer et al., 2015). In this section, we describe
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Figure 5: Mashup Plan Graphical Modeling Tool.

the implementation at modeling level. The transfor-
mation and execution levels are described for each
implemented transformation pattern, separately.

A domain-specific Mashup Plan is realized in
XML. For the modeling, we implemented a web-based,
graphical modeling service based on Java, JavaScript
and the JavaScript library AlloyUI7, which is hosted
by the platform-as-a-service provider IBM BlueMix8

(cf. Figure 5). The DSD and DPD repositories have
been implemented using MongoDB9 key-value store
services, containing an initial set of DSDs and DPDs.
As data sources, we support structured MySQL10

databases, unstructured text input feeds and sensor
data. As Data Processing Descriptions, we support
data combination and data selection DPDs introduced
in Section 4.3.

In this scenario, the data sources could, e.g., be
used to compare log information stored in a database
with corresponding text messages and sensor data out-
put. Furthermore, the transformation patterns “Robust
Mashup” or “Time-Critical” Mashup can be selected
at transformation level. After modeling, the transfor-
mation can be invoked through the modeler’s UI. In
the following, we introduce the implementations of
the “Robust Mashup” and “Time-Critical” transforma-
tion patterns as shown in Figure 6(a) and Figure 6(b),
respectively.

7http://www.alloyui.com/
8http://www.bluemix.net
9https://mms.mongodb.com/

10http://www.mysql.de/

Transformation Pattern 1 – Robust Mashup: For
this transformation pattern, the transformation of
the Mashup Plan to an executable model is realized
by BPEL workflows (cf. Figure 6(a)), executed
by the ApacheODE11 workflow engine to ensure
robustness. We used workflow technologies in
this scenario due to the compliance with business
requirements such as logging and exception handling.
Furthermore, by using this transformation pattern
we define that the mashup is not time-critical so the
overhead produced by the engine is not relevant.
The components of this implementation have been
implemented as independent cloud services using
IBM BlueMix. We use a cloud service, implementing
the transformation of the Mashup Plan to a BPEL12

workflow description. The workflow transformation
so far uses a hard-coded DSD/DPD-to-eDPN mapping
implemented in Java. The eDPNs to be executed
are implemented as Java web services. We further
implemented a service registry component using a
MongoDB key-value store service that contains the
Web Service Description Language (WSDL)13 files of
all implemented web services. These WSDL files are
used to create BPEL service invocation nodes, i.e., the
eDPNs, for the DSDs and DPDs of the Mashup Plan,
which are executed when executing the workflow.
We implemented data source adapter web services
for the MySQL, sensor and text data sources as well
as web services for the data combination and data
selection DPDs. After the workflow is created, we

11http://ode.apache.org/
12https://oasis-open.org/committees/wsbpel/
13http://w3.org/TR/wsdl
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(a) Executable Mashup Plan as BPEL Workflow

(b) Executable Mashup Plan as Node-RED Flow

Figure 6: Different Implementations of the Same Executable Mashup Plan.
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Table 1: Runtime Measurements.

Transformation Pattern Transformation Time I Deployment Time I Execution Time I

Robust 284,4 ms 193,8 ms 2382 ms
Time-Critical 215,8 ms 134,6 ms 5,6 ms

execute it using the ApacheODE workflow engine.
Table 1 shows the runtime measurements of this
implementation.

Transformation Pattern 2 – Time-Critical Pattern:
In this implementation, we used the same Mashup Plan
as in the first implementation, however, we annotated
it with the Time-Critical Mashup transformation
pattern, i.e., we define real-time requirements. The
Mashup Plan is mapped to an executable model based
on JSON that is executed in the event processing
engine Node-RED (cf. Figure 6(b)). The data is
provided by REST resources that can be accessed
through HTTP by the Node-RED processing nodes,
i.e., the eDPNs for the DSDs. Furthermore, the DPDs
are transformed to JavaScript nodes (the eDPNs) that
are executed in the Node-RED engine respective to
the order defined in the Mashup Plan. Table 1 shows
the runtime measurements of this implementation.
As shown in this table, the Time-Critical Mashup
transformation pattern leads to a highly improved
runtime, however, it lacks robustness.

Comparison of the Implementations: As al-
ready mentioned, we created two implementations
focusing on different aspects. The first one imple-
ments a robust data mashup that copes with occurring
errors in an effective manner using a workflow engine
that is executing BPEL workflows. The second
implementation enables processing very time-critical
Mashup scenarios, e.g., in the Internet of Things area
as described by (Hirmer et al., 2015). As shown in
Table 1, transformation time and deployment time
only show slight differences, which are mainly caused
by internal data structures for representing the process
models. However, the execution time measurements
of these implementations differ greatly.

The robust execution runs a lot slower due to the
heavy-weight workflow engine that is being used. The
overhead produced by this engine mainly originates
from a more complex implementation of the workflow
navigation and from additional features enabling a ro-
bust workflow execution, such as auditing or workflow
compensation. Furthermore, the engine requires the
modeled data operations to be implemented by exter-
nal Java-based web services, which leads to lots of
communication overhead.

In contrast, the runtime of the time-critical imple-
mentation is significantly faster. This is enabled by the

Internet of Things runtime environment Node-RED
that is based on NodeJS, a platform made for efficient,
data-intensive applications14. The extraordinary run-
time of 5,6 ms is achieved through a more lightweight
approach of workflow navigation that omits features
for a robust workflow execution. In addition, Node-
RED offers integrated and tailor-made data processing
operators, which are much faster and prevent unneces-
sary communication overhead.

7 RELATED WORK

In general, other integration approaches, such as ETL
processes, cannot cope with the requirements of the
introduced scenario (cf. Section 1) due to several lim-
itations. Firstly, ETL processes are very complex,
hence difficult to scale, and require a huge amount
of technical expertise for their creation, thus, cannot
support an ad-hoc integration by only domain-experts.
Secondly, ETL processes are static and lack flexibility
and dynamics. The goal of this paper is not to substi-
tute ETL processes, however, the realization of ad-hoc
integration scenarios as presented in this paper, needs
a more flexible approach.

In the following, we discuss related work that has
been published: Soi et al. (Soi et al., 2014) mention
the complexity and huge time-consumption faced dur-
ing the creation of mashup platforms and the need
for easier mashup development. By introducing the
Mashup Development Kit (MDK), containing a new
mashup language, the development of mashup plat-
forms should be eased. Furthermore, De Vrieze et
al. (de Vrieze et al., 2011) describe how to build en-
terprise mashups in a service-oriented way, using web
services and workflow engines for their execution. Fi-
nally, Tietz et al. (Tietz et al., 2011) present a task-
based approach for data mashups. In their paper, data
mashups are executed by the consecutive execution
of tasks, i.e., data operations. In contrast to our ap-
proach, these approaches do not focus on reducing
the complexity of modeling data mashups in order to
make it suitable for domain-experts. In our approach,
we take the abstraction one step further by introduc-
ing domain-specific Mashup Plans, which are suitable
for domain-experts. In addition, our concepts abstract
from implementation details; this enables using differ-

14https://nodejs.org/
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ent implementations, suitable for the respective scenar-
ios. In other mashup approaches, the implementation
is static and only fits a predefined scenario, i.e., it is not
generic enough. Furthermore, through a cloud-ready
approach, we can provide availability and scalability
of our solution, which is an important factor, espe-
cially for coping with large volumes. Our approach
can provide these features due to the provisioning of
our solution in the cloud, using independently scalable
cloud services. Finally, our solution enables extensi-
bility, i.e., it is not bound to a fixed set of data sources
and data operations. We enable this through a generic
approach using extensible repositories and a flexible,
transformation pattern-based transformation.

Wieland et al. (Wieland et al., 2015) present a simi-
lar approach to Mashup Plans and their transformation
by introducing Situation Templates, a model for the
integration of sensor data used for situation recogni-
tion in so called smart environments. However, in this
approach, the focus is on integrating sensor data, i.e.,
other data sources such as relational databases or text
sources are not supported.

8 SUMMARY AND FUTURE
WORK

In this paper, we introduced extended techniques for
flexible modeling and execution of data mashups. We
enable the non-technical modeling and execution of
ad-hoc integration scenarios by domain-experts. As
described in the introduction, our goals were (i) the
support of different use cases and scenarios through a
generic mashup approach, (ii) the flexible, ad-hoc data
integration by domain-experts, (iii) exploiting hetero-
geneous, i.e., structured and unstructured data sources,
(iv) the creation of a scalable, stable and reusable solu-
tion, as well as (v) the dynamic (un-)tethering of data
sources. The first goal (i) was realized by the introduc-
tion of transformation patterns that enable flexibility
regarding different scenarios by a pattern-based trans-
formation implementation selection. We enabled (ii)
by introducing the modeling level, on which domain-
experts can create their own integration scenarios using
a domain-specific model. (iii) was achieved by the in-
troduction of extensible DSD and DPD repositories.
As a consequence, the support for heterogeneous data
sources – either structured or unstructured – can be pro-
vided by technical experts, implementing these compo-
nents, so the user can use them in an abstracted format
themselves. We further enabled (iv), by creating a
stable, reusable solution through the subdivision into
stateless, scalable cloud services that can be managed
independently. Finally, the last goal (v) is supported

by the re-modeling and re-execution of Mashup Plans
enabled by domain-specific models.

In this paper, we introduced a first version of our
approach. In the future, we will continue working on
these concepts by introducing a transformation pattern
catalog containing further transformation patterns and
corresponding implementations. We will also consider
privacy and accountability aspects in the future due to
the provisioning of our solution in a cloud environment.
Our approach towards privacy and accountability in
Mashups will build on existing work (Mohammed
et al., 2009), (Zou et al., 2013). Furthermore, we
will improve the domain-specific Mashup Plan model
by introducing modeling patterns.
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