
An Efficient Agent Lookup Approach in Middlewares for Mobile A gents

Hiroaki Fukuda
Shibaura Institute of Technology, 3-7-5 Koto, Toyosu, Tokyo, 135-8548, Japan

Keywords: Wireless Sensor Network, Mobile Agent, Distributed Hash Table, Location Management.

Abstract: A Wireless Sensor Network (WSN) is typically deployed on the place in which no electric source is provided,
meaning that the battery consumption concern is crucial. Due to their deeply-embedded pervasive nature,
applications running on WSNs need to adapt to the changes in physical environment or user preferences. In
addition, developers of these applications must pay attention to a set of additional concerns such as limited
hardware resources and the management of a set sensor nodes. To appropriately address these concerns,
middlewares based on mobile agent based like Agilla have been proposed. Applications for these middlewares
are executed by the communications among agents, thereby a common task is to look up the agents. In this
paper, we propose an efficient lookup approach for mobile agent based middlewares in WSNs. We evaluate
the advantages of our proposal through the comparison with traditional lookup approaches.

1 INTRODUCTION

Wireless Sensor Networks (WSNs) (Yick et al., 2008)
consist in a number of sensor nodes and have been
used to detect events and/or collect data in various
domains such as environment observation and inven-
tory tracking. Due to their embedded pervasive na-
ture, each node is usually deployed on the place in
which no electric source is provided and/or picking
them up is not an easy task (e.g. inside of a forest).
Therefore, each node is usually working by dry cell
batteries yet these nodes require to keep working for
a long time (e.g. a few years (Madden et al., 2005)).

Developing an application for WSNs is difficult
because developers need to pay attention to a network
environment dynamically changing, the management
of a set of sensor nodes, low-level instructions re-
lated to physical hardwares. Several middlewares for
WSNs have been proposed to make a development
easier (Chien-Liang et al., 2009; Madden et al., 2005;
Blum et al., 2004). It is possible to classify these
middlewares into three types: (1) data oriented ap-
proaches that abstract a number of sensor nodes as
one abstraction: WSN, (2) event-based approaches
that provide callback methods, that are invoked when
certain events are dispatched, and (3) mobile agent
approaches, where their applications are based on the
collaboration of mobile agents. In this paper, we fo-
cus on the mobile agent based approach because this
approach is adequate when multiple applications are

running on a WSN (Chien-Liang et al., 2009). Ag-
illa (Chien-Liang et al., 2009), a middleware for mo-
bile agents for WSNs, allows an application to restrict
itself to only reside on relevant nodes. As WSN envi-
ronments change, this application can be self-adapted
through the migration of its agents to the required
locations. Moreover, an application in Agilla is ex-
ecuted by interactions among agents, meaning that
an agent needs to know the exact location of other
agents. Although Agilla allows agents to interact with
other agents, this middleware (like similar proposals)
does not provide much technical support to efficiently
lookup the agent locations. As a result, an agent has to
look up the location of its target agent by ad-hoc man-
ner, resulting in the consumption of a significant and
unnecessary amount of the battery of sensor nodes.

In this paper, we propose an efficient lookup ap-
proach for mobile agent based middlewares in WSNs.
Our proposal borrows ideas from CSN (Chord for
WSNs) (Ali and Uzmi, 2004). As a consequence of
our proposal, it is possible to save battery consump-
tion of every node in a WSN. We implement our pro-
posal on TinyOS, which is one of the platform for
WSNs. Finally, we show the advantages of our ap-
proach via a simulations that compare battery con-
sumption to traditional lookup approaches.

Paper Roadmap.Section 2 briefly introduces Agilla
and points out the battery consumption problem. Sec-
tion 3 presents key concepts on which our proposal is
based, and Section 4 describes our proposal. Section

81Fukuda H..
An Efficient Agent Lookup Approach in Middlewares for Mobile Agents.
DOI: 10.5220/0005554100810087
In Proceedings of the 12th International Conference on Wireless Information Networks and Systems (WINSYS-2015), pages 81-87
ISBN: 978-989-758-119-9
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



5 shows that our proposal addresses the problems and
Section 6 concludes.

2 AGILLA: A MIDDLEWARE FOR
WSNS

This section briefly describes Agilla and identifies the
battery consumption problem.

2.1 Overview of Agilla

Agilla (Chien-Liang et al., 2009) is a well-known
middleware for mobile agents on Wireless Sensors
Networks (WSNs) (Yick et al., 2008). Each node of
Agilla has an interpreter to execute mobile agent pro-
grams. Developers can write a program using ISA
(Instruction Set Architecture) prepared by Agilla. In
addition, this middleware can also execute a number
of agent programs on a node. By using these features,
a program can restrict to reside only on relevant nodes
and reactions to changes of the environment.

Figure 1: An overview of the fire detection and tracking
application.

2.2 Battery Consumption Problem

Using an example about the fire control, we introduce
the battery consumption problem. Figure 1 shows an
overview of the fire detection and tracking applica-
tion in Agilla. When a fire breaks out, agents detect
this fire (1) and send a message to a tracker agent (2).
The tracker agent migrates to the fire and clone it-
self to form a perimeter. The perimeter is continu-
ously adjusted based on the evolution of the fire. To
send a message to a tracker agent, an agent must know
the exact location of this agent tracker. Since Agilla
(like similar proposals) does not provide methods to
lookup the location of a agent on the fly, the location
of a tracker agent is directly written in agents, mean-
ing that a tracker agent should keep staying on a de-
termined node. Otherwise, an agent needs to lookup
the location of a tracker agent every time, resulting in
consuming the battery of nodes very soon.

3 DHT TO LOOK UP AGENTS

Our proposal uses Distributed Hash Table (DHT) al-
gorithms (Stoica et al., 2001). This section first dis-
cusses the need for these algorithms in our proposal
The section then explains DHT algorithms and their
use in looking up agents.

3.1 Why a Distributed Hash Table
Algorithm to Look Up Agents?

Centralized or distributed algorithms can be used to
look up agents. A centralized approach uses a base
station to keep and look up agent locations. In Fire
tracker in Agilla,Fire Detector agent, which detects the
fire, notify it to the base station.Fire Tracker agents
are then injected to WSN by base station. With this
scenario, traffic gets focused on the nodes around the
base station, resulting in a significant increase of bat-
tery consumption of these nodes until their totally en-
ergy is spent. As a consequence, these nodes can no
longer work and the base station cannot receive more
requests. Therefore, no more lookup operations can
be executed, requiring a distributed algorithm.

3.2 Distributed Hash Table Algorithms

Because DHT algorithms are used to find objects in
a distributed manner, it is possible to use these algo-
rithms to find agents in WSNs. We next explain two
DHT algorithms.

Figure 2: A Chord ring with 10 nodes and 2 agents.

Chord. In Chord (Stoica et al., 2001), when a node
receives an agent lookup request, this node first looks
up on its local hash table and the request is forwarded
to another node while the lookup operation is not re-
solved. To perform this operation, Chord uses a ring
formation of nodes, enabling a node to forward its
lookup request. Figure 2 shows a Chord ring exam-
ple, which uses SHA1, to assign identifiers to agents
and their locations (i.e., nodes). In Figure 2, an agent

WINSYS�2015�-�International�Conference�on�Wireless�Information�Networks�and�Systems

82



that is working on node N1 is assigned its identifier as
24 by using SHA1 hash function. A node points to its
successor, whose identifier is greater. For example,
N21 points to successor N32. Using these identifiers,
a distance between a node and an agent can be defined
by clockwise subtractions of their identifiers. For ex-
ample, the distance between A24 and N21 is farther
than the distance between A24 and N32. In Chord,
the location of an agent is managed by the node whose
distance between them is the shortest. For example,
Figure 2 shows that A24 is working on N1, but its
location is managed by N32, meaning that the local
hash table of N32 has an entry “A32→ N1”.

Figure 3: Example of CSN’s rings (a hierarchy of rings of
Chord).

CSN. In WSNs, a packet loss usually happens when
the physical distance between two nodes is getting
longer. As the Chord algorithm does not consider
this kind of distance when a ring is created, CSN, a
variant of Chord (Chord for Sensor Nodes), addresses
the physical distance issue because CSN considers the
distance to select a successor. The algorithm intro-
duces a hierarchical clustering approach, where each
cluster of nodes follows the ring formation of Chord.
Using the hierarchical structure shown in Figure 3,
CSN guarantees its efficiency (see (Ali and Uzmi,
2004) more details). However, CSN cannot be applied
to lookups of mobile agents in WSNs because of sev-
eral reasons. CSN assumes that a base station starts
ring creations and lookups. This assumption is not
adequate for mobile agent middlewares because an
agent requires starting a lookup at an arbitrary node.

4 AN EFFICIENT LOOKUP OF
AGENTS

The core of our proposal consists of two stages: Cre-
ation of Rings and Lookup Behavior. This section ex-
plain them in detail.

N2! N3!

N1!

N6!

N5!

N4!

N7!

N8!

(1)!

(2)!
(2)!

(2)!

(2)!

(3)!

(2)!

N2! N3!

N1!

N6!

N5!

N4!

N7!

N8!

(4)!
(4)!

(4)!

(4)!

(i)! (ii)!

(5)!

Creation!

ACK!
ACK!

ACK!

ACK!

Completion!

Creation!
LINK:! LINK:!

LINK:!

ACK!

ACK!
ACK!

ACK!

Node!

Cluster Head!

Lower level 
Cluster Head!

Create a link between two nodes ! Ignore Creation message!

Figure 4: Illustration of steps for a ring creation based on
the physical distance among nodes.

4.1 Creation of Rings by an Example

Our proposal uses hierarchical cluster structures of
CSN’s rings. As shown in Figure 3, each clus-
ter contains acluster head which joins at least two
rings (e.g., top and middle level). In addition, a node
has to communicate with another node which is next
to it by single hop manner to save its battery consump-
tion. Therefore, the selection of the cluster head in
each ring based on the physical distance is crucial.
Because of this restriction, we manually chooseclus-
ter heads at each level. This approach implicitly as-
sume that any nodes are added and removed at run-
time. Different from the Internet based P2P network,
this assumption is now feasible because the number of
nodes is fixed and each node is not commonly added
or removed in WSNs1 used in Agilla.

Next, by using Figure 4, we explain how to create
a ring, which corresponds to the top level ring and
the numbers in Figure 4 correspond to the following
numbered items:

1. Broadcast aCreation Message.Node N1, which
is a cluster head, begins sending a message to cre-
ate a ring, namedCreation message. Note that, in
WSNs, every message is sent as a broadcast man-
ner. When a node receives this kind of message,
it has to choose whether the message will be ac-
cepted or not.

2. Reply ACKs against theCreation Message.Every
node that receives and accepts theCreation mes-
sage becomes a cluster head at the middle level.
In this example, nodes N2, N3, N5, N6, and N7
will send an ACK to N1.

1If the battery of a node is totally consumed, the topology
changes. Although this change is now ignored, it is possi-
ble to apply other approaches like a leader election algo-
rithm to address this issue.

An�Efficient�Agent�Lookup�Approach�in�Middlewares�for�Mobile�Agents

83



3. Create Neighbor Relations. After node N1 re-
ceives ACKs from other nodes, this chooses a
successor out of nodes that reply ACKs. In cur-
rent implementation, we useRSSI that means the
strength of the radio wave for this choice. As a
consequence, node N2, which is the closest node
from N1, is chosen. Then, N1 sends a message
to N2 to inform this choice. After receiving this
message, node N2 registers node N1 as its prede-
cessor; creating a link between N1 and N2.

4. Repeat and IgnoreCreation Message.A node that
is chosen as a successor starts sending theCreation
message. Therefore, the link between node N2
and N3 is created following the steps 1 to 3.
Note that, in Figure 4-(ii), when node N3 sends a
Creation message, node N1 is chosen based on its
RSSI but it is undesirable because a ring among
node N1, N2, and N3 will be created, meaning
that the ring creation at the top level finishes. To
prevent this scenario, a node which starts creating
a ring (e.g., node N1) ignores anyCreation mes-
sages. At the same time, a node which has a pre-
decessor and a successor (e.g., node N2) does not
reply either. As a consequence, all links between
two nodes except the final link (between N7 and
N1) are created.

5. Send aComplete Message. The link between
node N6 and N7 are created by step 4. In Fig-
ure 4-(ii), when node N7 sends aCreation mes-
sage, no node replies. If node N7 cannot receive
any ACK from others under a predefined period
of time, node N7 will send a message to complete
the creation of a ring, namedComplete message.
A node that starts creating a ring (e.g., node N1)
replies against thisComplete message. As a conse-
quence, the final link between node N1 and N7 is
created2.

After creating the ring of the upper level, our pro-
posal repeats the previous process to create rings of
lower levels, then ends up creating all rings at every
level.

4.2 Assigning Identifiers

DHT algorithms must effectively manage a hash table
in a distributed manner. Thereby, assigning an iden-
tifier to each node and agent is crucial. In Chord, it
is not necessary how many nodes in a ring before-
hand because Chord uses only one ring, so all nodes
belong to this ring. Instead, similar to CSN, our pro-
posal needs to define the maximum number of nodes

2Similar to CSN, the number of nodes that compose each
level ring is predefined.

per ring beforehand. We make use of this information
to assign well organized identifiers. We first explain
an algorithm for assigning identifiers, which is illus-
trated with a concrete example later.

Defining node identifiers.Although Chord and CSN
use the same hash function (e.g., SHA1) to assign an
identifier to each node and agent, our proposal uses a
hash function only for agent identifiers. Node identi-
fiers are assigned by the following three equations:

scope(l) =







Max(hash)
N(l) (l = 0)

scope(l−1)
N(l) (otherwise)

(1)

node idl(i) = node idl(i−1)+ scope(l) (2)

node idl(0) =

{

0 (l = 0)
scope(l)+OFl−1 (otherwise) (3)

In these equations,l is the ring level (e.g., top level).
We assume thatl = 0 corresponds to the top level
where the identifier assignment begins.Max(hash)
is the maximum number of the hash function that is
used for agent identifiers. For example, if we use
theSHA1 hash function,Max(hash) must be 2160

−1.
N(l) is the number of nodes per ring that is manu-
ally defined as explained above. By using these vari-
ables,scope(l) is calculated as equation (1).scope(l)
represents a unit of boundary that each node needs to
manage in a ring. Because the node assignment pro-
cess starts from a cluster head per ring where a node
identifier is defined by inductive manner as shown in
equation (2), andnode idl(0) in equation (3) always
refers to a cluster head at each level. In equation (3),
OFl−1 represents the identifier of a node that is a pre-
decessor of the node in the upper level.

Figure 5 illustrates an assigning identifier exam-
ple with a hash function of 8 bits. The figure shows
three levels of rings: top, middle and bottom. Each
level has a cluster head: node N1 for the top level,
and node N2 for the middle and bottom level. Ac-
cording to the equation (1),N(0) is 6 andMax(0) is
28

−1,scope(0) is 42. From equations (2) and (3), the
identifier of N1 and its successor (i.e., N2) at the top
level are 0 and 42 respectively. At the middle level,
N(1) is 3 manually assigned, andscope(1) is calcu-
lated to 14 (42/3). Note that although the identifier of
N2 at the top level is 42, its identifier at the middle
level is calculated again by equation (3). Fromoth-
erwise case in the equation (3),OF is 0 because the
predecessor of N2 at the top level is N1, the identifier
of which is 0. As a result, the identifier of N2 at the
middle level is calculated to 14 (14 + 0) Finally, the
identifiers of N7 and N8 at the middle level are cal-
culated 28 and 42 by equation (2). By repeating this

WINSYS�2015�-�International�Conference�on�Wireless�Information�Networks�and�Systems

84



N2!

N3!

N1!

N6!

N4!

N5!

42!

0!

84!

126!

168!

210!
N2!

N7!N8!

14!

28!42!

N8!
35!

N9!
42!

Top Level!

Middle Level!

Bottom Level!

Where is A32?!

(1)!

(2)!

(3)!

(3)!

(4)!

Cluster Head 
at each Level!

Other node!

Lookup Request!

Figure 5: Illustration of assignment identifiers and lookup
behavior steps in our proposal.

algorithm, unique and well organized identifiers are
assigned to every node on WSNs.

4.3 Lookup Behavior

The lookup behavior in our proposal is based on
Chord. Similarly to CSN, a cluster head has at
least two successors; thereby, a cluster head needs
to choose to which successor it must forward the re-
ceived request when forwarding. The concrete sit-
uation of this decision is described at step 3 in the
following example. The lookup example shown in
Figure 5 starts when a node N1 receives a lookup re-
quest for an agent whose identifier is 32. The numbers
in this figure correspond to the following numbered
items:

1. Receive a lookup request from an agent.In this
example, node N1 receives a lookup request for
an agent whose identifier is 32 (A32).

2. Forward the request to the same level ring.As
described in the assigning identifier process (Sec-
tion 4.2), N1 knows that its rings of the middle
and bottom level manage identifiers from 211 to
255, meaning that A32 is not managed by N1 and
its lower rings. Thereby, N1 forwards the request
to its successor (i.e., N2) at the top level.

3. Forward the request to the lower level ring.N2
compares its identifier at the top level (i.e., 42)
with 32, meaning that the location of the agent
must be managed by N2 or its bottom rings. Be-
cause the identifier of N2 at the middle level is 14,
which is less than 32, N2 forwards the request to
the successor at the middle level (i.e., N7). For the
same reason, N7 forwards the request to N8.

4. Answer the location of an agent or
NotFound. The identifier of N8 at the middle
level is 42, therefore N8 and its bottom ring must
manage the location of A32. The identifier of
N8 at the bottom level is 35, therefore N8 is
the candidate that must manage the identifier
of the request. Finally, N7 replies the location

Figure 6: Configuration of rings used for the experiment.

of A32 (i.e., node identifier) if the local hash
table contains the location, otherwise N8 returns
NotFound message.

5 EVALUATION

This section shows that our proposal addresses the
battery consumption problem. To show to what extent
our proposal addresses the problem, we compare our
proposal to two algorithms: Random Walk (Gkant-
sidis et al., 2004), a search algorithm for P2P network,
and Flooding (Heinzelman et al., 1999), a routing al-
gorithm used to send requests between nodes.

Table 1: Comparison of the battery consumption between
our proposal, Random Walk, and Flooding.

Battery capacity: 21,600 Joules.
Approach DHT creation Per lookup

CMSN 1.556 0.0049
RW 0 0.1170
Flooding 0 0.0432

Experiment Setup. For these approaches, we use
PowerTOSSIMZ (Perla et al., 2008) for TinyOS. This
emulator works for TinyOS 2.1.1 and is deployed on
Intel Core i5 (2.4 GHz) with 8GB of RAM running
Ubuntu 12.04 (x32). Figure 6 shows the simulation
configuration. The grid is composed of a 12× 12
nodes. In this experiment, rings are split into three
levels. The top level contains 1 cluster and 9 nodes,
the middle level contains 9 clusters and 4 nodes, and
finally the bottom level contains 36 clusters and 2
nodes. Using this configuration, a set of agents are
deployed and these agents randomly migrate between
nodes. Then, a lookup operation starts when a node
receives an agent lookup request. Using Random
Walk, Flooding, and our proposal, we carried out 500
lookup operations to get an average result of these ap-

An�Efficient�Agent�Lookup�Approach�in�Middlewares�for�Mobile�Agents

85



proaches. For only our proposal, we evaluated in two
stages:a) creation of rings (i.e., DHT structures) and
b) per lookup operation. To prevent infinite lookup
operations in Random Walk and Flooding, we intro-
duced time to live (TTL) as IP does in order to repre-
sent afailed lookup: a lookup operation that takes a
greater period of time than a threshold.

!"

#!!"

$!!"

%!!"

&!!"

'!!"

(!!"

)!!"

*!!"

+!!"

!" '" #!" #'" $!" $'" %!" %'" &!" &'" '!"

,-./"

012345"6178"

97443:2;"

Number of lookups!

N
o

d
e

 B
a

tt
e

ry
 [

J
]!

Our proposal!

Figure 7: Comparison of our proposal to Random Walk and
Flooding.

5.1 Result and Discussion

Table 1 shows the comparison of battery con-
sumption between Random Walk, Flooding and
our proposal. Although our proposal consumes
to create DHT structures, this only consumes
1.556J (0.0072%) of the battery of each node
to create them. In addition, our proposal con-
sumes 0.0049J (0.226×10−4%) of the battery per
lookup operation. In contrast, Random Walk and
Flooding consume 0.1170J (5.5415×10−4%) and
0.0432J (1.998×10−4%) of each node respectively.
Figure 7 also shows the relationship between battery
consumption and the number of lookup operations in
Random Walk, Flooding and our proposal. As our
proposal requires additional battery to create struc-
tures, Random Walk and Flooding consume less bat-
tery when the number of lookup operation is less than
7 times and 41 times respectively. However, when the
number of lookup operation increases to 7 or 41, our
proposal consumes less battery.

Based on previous results, our proposal consumes
a significant amount of battery at the beginning,
but this consumption decreases when the number of
lookup requests increases more than 41. In mobile
agent frameworks of WSNs, less than 41 lookup op-
erations is unusual because they are designed to work
from one to a couple of years (Madden et al., 2005).

6 CONCLUSIONS

As WSNs are exposed to a real world, many of their
applications are required to adapt to the environment

changes. To address these problems, different middle-
wares for mobile agents have been proposed, where
an application is composed of a set of agents and is
executed by the interactions of these agents. For this
approach, an agent needs to know the exact location
of its target agent beforehand. However, existing pro-
posals, including Agilla, do not support an efficient
lookup mechanism to lookup agents. In this paper,
we propose an approach that borrows ideas from the
CSN algorithm to efficiently lookup agents in WSNs
within a specific period time. This efficient lookup
allows WSN nodes to save battery consumption. We
implement our proposal on the TinyOS environment
and verified its advantages via a comparison with tra-
ditional lookup methods.

REFERENCES

Ali, M. and Uzmi, Z. A. (2004). CSN: A network proto-
col for serving dynamic queries in large-scale wire-
less sensor networks. InProceeding of the Second
Annual Conference on Communication Networks and
Services Research, pages 165–174.

Blum, T. A. B., Cao, Q., Chen, Y., Evans, D., George, J.,
George, S., Gu, L., He, T., Krishnamurthy, S., Luo,
L., Son, H., Stankovic, J., Stoleru, R., and Wood, A.
(2004). EnviroTrack: Towards an environmental com-
puting paradigm for distributed sensor networks. In
Proceedings of the 24th International Conference on
Distributed Computing System, pages 582–589.

Chien-Liang, F., Roman, G.-C., and Lu, C. (2009). Agilla:
A mobile agent midleware for self-adaptive wireless
sensor networks.ACM Transactions on Autonomous
and Adaptive System, 4(3):1–26.

Gkantsidis, C., Mihail, M., and Saberi, A. (2004). Ran-
dom walks in peer-to-peer networks. InINFOCOM
2004. Twenty-third Annual Joint Conference of the
IEEE Computer and Communications Societies, vol-
ume 1, Hong Kong, China.

Heinzelman, W. R., Kulik, J., and Balakrishnan, H. (1999).
Adaptive protocols for information dissemination in
wireless sensor networks. InProceedings of the
5th Annual ACM/IEEE International Conference on
Mobile Computing and Networking, MobiCom ’99,
pages 174–185, Seattle, Washington, USA. ACM.

Madden, S. R., Franklin, M. J., Hellerstein, J. M., and
Hong, W. (2005). TinyDB: An acquisitional query
processing system for sensor networks.ACM Trans-
actions on Database Systems, 30(1):122–173.

Perla, E., Catháin, A., Carbajo, R. S., Huggard, M., and
Goldrick, C. M. (2008). PowerTOSSIM z: realistic
energy modelling for wireless sensor network envi-
ronments. InProceedings of the 3nd ACM workshop
on Performance monitoring and measurement of het-
erogeneous wireless and networks, pages 35–42.

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F.,
and Balakrishnan, H. (2001). Chord: A scalable

WINSYS�2015�-�International�Conference�on�Wireless�Information�Networks�and�Systems

86



peer-to-peer lookup service for internet applications.
ACM SIGCOMM Computer Communication Review,
31(4):149–160.

Yick, J., Mukherjee, B., and Ghosal, D. (2008). Wire-
less sensor network survey.Computer Networks,
52(12):2292–2330.

An�Efficient�Agent�Lookup�Approach�in�Middlewares�for�Mobile�Agents

87


