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Abstract: The paper presents a solution for the 13C isotope concentration control inside and at the output of a 
separation column, solution based on the Internal Model Control strategy. The 13C isotope results from a 
chemical exchange process carbon dioxide – carbamate, which is a distributed parameter process. In order 
to model the mentioned process, an original form of the approximating analytical solution which describes 
the process work in transitory regime is determined. The evolution of the approximating solution depends 
both on time and on the position from the column height. The reference model of the fixed part of the 
control structure is implemented using neural networks, representing an original solution due to the fact that 
a neural model is determined for a distributed parameter process. The controller is, also, implemented using 
neural networks, its main parameter being adapted in relation to the transducer position change in the 
separation column. The advantages of using the proposed concentration control strategy consist of: the 
possibility of controlling the value of the 13C isotope concentration in any point from the separation column 
height; the improvement of the system performance regarding the settling time; the possibility to reject the 
effect of the disturbances.    

1 INTRODUCTION 

The plant used for the separation of the 13C isotope 
is presented in Figure 1. The absorber  A is supplied 
with ethanolamine using the pump P through the 
pipe 1 and with carbon dioxide (CO2) at 
approximately 99.98% concentration through the 
pipe 5. In A the absorption (Dang and Rochelle, 
2003; Dugas and Rochelle, 2009) of CO2 in 
ethanolamine takes place (the two chemical 
elements circulating in counter current), resulting the 
carbamate in the lower part of A (pipe 3) and a gas 
phase (containing CO2 at a concentration lower than 
0.1%) in its upper part (pipe 4). The carbamate is 
used to supply the separation column SC through the 
pipe 3, respectively the gaseous phase is evacuated 
from the plant through pipe 4. Also, the CO2 resulted 
after the carbamate decomposition enters in SC 
through the pipe 7, in this system element the 
chemical exchange between the carbamate and CO2 
taking place (in SC the two mentioned chemical 
elements circulate in counter-current, too). During 
the chemical exchange process, the enrichment of 

the 13C isotope is accomplished, it concentrating in 
liquid phase in the lower part of the SC (Axente et. 
all, 1994). The most important parameter which has 
to be monitored and controlled is the 13C isotope 
concentration. The concentration value can be 
measured using the concentration transducer (mass 
spectrometer) T placed on the pipe 2 at the output 
from SC. Through the pipe 2, the carbamate is sent 
to the reactor R, where the thermal decomposition of 
this solution is made. The resulted CO2 (with a 
higher concentration of the 13C isotope comparing 
with the initial conditions values) is returned to the 
SC through the pipe 7. Also, the CO2 is completely 
removed after the stripping procedure (in the stripper 
S), resulting the ethanolamine. The ethanolamine is 
reheated in the heater H and circulated again through 
the plant using the pump P and the pipe 1. The CO2 
quantity which passes through the SC is sent to the 
absorber through the pipe 5.  

In production regime, the pipe 6 is used to supply 
the plant with CO2, the product being extracted in 
gaseous phase (CO2 with a certain concentration of 
13C  through  the  pipe 8).  Obviously,  in  production 
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Figure 1: The separation plant. 

regime, some connecting pipes are used to connect 
pipes 6 and 8.In Figure 1, the hachured zones signify 
that the corresponding elements present steel pack of 
Helipack type. The steel pack has a determinant 
contribution in the plant working, making possible 
the 13C isotope separation (Axente et. all, 1994). 

The problem of 13C separation is treated in a few 
papers from the technical literature, for example in 
(Li et. all, 2010), but the proposed solutions for 
improving the separation process are not based on 
using an advanced control strategy. Also, all the 
control solutions are referring only to the 13C isotope 
concentration control at the base of SC (associated 
to the position of T from Figure 1). At this moment, 
the treated separation plant is controlled using an   
on-off concentration controller which does not 
ensure the necessary control accuracy and it 
introduces undesired fluctuations in the system.          

2 PROCESS MODELING 

The 13C isotope separation process is a distributed 
parameter process (Li and Qi, 2011), the output 
signal y (the 13C concentration) depending both on 
the independent variable time (t) and on the position 
in the SC in relation to its height. The concentration 
variation in relation to the position in the transversal 
section of SC is insignificant and it is not considered 
in the process model. In order to highlight the 
second independent variable “length” notated with p, 
the 0p axis from Figure 2 is defined. The origin 0 of 
the 0p axis is the centre of the transversal section of 

the SC from its upper part (the term transversal 
section is referring to a section on which the height 
direction (for example the 0p axis) is a vertical line).        

 

Figure 2: The 0p axis. 

Due to the fact that SC has a cylindrical form, 
each transversal section is a circle. The diameter of 
the transversal section is d = 2.5cm and the column 
height is h = 300cm (Axente et. all, 1994). 
Considering the previous aspects, the p independent 
variable has the definition domain p {[p0, pf] = [0, 
h]}. The y(t,p) signal has an increasing evolution in 
relation to the both independent variables, implying 
that the approximating analytical solution which 
describes the process work in transitory regime 
contains two functional terms that have to be 
determined, one in relation to t (Ft(t)) and the second 
one in relation to p (Fp(p)). The modelling procedure 
is valid for all working regimes, but only after the 
CO2 enters the first time in the SC through the pipe 
8. First, the expression of the Ft(t) function is 
determined. The height equivalent to a theoretical 
plate (HETP) is a function depending on the input 
ethanolamine flow. Knowing that the dependence 
between HETP and ethanolamine input flow Fin is a 
linear one (Axente et. all, 1994), the following 
relation can be written: 

HETP(t) = HETP0 + KH·(Fin(t) – Fin0), (1)

where HETP(t) is the instantaneous value of the 
height of the equivalent plate, HETP0 is the steady 
state value of the height of the equivalent plate for 
the ethanolamine input flow Fin0 = ct., KH is a 
proportionality constant which makes the connection 
between the ethanolamine input flow and HETP and 
Fin(t) is the instantaneous value of the ethanolamine 
input flow. The proportionality constant KH is 
determined using some experimental data resulted 
from the plant. Each experiment is made measuring 
the evolution in time of the output signal y(t,p) for 
different step type variations of the input signal 
Fin(t). The value of the reference input flow is 
chosen from the experimental data Fin0 = 367ml/h, 
its corresponding HETP0 having the value 4.64cm. 

In (Axente et. all, 1994) it was proved that KH is 
the gradient of the ramp resulted after the graphical 
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representation of the function HETPst(Fin), where 
HETPst represents the steady state values of HETP 
corresponding to different Fin step signals. 
Determining, also experimentally, that for Fin1 = 
=460ml, HETPst1 = 5.43, KH can be computed using 
the relation: 

in0in1

 0st1
H F -F

HETP - HETP
K  , (2)

resulting after computation KH = 0.0085(cm·h)/ml.  
The instantaneous value of the number of the 

theoretical plates is given by: 

n(t) = h/HETP(t). (3)

Also, the isotope separation can be computed 
using relation (4): 

S(t) = αn(t),  (4)

where α = 1.01 is the elementary separation factor of 
the 13C isotope for the carbamate – CO2 chemical 
exchange procedure. Considering (1), the positive 
value obtained for KH constant implies the increase 
of HETP(t) at the increase of Fin(t). Also, from (3) 
and (4) the decrease of the number of theoretical 
plates, respectively of the isotope separation value, 
results. The main consequence of the last two 
remarks is the fact that the y(t,p) signal decreases at 
the Fin(t) increasing, respectively the y(t,p) signal 
increases at the Fin(t) decreasing. From the physical 
point of view, this phenomenon is explained due to 
the fact that lower the value of the input 
ethanolamine flow Fin(t) is, the longer the contact 
duration between the carbamate and CO2 in SC is, 
the chemical exchange between the two chemical 
elements being a more efficient one.  

Also, the isotope separation is given by the 
relation: 

0

inff

y

)(t)F)(p,y(t
S(t)  , (5)

where y0 = 1.108% represents the natural abundance 
of the 13C isotope and y(tf,pf)(t) is the steady state 
value of the output signal for a certain input step 
type signal which would have the instantaneous 
value of the signal Fin(t), considering that                  
p = pf =300cm. From (4) and (5), it results that: 

n(t)
0inff αy)(t)F)(p,y(t  , (6)

or 

)t(Sy)(t)F)(p,y(t 0inff  . (7)

The 13C concentration increase over the initial 
value y0, in steady state regime, is given by: 

)1)t(S(y

)1α(yy)(t)F)(p,y(t

0

n(t)
00inff




. (8)

The final input signal in the process is defined 
by: 

)1)t(S(y(t)u 0f  . (9)

Obviously, if Fin(t) is a step type signal it results 
that the uf(t) signal is a step type signal, too. 

The isotope separation process is a first order 
one, being characterized by only one time constant. 
The time constant of the process is experimentally 
determined and if the experiment based on a step 
type variation of the input signal Fin(t) is made for   
p = pf, it can be determined using the tangent 
method, resulting the value Tpf = 14h. If the same 
experiment is repeated, but the measurement of the 
output signal y(t,p) is made in the close 
neighbourhood of the origin 0 on the 0p axis (for the 
value p = 0+), after applying the tangent method, it 
results for the process time constant the value        
Tp0 = 2h.  

From these experimental identifications of the 
two time constants, it results that the process time 
constant increases progressively from the upper part 
to the lower part of SC along the 0p axis. Next, in 
this paper, a linear increasing evolution of the T time 
constant of the process along the 0p axis is 
considered, given by the relation: 

f
p0pfp0 p

p
)TT(TT  , (10)

where pf = h. From (10) it can be remarked that       
T = T(p), but the changing of the value of the p 
independent variable is not made continuously. The 
p value changing is made at discrete time moments 
through the changing of the transducer T position 
inside the SC along the 0p axis. The commutations 
of the p independent variable can be viewed as step 
type signals.     

The first order differential equation which 
describes the relation between the final input signal 
uf(t) and the function Ft(t) (Ft(t) being the solution of 
this equation) is: 

)t(u
T(p)

1
)t(F

T(p)

1

dt

)t(dF
ft

t  . (11)

In the previous equation, the p independent 
variable change implies the value changing of the 
process time constant T(p), the effect of such a 
variation influencing the Ft(t) function only in 
transitory regime. Consequently, Ft depends on both 
independent variable Ft(t,p) only in the commutation 
moments of the p independent variable and only 
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when this commutation takes place in transitory 
regime. Also, the Ft(t) function represents the 13C 
concentration evolution in time over the value y0 
until the value y(tf,pf) for a certain value of Fin(t). If 
the value of the p variable is changed, the speed 
evolution of the Ft(t) function is adapted, but its 
steady state value remains at y(tf,pf). This problem is 
solved introducing in the approximating analytical 
solution the Fp(p) function.       

The Fp(p) function can be determined in two 
stages. Firstly, the Fp1(p) function is determined. The 
y(t,p) evolution in relation to the p independent 
variable for t = tf and for a certain constant value of 
the Fin signal is given by the relation: 

)n(t
0f

fα · y = p),y(t , (12)

As it results from (12), the evolution in time of 
the y(tf,pf) signal has a hyperbolic form. Using a 
mathematical procedure based on an interpolation 
method, the y(tf,p) signal can be approximated by a 
Fp1(p) function of the form: 

)F)t(F(K430

p

0p1
in0inPe1)-α(y = (p)F  , (13)

where C = 430cm is a SC constant determined 
through interpolation and KP = 0.7527(cm·h)/ml 
results using two consecutive determined sets of 
values {Fin, P}. The “length” constant P is: 

P = 430 + KP·(Fin(t) – Fin0). (14)

As it can be remarked, the Fp1(p) function can be 
modelled using only one “length” constant P. Also, 
from (14), it results that P is a function of the input 
ethanolamine flow P(Fin(t)), implicitly a function of 
time P(t). It results that Fp1 is a function depending 
on Fin(t) (Fp1(Fin(t),p) and implicitly on both 
independent variables t and p (Fp1(t,p)). 

Secondly, the function Fp2 = Fp1(Fin(t),pf) is 
determined. The final form of the Fp(p) function 
results using the relation: 

0finp1

0inp1

0p2

0inp1
inp

y-)p(t),(FF

y-p)(t),(FF

y-F

y-p)(t),(FF
 = (t))F(p,F





, (15)

this function depending on the input flow Fin(t), too.   
Also, the final form of the approximating 

analytical solution is given by: 

yAN(t,p) = y0 + Ft(t)·Fp(p,Fin(t)) . (16)

Due to the facts that, Fp = Fp(Fin(t),p), it results as 
ratio between two other functions ((Fp1 – y0) and   
(Fp2 – y0)) and for some particular cases Ft = Ft(t,p), 
getting to the conclusion that the treated separation 

process is a strong non-linear one.  

3 LEARNING THE PROCESS 
BEHAVIOUR USING NEURAL 
NETWORKS 

The approximating analytical solution from (16) 
which describes the working of the separation 
process, the process being a distributed parameter 
one (Smyshlyaev and Krstic, 2005), has a very 
complex structure. Considering this aspect, the 
analytical solution is decomposed in some more 
simple mathematical components. Each resulted 
mathematical component is modelled using a neural 
network and, after that, in order to obtain the model 
of the entire analytical solution, the resulted neural 
networks are properly interconnected between them. 

The two types of neural structures used to learn 
(Borges, 2011) the behaviour of the components of 
the analytical solution are the forward fully 
connected neural networks and the autoregressive 
fully connected networks with exogenous inputs 
(Haykin, 2009). The two types of neural networks 
are presented schematically in Figures 3 and 4. In 
both cases, is represents the input signal in the neural 
network and os represents the output signal from the 
neural network. In all the cases from this paper, the 
network from Figure 3 contains non-linear neurons 
in the hidden layer (N1i neurons, where i = 1,…,n) 
having hyperbolic tangent activation functions). 
Also, in all the cases, the N21 neuron is linear 
(having linear activation function (Maren et. all, 
1990; Norgaard et. all, 2000)).  

 

Figure 3: The forward fully connected network. 
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Figure 4: The autoregressive fully connected network with 
exogenous inputs. 

The W1 and W2 vectors are column vectors 
containing the weights that make the connection 
between the input layer and the hidden layer, 
respectively between the hidden layer and the output 
layer. The n dimension (the dimension of the hidden 
layer) can be singularized for each application in 
part. The output signal os, for the general structure 
from Figure 3 is given by the relation: 

  os = [tanh(is·W1T + B1T]·W2 + b21, (17)

where B1 is a column vector containing the bias 
values of the neurons from the hidden layer, b21 is 
the bias value of the N21 neuron, the superscript T 
signifies that the corresponding vector is considered 
in transposed form and the notation “tanh” signifies 
the application of the hyperbolic tangent functions to 
all the elements of the corresponding vector. 

The structure from Figure 4 is used in the case 
when the work of the components is expressed using 
differential equations. The elements z–1 represent 
delay lines used both on the input and on the 
feedback signal, in order to memorize the previous 
values of the two signals. The connection between 
the input layer (formed by the input signal and the 
feedback signal) and the hidden layer is made 
through the column vectors W1 and W2, 
respectively W3 and W4, all of them containing 
weights.  W5 has the same significance as W2 in the 
case of Figure 3 and the dimension n is singularized, 
also, for each application in part. In the case of the 
network from Figure 4, all the neurons are linear. 
The os signal is given by the relation: 

os(k) = [W1T·is
 (k–1)+ W2T·is

 (k–2)+ W3T·    
·os

 (k–2)+ W4T·os
 (k–1)+ B1T]·W5 + b21, 

(18)

where B1, b21 and T have the same significance as 
in the case of relation (17), respectively the sequence 
(k) represents the current value of the signals, and 
the sequences (k–1) and (k–2) represent the previous 
two values of the signals. If only one unit line is 
necessary for a certain application both on the input 
and on the feedback signals, the same presented 
structure can be used considering the elements of the 
matrices W2 and W3 equal to 0 (Vălean, 1996). 

The implementation of the approximating 
analytical solution from (16) using neural networks 
is presented in Figure 5. The neural networks noted 
with NN are trained in order to learn the functional 
dependence between the corresponding input and 
output signals. Practically, the neural structure from 
Figure 5 resulted following the relations (1)-(16) and 
interconnecting the component neural networks, 
obviously processing mathematically the signals that 
occur in the structure. All the neural networks from 
Figure 5, instead of NN4 are forward fully 
connected ones with n = 10. They are trained using 
1000 input-output data pairs and considering, also, a 
ramp type variation of the corresponding input 
signals. In all cases, as training algorithm, the 
Levenberg-Marquardt back-propagation algorithm is 
used. The maximum number of training epochs was 
fixed to 20000, obtaining in all cases very small 
error values (values proportional with 10-13; the 
quality indicator is considered the mean square 
error). The neural network NN4 implements the 
integration function.    

In this case the autoregressive fully connected 
network with exogenous inputs structure from 
Figure 4 is used, considering all the elements of the 
vectors W2 and W3 equal to 0 (only 1 unit delay 
both on the input and on the output signals). Also, in 
this case n = 7. The same number of input-output 
data pairs and the same training algorithm are 
considered as in the case of the other Neural 
Networks from Figure 5, but a white noise variation 
of the input signal. The imposed value of the mean 
square error is reached after 15 training epochs. The 
neural model implemented in Figure 5 and 
associated to the analytical solution from (16) will 
be used as the process Reference Model in the IMC 
control structure. 

4 THE PROPOSED CONTROL 
STRUCTURE 

The control structure based on the Internal Model 
Control  (IMC)  strategy (Love, 2007; Golnaraghi et. 
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Figure 5: The implementation of the approximating analytical solution using neural networks. 

 

Figure 6: The proposed IMC structure. 

all, 2009), proposed to be used for the concentration 
control of the 13C isotope, is presented in Figure 6. 

The elements from the direct physical channel of 
the structure are: the actuator A (the pump P from 
Figure 1), the distributed parameter (DPP) 
technological process (TP) and the transducer T (the 
same transducer as in Figure 1). Also, the elements 
from the direct reference channel represent the 
neural networks that describe the work of the 
elements from the physical direct channel: NN7 for 
A, NS (neural structure from Figure 5) for the TP 
(DPP) and NN8 for T. The three neural models 
connected in series represent the Neural Reference 
Model of the Fixed Part of the system. Also the 
element NAC is the Neural Adaptive Controller 
modelled using the neural structure NN9. From the 
mathematical point of view, the NAC controller is a 
distributed parameter controller. The term 
“distributed parameter controller” is referring to the 
fact that one of the controller parameters (the main 
parameter) depends on the value of the p 
independent variable. This term does not have the 
meaning of a spatial distribution of the generated 
control signal. Also the significance of the notations 

regarding the signals from Figure 6 is: w(t) – 
reference signal, c(t) – control signal, Fin(t) –             
– actuating signal (the input flow of ethanolamine), 
d1(t) – disturbance signal which affects directly the 
actuating signal, Finf(t) – disturbed actuating signal 
(the final value of the ethanolamine input flow), 
y(t,p) – output signal (the 13C isotope concentration), 
d2(t) – disturbance signal which affects directly the 
output signal, yf(t,p) – disturbed output signal due to 
the effect of d2(t), respectively r(t) – feedback signal.  

Also, the FinN(t), yN(t,p), and rN(t) signals have 
the same significance as the signals Fin(t), y(t,p) and 
r(t), but represent output signals from the 
corresponding elements of the Reference Model of 
the Fixed Part. These signals are not disturbed, the 
disturbances not affecting the reference direct 
channel of the system. The final feedback signal  
rf(t) = r(t) – rN(t) represents a measure of all 
disturbances effects that affect in a negative manner 
the work of the physical direct channel (d1(t), d2(t), 
but also the parametric disturbances (variations in 
time of the parameters of the elements A, TP and 
T)). Also a(t) = w(t) – rf(t) is the error signal. It can 
be  remarked  that  the  value  of  the  p  independent  
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variable is transmitted to both direct channels and to 
the controller. 

The structure from Figure 6 can work, in the case 
the p variable value is not transmitted to the 
reference direct channel, but this case is not treated 
in this paper. Also, the structure can be adapted for 
the case when the automatic determination of the p 
value is necessary (Muresan and Abrudean, 2010), 
case which also, is not treated in this paper. The 
work of the actuator A, it having a linear behaviour, 
is expressed using a second order transfer function. 
The values of the time constants of the actuator are: 
TA = 0.1min (the time constant of the actuator) and 
T1 = 2min (the time constant introduced using an 
electronic equipment in order to “delay” the 
propagation of the control signal to the actuator). 
Also, the proportionality constant of the actuator    
KA = -56.25 ml/(h·mA). The generated output signal 
represents the value of the ethanolamine flow which 
has to be subtracted from Finmax in order to obtain the 
Fin signal. This adjustment is necessary due to the 
fact that the plant technological start is made using 
Finmax. The A element is modelled using the neural 
network 7 (NN7). NN7 has exactly the structure 
from Figure 4, for n = 10. Also all the delay lines 
from Figure 4 are necessary due to the fact that the 
actuator model is of second order. The network NN7 
is trained using the same training algorithm as in the 
case of NN4, the same type of input signal and 500 
pairs of input-output data. The imposed mean square 
error of is reached after 17 training epochs. The used 
sampling time, in this case, has the value                  
Ts = 0.036 min. This value is much smaller than the 
value of the sampling time used for the training of 
all neural networks from the previous Paragraph (3)    
(Ts = 30 min) due to the much smaller time constants 
values of the actuator comparing to the value of the 
time constant of the technological process. 

The transducer T model is expressed using a first 
order transfer function with KT = 5.7143mA/% (the 
proportionality constant of the transducer) and        
TT = 6min (the time constant of the transducer). The 
computation of KA and KT proportionality constants 
is made taking in consideration the fact that the 
automation equipment used for this application 
works with unified current signals. This model is 
learned using the NN8 neural network from        
Figure 6. The network parameters and the training 
parameters are the same as in the case of the NN4 
training, with the exception that Ts = 0.09min. 

The controller is tuned in order to compensate 
the main time constant of the process T(T(p)). The 
mathematical model which describes the controller 
work in time domain is expressed using the 

following differential equation:       

a(t)
dt

da(t)
T(p)c(t)

dt

dc(t)
Tf  , (19)

where Tf is the time constant of the first order filter 
used in order to obtain the controller feasibility      
(Tf < T(p)). The control signal c(t) represents the 
solution of the equation (19). At the changing of the 
p independent variable value, the value of the 
process time constant is modified and from (19) it 
results that the value of the T(p) time constant of the 
controller is modified, too, in order to be adapted to 
the new time constant of the process. This 
explanation implies the term “adaptive controller”. 
Also the modification of the T(p) value is made 
through the value of p independent variable, being 
justified the abstract term of “distributed parameter 
controller”. The implementation of the controller 
using three neural networks interconnected between 
them using mathematical operators, is presented in 
Figure 7. The NN31 has the same structure as NN3 
from Figure 5, generating at the output the value 
T(p). Also, the NN41structures have the same 
structure as NN4 from Figure 5, implementing the 
integration operation. The training procedures and 
parameters for the two types of neural networks 
from Figure 7 are the same as in the case of NN3 
and NN4 from Figure 5, with the exception of the 
sampling time (in this case Ts = 3min). In the case 
when the 13C isotope concentration control is made 
in the point p = pf, the value Tf = 8h represents a 
good compromise between the system stability and 
the structure performances. Also, for this value, the 
usage of the control signal is feasible from its 
saturation values avoidance point of view.   

Having the neural models of the elements A, TP 
and T, practically the model of the Reference Model 
of the Fixed Part can be implemented, for example, 
on a process computer and the structure from    
Figure 6 can be used. The model of the controller, 
also expressed using a neural networks structure, can 
be implemented on a computation equipment, too.  

5 SIMULATION RESULTS 

The simulations (Colosi et. all, 2013) are made in 
MATLAB/Simulink. First the validity of the 
analytical solution from (16) is verified. In Figure 8 
is presented the comparative graph between 5 step 
responses of the separation column model expressed 
through the mentioned analytical solution, if the 
simulation is made for p = pf. The values of the 
considered input step type variations are Fin {200; 
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280; 367; 416; 600}ml/h. The steady state values of 
the 13C concentration isotope (y(tf,pf)) are 
centralized in Table 1.   
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Figure 8: Open loop responses of the determined process 
model for different values of the input signal. 

Table 1: The simulation results associated to Figure 8. 

Fin [ml/h] y(tf,pf) [%] 
200 2.8 
280 2.3818 
367 2.1083 
416 2 
600 1.7392 

Comparing to the experimental data from 
(Axente et. all, 1994), it results that the determined 
approximating analytical solution describes the 
process work with high accuracy, the differences 
occurring only at the third decimal. Also, in Table 1 
and Figure 8 the increasing evolution of the 13C 
isotope concentration at the decrease of the value of 
the input ethanolamine flow is highlighted.  

In Figure 9 is presented the comparative graph 
between 4 step responses of the separation column 
model expressed through the mentioned analytical 
solution, if the input flow of ethanolamine presents a 
step type variation with the value Fin = 300ml/h, for 
different values of the p independent variable 

p {pf/4; pf/2; pf/4·3; pf}[cm]. The steady state 
values of the 13C isotope concentration (y(tf,p)) from 
Figure 9 are centralized in Table 2.    
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Figure 9: Open loop responses of the determined process 
model for different values of the p independent variable. 

Table 2: The simulation results associated to Figure 9. 

p [cm] y(tf,p) [%] 
pf/4 1.3345 
pf/2 1.5971 

pf/4·3 1.917 
pf 2.3069 

From Figure 9 and Table 2, the decreasing 
evolution of the process response in relation to the 
decrease of the p independent variable is 
highlighted. From the mathematical point of view, 
this aspect is explained due to the increasing 
evolution of the Fp function in relation to the 
increase of p. From the physical point of view, this 
aspect is explained due to the increase evolution of 
the number of the theoretical plates in relation to the 
increase of p. Also, from Figure 9 it can be remarked 
that lower the value of p is, lower the value of the 
process settling time is (ts1 < ts2 < ts3 < ts4). This 
phenomenon is explained due to the decreasing 
evolution of the T(p) process time constant at the 
decrease of p.  

 
Figure 7: The implementation of the controller using neural networks. 
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In Figure 10, the comparative graph between the 
process response (modelled through the analytical 
solution) and the process response (modelled 
through the neural structure implemented in Figure 
5) is presented. Practically, the differences between 
the two curves from Figure 10 cannot be 
distinguished, resulting the high validity of the 
Neural Reference Model of the Fixed Part of the 
control system from Figure 6 (the NS element from 
the Reference Model has the main weight in it). The 
square mean error between the two curves from 
Figure 10, computed for 453 pairs of values 
associated to the two responses, has the value       
Emp = 0.0023%, considered insignificant for this 
application. 
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Figure 10: The validation of the neural model associated 
to the technological process. 

In Figure 11, the response of the control system 
from Figure 6 is presented. Firstly, between the time 
moments t1 = 30h and t2 = 120h, the plant works in 
starting regime, the ethanolamine flow being 
maintained at Finmax. After the 13C isotope 
concentration (the output signal) gets steady to the 
value 1.492%, the structure can be used to assure a 
certain value of the y(t,p) signal. The simulation 
from Figure 11 is made for p = pf. After the moment 
t2, the concentration reference is set to the value 
1.795%. From the Figure it can be remarked that this 
value is reached after approximately 40h, much 
faster than in open loop regime (case of ts4 from 
Figure 9 which has the value approximately equal to 
78h). Also it can be remarked that the steady state 
error ast = 0% and the overshoot %0σ  (a very 
important constrain imposed to the treated type of 
system).  

In Figure 12, the simulation from the Figure 11 is 
repeated until the time moment t3 = 190h. In this 
moment the disturbance d2(t) of step type with the 
value –0.1% occurs in the system. From Figure 12, it 

results that the effect of the disturbance is efficiently 
rejected by the controller after 50h the concentration 
value being brought back to the value imposed 
through the reference signal.In both the cases of the 
simulations from Figures 11 and 12, the saturation 
limits of the control respectively of the actuating 
signals (both the minimum and maximum limits) are 
not reached, the usage of the controller being 
feasible. 
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Figure 11: The automatic control system response. 
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Figure 12: The automatic control system response, for the 
case when a disturbance signal occurs in the system. 

6 CONCLUSIONS  

An original solution for the mathematical modelling 
of a separation technological is presented in this 
paper. Also, a solution for the automatic control of 
the 13C isotope concentration is presented based on 
the IMC strategy. 

In order to implement the Reference Model of 
the system Fixed Part, the neural networks are used. 
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These elements are original ones, too, due to the fact 
that a distributed parameter technological process is 
included in an IMC control structure and the model 
of this type of process is learned using neural 
networks. The work of A and T elements (Figure 6) 
is learned using neural networks in order to preserve 
the unitary character of the solution and the high 
accuracy of the Fixed Part mathematical model.   

The neural networks are used, also, for 
implementing the adaptive controller, respectively 
the term “distributed parameter controller” is 
introduced and defined.   

The process model validity and the high 
performances of the proposed control structure are 
proved through the simulations from Paragraph 5. 
The control structure is tested in the case when a 
disturbance signal occurs in the system. As it can be 
remarked from Figure 12, the effect of the 
disturbance is rejected with high efficiency.  
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