
Algorithmic Information Theory for Obfuscation Security

Rabih Mohsen1 and Alexandre Miranda Pinto2,3
1Department of Computing, Imperial College London, London, U.K.

2Information Security Group, Royal Holloway University of London, Egham, U.K.
3 Instituto Universitário da Maia, Maia, Portugal

Keywords: Code Obfuscation, Kolmogorov Complexity, Intellectual Property Protection.

Abstract: The main problem in designing effective code obfuscation is to guarantee security. State of the art obfuscation
techniques rely on an unproven concept of security, and therefore are not regarded as provably secure. In this
paper, we undertake a theoretical investigation of code obfuscation security based on Kolmogorov complexity
and algorithmic mutual information. We introduce a new definition of code obfuscation that requires the algo-
rithmic mutual information between a code and its obfuscated version to be minimal, allowing for controlled
amount of information to be leaked to an adversary. We argue that our definition avoids the impossibility
results of Barak et al. and is more advantageous then obfuscation indistinguishability definition in the sense it
is more intuitive, and is algorithmic rather than probabilistic.

1 INTRODUCTION

Malicious reverse engineering represents a great risk
to software confidentiality, especially for software
that runs on a malicious host controlled by a software
pirate intent on stealing intellectual artifacts. Thwart-
ing vicious reverse engineering, using software pro-
tection techniques such as code obfuscation, is vi-
tal to defend programs against malicious host attacks.
An obfuscating transformation attempts to transform
code so that it becomes unintelligible to human and
automated program analysis tools, while preserving
their functionality. It is a low-cost technique that does
not affect portability and has promise for defending
mobile programs against malicious host attacks.

One of the major challenges of code obfuscation
is the lack of a rigorous theoretical background. The
absence of a theoretical basis makes it difficult to for-
mally analyse and certify the effectiveness of these
techniques against malicious host attacks. In particu-
lar, it is hard to compare different obfuscating trans-
formations with respect to their resilience to attacks.
Often, obfuscation transformation techniques are pro-
posed with no provable properties presented.

Software developers strive to produce structured
and easy to comprehend code, their motivation is to
simplify maintenance. Code obfuscation, on the other
hand, transforms code to a less structured and intel-
ligible version. It produces more complex code that

looks patternless, with little regularity and is difficult
to understand. We argue that irregularities and noise
makes the obfuscated code difficult to comprehend.
Kolmogorov complexity (Li and Vitányi, 2008) is a
well known theory that can measure regularities and
randomness. The size of the shortest program that de-
scribes a program tends to be bigger as more noise and
irregularities are present in a program. Kolmogorov
complexity is the basic concept of algorithmic infor-
mation theory, that in many respects adapts the view-
point of well-established Information Theory to focus
on individual instances rather than random distribu-
tions. In general, algorithmic information theory re-
places the notion of probability by that of intrinsic
randomness of a string.

Kolmogorov complexity is uncomputable; how-
ever it can be approximated in practice by loss-
less compression (Kieffer and Yang, 1996) (Li and
Vitányi, 2008), which helps to intuitively understand
this notion and makes this theory relevant for real
world applications. Our aim in this paper is to provide
a theoretical framework for code obfuscation in the
context of algorithmic information theory: to quanti-
tatively capture the security of code obfuscation, to
discuss its achievability and to investigate its limita-
tions and resilience against an adversary.

We introduce the notion of unintelligibility to de-
fine confusion in code obfuscation and argue this is
not good enough. We then propose our notion of se-

76 Mohsen R. and Miranda Pinto A..
Algorithmic Information Theory for Obfuscation Security.
DOI: 10.5220/0005548200760087
In Proceedings of the 12th International Conference on Security and Cryptography (SECRYPT-2015), pages 76-87
ISBN: 978-989-758-117-5
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

curity and compare both definitions. We argue that
our model of security is fundamentally different from
the virtual black-box model of Barak et al., and that
because of this their impossibility result does not ap-
ply. Then, we show that under reasonable conditions
we can have secure obfuscation. Finally, we study the
security of two main approaches to obfuscated code
in software,encodingandhiding, at the subprogram
level.

To the best of our knowledge, this paper is the
first to propose algorithmic information theory as a
theoretical basis for code obfuscation and its threat
model; we believe our work is the first step to derive
consistent metrics that measure the protection quality
of code obfuscation. The framework can be applied to
most code obfuscation techniques and is not limited to
any obfuscation method or language paradigm.

Paper structure: In Section 2, we provide an
overview of related work. Section 3 provides the pre-
liminaries and the required notations. In Sections 4,
we discuss the intuition behind our approach, propose
the formal definition of code obfuscation and present
some results for security code obfuscations against
passive attackers. In section 5, we study the secu-
rity of two main approaches to code obfuscation at
the subprogram level. Section 6 concludes with the
proposed future work.

2 RELATED WORK

Collberg et al. (Collberg et al., 1997) were the first to
define obfuscation in terms of a semantic-preserving
transformation. Barak et al. (Barak et al., 2001) in-
troduced a formal definition ofperfectobfuscation in
an attempt to achieve well-defined security, which is
based on the black-box paradigm. Intuitively, a pro-
gram obfuscatorO is calledperfect if it transforms
any programP into a virtual black boxO(P) so that
anything that can be also efficiently computed from
O(P), can be efficiently computed given just oracle
access toP . However, they also proved that the black-
box definition cannot be met by showing the existence
of set of functions that are impossible to obfuscate.
On the other hand, a recent study conducted by Garg
et al (Garg et al., 2013) provided positive results, us-
ing indistinguishability obfuscation, for which there
are no known impossibility results. However, as ar-
gued by (Goldwasser and Rothblum, 2007) there is
a disadvantage of indistinguishability obfuscation: it
does not give an intuitive guarantee about the security
of code obfuscation.

3 PRELIMINARIES

We use theU as the shorthand for a universal Tur-
ing machine,x for a finite-length binary string and∣x∣
for its length. We useǫ for a negligible value, andΛ
for an empty string. We use the notationO(1) for a
constant,p(n) for a polynomial function with input
n ∈ N. ∥ is used to denote the concatenation between
two programs or strings.
P is a set of binary programs andP ′ is a set

of binary obfuscated programs,L = {λn ∶ λn ∈
{0,1}+, n ∈ N} is a set of (secret) security parame-
ters used in the obfuscation process1. A = {An}n∈N
represents a set of adversaries (deobfuscators) where
an adversaryA ⊆ A uses a set of deobfuscation tech-
niques (e.g. reverse engineering); the term adversary
is used interchangeably with deobfuscator.

We consider only the prefix version of Kol-
mogorov complexity (prefix algorithmic complexity)
which is denoted byK(.). Complexityand Kol-
mogorov complexityterms are sometimes used inter-
changeably; for more details on prefix algorithmic
complexity and algorithmic information theory, we re-
fer the reader to (Li and Vitányi, 2008). The necessary
parts of this theory are briefly presented in the follow-
ing.

Definition 1. LetU(P) denote the output ofU when
presented with a programP ∈ {0,1}+.

1. The Kolmogorov complexityK(x) of a binary
stringx with respect toU is defined as:

K(x) =min{∣P ∣ ∶ U(P) = x}.

2. The Conditional Kolmogorov Complexity relative
to y is defined as:

K(x ∣ y) =min{∣P ∣ ∶ U(P, y) = x}.

Definition 2. Mutual algorithmic information of two
binary programsx andy is given by

IK(x;y) =K(y) −K(y ∣x).
Theorem 1(chain rule (Gács, 1974)). For all x, y ∈ N

1. K(x;y) =K(x)+K(y ∣x) up to an additive term
O(logK(x, y)).

2. K(x)−K(x ∣y) =K(y)−K(y ∣x) i.e.IK(x;y) =
IK(y;x), up to an additive termO(logK(x, y)).

Logarithmic factors like the ones needed in the
previous theorem are pervasive in the theory of Kol-
mogorov complexity. As commonly is done in the
literature, we mostly omit them in our results, making
a note in the theorem statements that they are there.
This also “hides” smaller constant terms, and for this
reason we regularly omit them in the derivations.

1The security parameter may include the obfuscation
key, the obfuscation transformation algorithm or any nec-
essary information that the obfuscation function can use.

Algorithmic�Information�Theory�for�Obfuscation�Security

77

Definition 3. The Mutual algorithmic information of
two binary stringsx and y conditioned to a binary
stringz is defined as:I(x;y∣z) =K(y∣z)−K(y∣x, z)

Theorem 2 ((Li and Vitányi, 2008)). There is a con-
stant c such that for allx andy

K(x) ≤ ∣x∣ + 2 log ∣x∣ + c and K(x ∣ y) ≤K(x) + c.

Theorem 3 ((Shen, 1982; Taveneaux, 2011)). Given
a recursive computable functionf ∶ {0,1}∗ →
{0,1}∗, for all x the algorithmic information content
of f(x) is bounded by:K(f(x)) ≤K(x) +O(1).

Theorem 4 ((Shen et al., 2014)). Given a recursive
computable functionf ∶ {0,1}∗ × {0,1}∗ → {0,1}∗,
for any stringsx, y the algorithmic information con-
tent off(x, y) is bounded by:

K(f(x, y)∣y) ≤K(x∣y) +O(1).

If we are aware thatx belongs to a subsetS of
binary strings, then we can consider its complexity
K(x∣S). Also, we can measure the level of random-
ness (irregularities) using randomness deficiency.

Definition 4. (Li and Vitányi, 2008) The randomness
deficiency ofxwith respect to a finite setS containing
x is defined asδ(x∣S) = log#S −K(x∣S).

Lemma 5. (Li and Vitányi, 2008) Let S be an enumer-
able binary set of programs such thatx ∈ S, Then,

K(x) ≤K(S) + log#S +O(1)

4 CODE OBFUSCATION USING
KOLMOGOROV COMPLEXITY

4.1 Motivation

The main purpose of code obfuscation is to confuse
an adversary, making the task of reverse engineer-
ing extremely difficult. Code obfuscation introduces
noise and dummy instructions that produce irregular-
ities in the targeted obfuscated code. We believe that
these make the obfuscated code difficult to compre-
hend. Classical complexity metrics have a limited
power for measuring and quantifying irregularities in
obfuscated code, because most of these metrics are
designed to measure certain aspects of code attributes
such as finding bugs and code maintenance. Human
comprehension is a key in this case; an adversary has
to understand the obfuscated code in order to recover
the original. Measuring code obfuscation has to take
into consideration this human factor. Although mea-
suring code comprehension is very subjective, there

were some successful attempts to measure human cog-
nitive reasoning and cognitive science based on Kol-
mogorov complexity (Gauvrit et al., 2011).

Code regularity (and irregularity) can be quanti-
fied, as was suggested in (Lathrop, 1997) and (Jbara
and Feitelson, 2014), using Kolmogorov complexity
and compression. Code regularity means a certain
structure is repeated many times, and thus can be rec-
ognized. Conversely, irregularities in code can be ex-
plained as the code exhibiting different types of struc-
ture over the code’s body. Regularities in programs
were introduced by Jbara et al. in (Jbara and Feitel-
son, 2014) as a potential measure for code compre-
hension; they experimentally showed using compres-
sion that long regular functions are less complex than
the conventional classical metrics such as LOC (Line
of Code) and McCabe (Cyclomatic complexity) could
estimate.

The main intuition behind our approach is based
on the following argument: if an adversary fails to
capture some patterns (regularities) in an obfuscated
code, then the adversary will have difficulty com-
prehending that code: it cannot provide a valid and
brief, i.e., simple description. On the other hand, if
these regularities are simple to explain, then describ-
ing them becomes easier, and consequently the code
will not be difficult to understand.

We demonstrate our motivation using the example
in Fig. 1. We obfuscate the program in Fig. 1-(a) that
calculates the sum of the firstn positive integers, by
adding opaque predicates2 with bogus code and data
encoding. If we apply Cyclomatic complexity (Mc-
Cabe (McCabe, 1976)), a classical complexity mea-
sure, to Fig. 1-(b) the result will be 6. Cyclomatic
complexity is based on control flow graph (CFG), and
is computed by:E −N +2, whereE is the number of
edges andN is the number of nodes in CFG. Fig. 1-
(b) containsN = 8 nodes,E = 13 edges then the
Cyclomatic complexity is(13 − 8 + 2) = 7. We can
see some regularity here: there is one opaque predi-
cate repeated three times. Furthermore, the variable
y is repeated three times in the same place of theIf-
branch. We conjecture that we can find the short de-
scription of the program in Fig. 1-(b), due to presence
of regularity by using lossless compression.

We take another obfuscated version in Fig. 1-(c)
(of the same program); this code is obfuscated by
adding three different opaque predicates. The patterns
are less in this version comparing to Fig. 1-(b); the
shortest program that describes Fig. 1-(c) is likely to
be very similar to the code itself, where the Cyclo-

2An opaque predicate is an algebraic expression which
always evaluates to same value (true or false) regardless of
the input.

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

78

while(i<n){
i=i+1;
x=x+i;}

(a) Sum code

while(i<n){
i=i+1;

if (7*y*y-1==x*x){ //false
y=x*i;

else
x=x+4*i;}

if (7*y*y-1==x*x){
y=x*i;

else
x=x-2*i;}

if (7*y*y-1==x*x){
y=x*i;

else
x=x-i;}}

(b) One opaque predicate

while(i<n){
i=i+1;
if (7*y*y-1==x*x){ //false
y=x*(i+1);
else
x=x+4*i;}
if (x*x-34*y*y==-1){ //false
y=x*i;
else
x=x-2*i;}
if ((x*x+x)mod 2==0){ //true
x=x-i;
else
y=x*(i-1);}}

(c) Three opaque predicate

Figure 1: Obfuscation example: (a) is the original code for the sum ofn integers; (b) is an obfuscated version of (a) with one
opaque predicate and data encoding which has some patterns and regularities; (c) is another obfuscated version of (a) with
three opaque predicate and data encoding, which has less patterns and regularities comparing to (b).

matic complexity is the same 7, and it does not ac-
count for the changes that occurred in the code. As-
suming the opaque predicates of Fig. 1-(c) are equally
difficult to break, attacking this code requires at least
twice more effort than the code in Fig. 1-(b), as we
need to figure out the value of two more opaque pred-
icates. Furthermore, Fig. 1-(b) can be compressed at
higher rate than Fig. 1-(c); again, this is due to the
inherent regularity in Fig. 1-(b).

We argue that an obfuscated program which is se-
cure and confuses an adversary will exhibit a high
level of irregularity in its source code and thus require
a longer description to characterize all its features.
This can be captured by the notion of Kolmogorov
Complexity, which quantifies the amount of informa-
tion in an object. An obfuscated program will have
more non-essential information, and thus higher com-
plexity, than a non-obfuscated one. Thus, we can use
Kolmogorov Complexity to quantify the level of con-
fusion in obfuscated programs due to the obfuscation
process.

4.2 Applying Kolmogorov Complexity
to Code Obfuscation

In this section, we present a novel approach for code
obfuscation based on notions from algorithmic infor-
mation theory. We start with an intuitive definition
that is inspired by practical uses of obfuscation. The
rationale behind this definition is that an obfuscated
program must be more difficult to understand than the
original program. This uses the separate notion ofc-
unintelligibility:

Definition 5. A program P ′ is said to be c-
unintelligible with respect to another programP if it
is c times more complex thanP , i.e. the added com-
plexity is c times the original one, and thus more dif-
ficult to understand. Formally:

K(P ′) ≥ (c + 1)K(P),

for some constantc > 0.

Definition 6. A c-ObfuscatorO ∶ P × L → P ′ is a
mapping from programs with security parametersL
to their obfuscated versions such that∀P ∈ P , λ ∈
L . O(P,λ) ≠ P and satisfies the following proper-
ties:

• Functionality : O(P,λ) andP compute the same
function.

• Polynomial Slowdown: the size and running time
of O(P,λ) are at most polynomially larger than
the size and running time ofP , i.e. for polynomial
functionp. ∣O(P,λ)∣ ≤ p(∣P ∣), and ifP halts in
k steps on an inputi, thenO(P,λ) halts within
p(k) steps oni.

• Unintelligibility : O(P,λ) is c-unintelligible with
respect toP .

It is interesting to ask to what extent unintelligibil-
ity is related to the quality of the obfuscation parame-
terλ. Is a largeλ necessaryfor high unintelligibility?
Is it sufficient?

We answer the first question in the positive by
showing thatc-unintelligibility sets a lower bound on
the size ofλ.

Lemma 6. Consider a programP and an obfuscated
versionP ′ = O(P,λ) such thatP ′ is c-unintelligible
with respect toP . Then,∣λ∣ ≥ cK(P) −O(1).

Algorithmic�Information�Theory�for�Obfuscation�Security

79

Proof. By assumption,K(O(P,λ)) ≥ (c + 1)K(P).
To computeP ′, we only needP , λ and the obfuscator
programO and so we can upper boundK(P ′):

K(P) +K(λ∣P) +K(O) ≥K(O(P,λ))

≥ (c + 1)K(P)

⇒K(λ∣P) ≥ cK(P) −K(O).

Assuming the obfuscator program is simple, that
is, K(O) = O(1), we have by basic properties of
Kolmogorov complexity:∣λ∣ ≥ K(λ) ≥ K(λ∣P) ≥
cK(P) −O(1).

To answer the second question, we show a counter-
example. So far, we have not addressed the nature
of O and how well it uses its obfuscation parameter.
It could well be the case thatO only uses some bits
of λ to modifyP . In an extreme case, it can ignore
λ altogether and simply returnO(P,λ) = P . The
result satisfies the first two properties of an obfusca-
tor, but can be considered unintelligible only in the
degenerate case forc = 0 and surely we would not
call the resulting code obfuscated. Another extreme
case is whenλ = P . Now, we would have at most
K(O(P,λ)) ≤ K(P) +K(O) + O(1) which again
would lead to a very smallc. These two cases, al-
though extreme, serve only to show that the quality
of an obfuscator depends not only onλ but also on
the obfuscation algorithm itself,O. This is addressed
later in Theorem 12.

Definition 6 is perhaps the first natural definition
one can find, but it has one shortcoming. Merely re-
quiring the obfuscated program to be complex overall
does not mean that it is complex in all its parts, and
in particular, that it hides the original program. To
illustrate this point, consider the following example.

Example 1. Consider an obfuscated programP ′ =
O(P,λ) = P ∥ λ, which is a simple concatenation of
P and λ. Definen = ∣P ′∣. We knowK(P ∥ λ) ≃
K(P,λ) within logarithmic precision (see (Li and
Vitányi, 2008) page 663). Then, by applying the chain
rule of Theorem 1,K(P ′) = K(P ∥ λ) ≃ K(P) +
K(λ∣P) + O(logn). For large λ independent ofP ,
this might signify a large unintelligibility, but the orig-
inal program can be extracted directly from the ob-
fuscated version requiring onlyO(logn) to indicate
whereP ends andλ starts.

This leads us to our second definition, where we
require not that the obfuscated program be more com-
plex than the original but rather, that it reveal almost
no information about the original. This is captured by
the notion of algorithmic mutual information and can
be stated formally as:

Definition 7. Consider a programP and its obfus-
cated programP ′ = O(P,λ). We sayP ′ is aγ-secure
obfuscation ofP if the mutual information betweenP
andP ′ is at mostγ, that is:

IK(P ;O(P,λ)) ≤ γ.

We sayP ′ is a secure obfuscation ofP if is γ-
secure andγ is negligible.

It is common to consider, in the literature about
Kolmogorov Complexity, that logarithmic terms are
negligible. Thus, if bothP andP ′ have lengths of
ordern, we migth consider thatP ′ would be a secure
obfuscation forγ = logn. This intuition, however, is
bound to fail in practice.

Programs are typically redundant, written in very
well-defined and formal languages, with common
structures, design patterns, and even many helpful
comments. It is expected that the complexity of a non-
obfuscated program be low, compared to its length.
Consider then the case that for a givenP andn = ∣P ∣
we haveK(P) = O(logn). Consider a scenario like
that of Example 1, where the obfuscated reveals the
original program and so the mutual information be-
tween both programs is maximum, i.e.,

IK(P ;O(P,λ)) =K(P) −O(logn) = O(logn).

Even though this obfuscation can not be considered
secure, the resulting mutual information is so small
that Definition 7 would declare it secure. We have
two ways out of this:

• we do not consider programs withK(P) =
O(logn), since this is the error margin of the im-
portant properties of Kolmogorov complexity, and
at this level we can not achieve significant results;

• or we consider a relative definition of security,
requiring that the mutual information be only at
most a negligible fraction of the information inP .

The second option leads us to the following defini-
tion:

Definition 8. Consider a programP and its obfus-
cated programP ′ = O(P,λ). We sayP ′ is aǫ-secure
obfuscation ofP if the mutual information between
P andP ′ is at mostǫK(P), that is:

IK(P ;O(P,λ)) ≤ ǫK(P),

for 0 ≤ ǫ ≤ 1.
We sayP ′ is a secure obfuscation ofP if is ǫ-

secure andǫ is negligible in some appropriate sense.

The next proposition provides an example of how
to test the security of an obfuscated code against an
adversary.

Proposition 1. Consider a clear programP of length
n withK(P) ≥ n−O(logn) andA an adversary that
extracts at leastm ≤ n consecutivebits of P from
P ′ = O(P,λ) then:

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

80

1. K(P ∣P ′) ≤ n −m +O(logn).
2. IK(P ;P ′) ≥m −O(logn)

Proof. We prove this proposition by building the fol-
lowing algorithm:

Algorithm:

• Build A of lengthO(1).
• ComputeA(P ′), we obtainm ≤ n bits ofP . De-

note these by stringω.
• Now, build a programβ such thatP = β(ω)

which computes two blocks of bits: those that
come before and those that come afterω.
To produceP , β needs at most to produce a pair of
two strings (s1, s2) with combined lengthn −m.
To describe the pair, we need at mostO(logn)
bits saying where to divides1 from s2. Thus,
K(β) ≤ n −m +O(logn).

By construction,K(P ∣O(P,λ))+O(1) ≤K(β)+
O(1) ≤ n−m+O(logn). Using the assumption about
K(P), it is straight forward to compute

IK(P ;P ′) ≥m −O(logn)

On the other hand, the adversary can fully obtain
P , with only a logarithmic error, if it knowsλ the
security parameter, as the next theorem shows.

Theorem 7. Let P ′ = O(P,λ), for an adversaryA
who knowsλ:
1. K(P ∣P ′, λ) = O(logn).
2. IK(P,P ′∣λ) =K(P ∣λ) −O(logn).

wheren is the maximum length ofP,P ′ andλ.

Proof. If λ contains all the knowledge thatA requires
to obtainP givenP ′, then the shortest program for a
universal Turing machineU that describesP given
A,P ′ andλ, is negligible i.e. empty string. It is suf-
ficient forU to describeP from A,P ′ andλ with no
need of any extra programs i.e.U(Λ,A(P ′), λ) = P
whereΛ is an empty string.O(logn) is needed as an
overhead cost required byU to combineA,P ′ andλ
and to locate them onU tape. The advantage ofA
givenλ is obtained as follows:

IK(P ;P ′∣λ) =K(P ∣λ) −K(P ∣P ′, λ)

=K(P ∣λ) −O(logn)

These results are not surprising. Intuitively, an ad-
versary can easily recover the original code from the
obfuscated version once the security parameter that is
used for obfuscation is known.

4.3 On the Impossibility of Obfuscation

There exist other definitions of obfuscation in the lit-
erature. Of particular importance to us is the work of
(Barak et al., 2012), due to its famous impossibility
result. As the authors argue in that paper, the black-
box model they propose for obfuscation is too strong
to be satisfiable in practice.

The black-box model considers a program3 P ob-
fuscated if any property that can be learned fromP
can also be obtained by a simulator with only oracle
access toP . This essentially states thatP does not
give any particular information about that property,
since it is possible to learn it without having access
to P . Notice that this model does not compare an ob-
fuscated program with an original one, but rather with
its functionality.

This is different from the definitions that we have
proposed so far. Our definitions can be used to capture
this purpose, namely, measuring how much informa-
tion a programP gives about the function it computes,
which we denote byJP K.

It suffices to note that every functionF has a min-
imal program for it, say,Q. Then, its Kolmogorov
complexity is the size ofQ and for every other pro-
gramP computingF we have

K(F) = ∣Q∣ ≤ ∣P ∣.

For every such program it must be thatK(F) ≤
K(P)+O(1), otherwise we could build a programR
of sizeK(P) that producedP and then ran in succes-
sionR andU(R).4 This composition of programs is
itself a program with complexityK(P)+O(1)which
would be smaller than the assumed minimal program
F , i.e., a contradiction. Therefore, our definition can
be changed to compare the obfuscated program not
with any simpler program but withthe simplestpro-
gram computing the same function.

Definition 9. Consider a programP ′. We sayP ′ is
ǫ-securely obfuscated if

IK(JP
′K;P ′) ≤ ǫK(JP ′K),

for 0 ≤ ǫ ≤ 1.
We sayP ′ is a secure obfuscated program if isǫ-

secure andǫ is negligible.

We believe our definitions of obfuscation differ
from the simulation black-box model in important
ways, and that because of this they avoid the impos-
sibility result of (Barak et al., 2012).

3Or rather, a circuit or a Turing machine representation
thereof.

4That is, we runR to produceP then we execute the
result of this first execution, that isP itself.

Algorithmic�Information�Theory�for�Obfuscation�Security

81

Our definition is a less stringent form of obfusca-
tion rather than a weak form of black box obfusca-
tion. We assume the functionality of an obfuscated
program is almost completely known and available to
an adversary, and only require hiding the implementa-
tion rather than the functionality itself. This approach
to obfuscation is very practical and pragmatic, espe-
cially for software protection obfuscation, as usually
the customer likes to know exactly what a product
does, although s/he might not care about how it was
implemented.

Our definition for security takes a programP
(clear code), which supposedly is an easy and smart
implementation of functionalityF , and compares it
with P ′, which is a different and supposedly unintel-
ligible implementation ofF , such that the originalP
can not be perceived or obtained fromP ′. The de-
fenders’ aim is not to prevent an adversary from un-
derstanding or findingF , but to prevent her/him from
finding their own implementationsP .

This intuition best matches the idea ofbest possi-
ble obfuscationwhich was advanced by Goldwasser
and Rothblum (Goldwasser and Rothblum, 2007).
According to (Goldwasser and Rothblum, 2007) an
obfuscatorO is considered as best possible if it trans-
forms a programP so that any property that can
be computed from the obfuscated programP ′, can
also be computed from any equivalent program of the
same functionality. However, despite the close intu-
itive correspondence, our definition also differs from
best possible obfuscation, in the sense that it relies on
some form of black-box simulation. It was proved in
(Goldwasser and Rothblum, 2007) that best possible
obfuscation has a strong relation withindistinguisha-
bility obfuscation(Barak et al., 2001) (Garg et al.,
2013), ifO is an efficient obfuscation i.e. run in poly-
nomial time.

In contrast, the black box model definition re-
quires that all properties of a given obfuscated pro-
gramP must be hidden from any adversary that ig-
nores its source code but has access to at most a poly-
nomial number of points ofJP K.

1. We can see that in our case, the adversary knows
more about the functionality. Since the function-
ality is mostly public, this would be equivalent to
giving the simulator in the black-box model ac-
cess to this extra knowledge, reducing the advan-
tage of the adversary and possibly making some
functions obfuscatable.

2. On the other hand, our definition allows the leak-
age of a small, but non-zero, amount of informa-
tion. Compare with the black-box model where
a single-bit property that is non-trivially com-
puted by an adversary, renders a function un-

obfuscatable. Our definition requires the adver-
sary to be able to compute more than a few bits in
order for obfuscation to be broken.

3. Our definition considers only deterministic adver-
saries, again making adversaries less powerful
and reducing their advantage.

We can try to model the implications for our def-
inition of a successful black-box adversary against
obfuscation. Consider an adversaryA attacking a
predicateπ by accessing an algorithmA , such that
A(P ′) = 1 if and onlyP ′ satisfiesπ. In this case,
A is able to compute 1 bit of information aboutP ′,
and we want to measure how much this helpsA in
describing some simpler programP that implements
the same functionJP ′K.

Since the adversaryA knowsA, s/he can enumer-
ate the setS of all programs that satisfyA. Then,
for some programP ∈ S, we would haveK(P ∣A) ≤
K(S∣A) + log ∣S∣.

Note that the setS may be infinite, and so enu-
meration is the best that can be done: we enumerate
all relevant programs and runA with each of them,
noting the result. We could try to avoid this infinity
problem by noticing we are only interested in pro-
grams simpler than the original, and thus satisfying
K(P) ≤ K(P ′) ≤ ∣P ′∣. This does not give abso-
lute guarantees, since in general there are programs
with ∣P ∣ > ∣P ′∣ andK(P) ≤ K(P ′), but our hope is
that these are few and far between as they increase
in length. Thus, even if we make this assumption
and disregard a whole class of possibly relevant pro-
grams, we still have in the order of2n specimens.
If A were a deterministic algorithm, we would have
K(S∣A) = O(1), and if S has less than a half of
all possible programs, then indeed we would find that
K(P ∣A) ≤K(S∣A) + log ∣S∣/2 ≤ n − 1.

However,A is randomized, and in order to accu-
rately produceS, for each programq, A must be run
with a set of random coinsr such thatA(q, r) ⇔
q ∈ S. One way to describeS from A would need
a polynomial number of bits for each program inS.
Now, we no longer have the comfort of a negligi-
bleK(S∣A) term, and we can no longer be sure that
knowing this property would in any way reduce the
complexity of our target program.

We can still try to go around this problem, by al-
lowing our enumerator to list not only all programs
but also all possible random strings, and choosing the
majority vote for each program. The length, and there-
fore the number, of possible random strings is bound
by the running time of the program, which in turn is
bound by a function of its length. Therefore, if we
limit the length of our programs we limit the number

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

82

of random strings to search5.
This would eliminate the necessity of considering

the extra information due to the random coins, but on
the other hand the running time would increase ex-
ponentially. Any successful adversary would be very
different to the PPT adversaries of (Barak et al., 2001),
and although our definition has been made, for ease of
exposition, with unbounded Kolmogorov complexity
(for unbounded adversaries), it is easy to change it to
consider polynomially-bounded adversaries by using
an alternative definition of mutual information:

I∗K(P ;P ′) =K(P) −Kt()(P ∣P ′),

wheret() is a polynomial on the length ofP ′ that acts
as a hard limit to the number of steps the universal
machine can be run for.

This notion of information can be negative in
some cases, but clearly limits the ability of any ad-
versary trying to findP from P ′ in a consistent way
with the black-box model. With this definition of
obfuscation, the above reasoning would lead to ex-
amples where non-obfuscatability by the black-box
model does not prevent obfuscatability in the algorith-
mic information-theoretic model.

4.4 Security and Unintelligibility

Our first attempt to characterize obfuscation was
based onunintelligibility, and then we evolved to a
notion of security based onmutual information. The
first notion seemed more immediately intuitive, tra-
ditional obfuscation techniques seem to rely only on
making the code as complex as possible in an attempt
to hide its meaning. But precisely this notion of “hid-
ing meaning” is nothing more than reducing the infor-
mation that the obfuscated program leaks about the
original one, and so we believe the second approach
to be the correct one. However, we can ask the natural
question: is there any relation between these two con-
cepts? Does high unintelligibility imply high security,
or vice-versa?

We give a partial answer to this question. In cer-
tain situations, high unintelligibility will imply high
security, as stated in the following theorem.

Theorem 8. Consider a programP of lengthm and
its obfuscated versionP ′ = O(P,λ) of lengthn > m
(where n is at most polynomially larger thanm), sat-
isfying c-unintelligibility for c ≥ n

K(P)
. Assuming

that the obfuscation security parameterλ satisfies
K(P ′∣P) ≥K(λ∣P) − α, then up toO(logn):

I(P ;O(P,λ)) ≤ α −O(1)

5Conversely, if we really want to enumerate all pro-
grams, then we also have to enumerate an infinite number
of random strings.

\\ variable that holds authentication
password

string user-Input = input();
string secure-password = ...;
if secure-password == user-Input {
grant-access();

else
deny-access();}

P : simple password checker

string O@ = x0();
string $F=...;
if O@== $F{
x1();

else
x2(); }

P
′ : obfuscatingP

Figure 2: An example for obfuscating a program using re-
naming technique.

Proof. By Theorem 3,K(P ′) = K(O(P,λ)) ≤
K(P,λ) + K(O) = K(P,λ)6 and by assumption
K(P ′) ≥ (c + 1)K(P). Then,

K(P,λ) ≥ (c + 1)K(P)

K(P,λ) −K(P) ≥ cK(P)

K(λ∣P) ≥ cK(P)

Now, for mutual information, we have

I(P ;P ′) =K(P ′) −K(P ′∣P)

≤K(P ′) −K(λ∣P) + α (by assumption)

≤ n − cK(P) + α

≤ n − n + α (by assumption)

= α

Intuitively, if we consider an optimal obfuscation
key (it has all the information needed to produceP ′

fromP , but not much more than that), we can say that
if P ′ is c-unintelligible for large enoughc, thenP ′ is
a secure obfuscation ofP .

The above theorem shows when highc-
unintelligibility implies security of code obfuscation.
It turns out that the reverse implication does not exist,
as the following theorem illustrates.

Claim 9. There are obfuscated functionsO(P,λ)
that are arbtrarily secure and yet do not satisfyc-
unintelligibility for c ≥ 0.

6TheO(1) term is absorbed by the logarithmic additive
term that we are not notating

Algorithmic�Information�Theory�for�Obfuscation�Security

83

Proof. Consider first the case of programP of Fig. 2,
that simply checks a password for access, and its ob-
fuscated versionP ′, which was computed using lay-
out obfuscation (Collberg et al., 1997): variable and
function renaming and comment deleting. The obfus-
cated variable and function names are independent of
the original ones and so the information thatP ′ con-
tains aboutP is limited to the unchanging structure of
the code: assignment, test and if branch.

The complexity of the original code can be bro-
ken in several independent parts: the comment, the
structure, the variable and function names, and there-
fore we can writeK(P) = nc + ns + nv. The only
thing thatP ′ can give information about is the struc-
ture part, since all the other information was irrevoca-
bly destroyed in the process: there is no data remain-
ing that bears any relation to the lost comment or the
lost function names. Therefore,IK(P ;P ′) ≤ ns =

ns

nc+ns+nv

K(P). We can make the fraction ns

nc+ns+nv

as small as necessary by inserting large comments,
long names and representing structure as compactly
as possible, for example, keeping names in a dictio-
nary block and indicating their use by pointers to this.

However the complexity ofP ′ is less than that
of P , since there is less essential information to de-
scribe: the same structure, no comments and the func-
tion names could be described by a simple algorithm.
Therefore, we have that c-unintelligibility can not be
satisfied for any non-negative value ofc. This shows
that highǫ-security does not imply high unintelligibil-
ity.

The next theorem shows how we can obtain se-
curity if the obfuscated code is complex enough and
the obfuscation key is independent of the original pro-
gram.

Theorem 10. LetP be a program of lengthn andλ
an independent and random obfuscation key, satisfy-
ingK(λ) ≥ n − α andK(P,λ) ≥K(P) +K(λ) − β,
whereα,β ∈ N. Suppose the obfuscationO(P,λ) sat-
isfiesK(O(P,λ)∣P) ≥ K(λ∣P) −O(1). Then up to
a logarithmic factor:

IK(P ;O(P,λ)) ≤ α + β

Proof.

IK(P ;O(P,λ)) =K(O(P,λ)) −K(O(P,λ)∣P)

≤K(O(P,λ)) −K(λ∣P)

Applying Theorem 1

≤K(O(P,λ)) −K(λ,P) +K(P)

≤ n −K(P) − n + α + β +K(P)

≤ α + β

The first two assumptions are natural: pickingλ at
random and independently ofP will satisfy high com-
plexity and low mutual information with high proba-
bility, so we can simply assume those properties at
the start. The third assumption, however, is not im-
mediately obvious: it describes a situation where the
obfuscation key isoptimal, in the sense that it con-
tains just the amount of information to go fromP to
P ′, within a small logarithmic term. The following
lemma shows howλ must have a minimum complex-
ity to allow the derivation ofP toP ′.

Lemma 11. ConsiderP ′ = O(P,λ) is the result
of obfuscating a programP . Then, K(λ∣P) ≥
K(P ′∣P) −O(1)

Proof. Given the obfuscatorO and anyλ, construct
the functionqλ(⋅) = O(⋅, λ). Let Qλ be a program
that implements it. Then, clearly,U(Qλ, P) = P ′

and so∣Qλ∣ ≥ K(P ′∣P). To describeQλ, we only
need to specifyλ and instructions to invokeO with
the proper arguments, but sinceP is already known,
we can use it to find a shorter description forλ. This
givesK(P ′∣P) ≤K(λ∣P) +O(1).

An optimal obfuscation keyλ is then the one that
uses as little information as possible.

Obfuscation techniques can use randomness or
not. In Claim 9, we showed one case where names
could be obfuscated in a deterministic way, without
any randomness. However, we could equally have
used instead highly random names, with the same ef-
fect in security but increasing unintelligibility as well.
We can as well consider that the set of obfuscation
techniques is finite and describe each of them by a
unique number. This way, we can characterize a sin-
gle application of obfuscation by a key composed of
the technique’s index and the randomness needed.

We now proceed to show that it is possible to
achieve obfuscation security according to our defini-
tions, but restricted to a passive adversary, that is, one
that does not realize transformations over the inter-
cepted code. The intuition is to use obfuscation tech-
niques that behave as much as possible as secure en-
cryption functions, namely, using random keys that
are independent from the code and large enough that
they obscure almost all original information. The cru-
cial difference that enables security is that because an
obfuscation technique preserves functionality, we do
not need to decrypt the obfuscated code and so don’t
need to hide the key.

First, we prove the effect of obfuscating an ele-
mentary piece of code, by application of a single ob-
fuscation technique. Then, we reason about the case
of a full program, composed of several of these inde-
pendent blocks.

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

84

Theorem 12. Let p represent a program block,O
an obfuscation technique andλ ∈ L an obfuscation
key with fixed lengthn. Let p′ = O(p,λ) be the ob-
fuscated block. AssumeO produces an output with
lengthℓ ≤ n + γ and is “nearly-injective” in the fol-
lowing sense: for everyp, any subset ofL of keys
with the same behaviour forp has cardinality at most
polynomial in n. That is, for all p and λ0 ∈ L,
∣{λ ∶ O(p,λ) = O(p,λ0)}∣ ≤ n

k, for some positive in-
tegerk.

Then, if the key is random,K(λ) ≥ n−α and inde-
pendent fromp, K(λ∣p) ≥ K(λ) − β, the obfuscated
codep′ is (α+β+γ)-secure up to a logarithmic term.

Proof. By symmetry of information, we can write
K(p∣p′) = K(p′∣p) + K(p) − K(p′). Sincep′ =
O(p,λ), it’s easy to see thatK(p′∣p) ≤ K(O) +
K(λ∣p) = K(λ∣p), sinceK(O) is a constant in-
dependent ofp, λ or p′. As well, we can show
the reverse inequality. To produceλ from p, we
can first producep′ from p (with a program that
takes at leastK(p′∣p) bits) and then build the set
Sp,p′ = {λ ∶ ∣λ∣ ≤ n,O(p,λ) = p′} of all compati-
ble λ, by a program whose length isO(1). Finally,
we just have to give the index ofλ in this set, and
so K(λ∣p) ≤ K(p′∣p) + log#Sp,p′ . Then, by as-
sumptions onλ, K(p′∣p) ≥ K(λ∣p) − log#Sp,p′ ≥
n − α − β − log#Sp,p′ . By assumption on the out-
put of O, K(p′) ≤ ∣O(p,λ)∣ ≤ n + γ. This gives
K(p∣p′) ≥ K(p) + n − α − β − O(logn) −K(p′) ≥
K(p) − α − β − γ −O(logn).

The randomness and independence conditions for
the keys are natural. The other two conditions may
seem harder to justify, but they ensure thatO effec-
tively mixes p with the randomness provided byλ:
the limit on the size of subsets ofL implies a lower
bound on the number of possible obfuscations forp
(the more the better); on the other hand, the limit on
the length of the output ofO forces the information
contained inp to be scrambled withλ, since it can
take only a few more bits than those required to de-
scribeλ itself. The extreme case is similar to One-
Time Pad encryption7, when both the output andλ
have the same sizen, andO is injective for eachp:
there are2n keys, as well as possible obfuscations
for eachp. Furthermore, because the obfuscated code
has the same length ofλ, the exact same obfuscated
strings are possible for eachp, maximizing security.

In general, a program is composed of several of
these minimal blocks in sequence. The above proof
shows when the obfuscated blockp′ gives no informa-
tion about its original block, sayp0. As well, p′ can

7Which is proved to be an unconditionally secure sym-
metric cypher

not give any more information about any other block
p1, as there is no causal relation betweenp1 andp′.
At best, there is some information inp1 aboutp0, but
then the information given byp′ aboutp1 should be at
most that given by aboutp0. Therefore, we conclude
that if all the sub-blocks in a program are securely ob-
fuscated, then the whole program is. The above the-
orem, then, shows that secure obfuscation is possible
under very reasonable assumptions.

5 INDIVIDUAL SECURITY OF
CODE OBFUSCATION

Studying the security of individual instances of obfus-
cated code provides more granularity. Even if the ob-
fuscated program is considered secure according to
our definition, it may have parts which can provide
some information about other obfuscated parts, which
reduce the security of the obfuscated code. It could be
that a program is obfuscated but that some module is
not: some part of the obfuscated code stays still in
its original form. We can demonstrate this relation
by providing some boundaries on the complexity of
subprograms in the same program.

We can view (obfuscated) programs as finite,
and therefore recursively enumerable, sets of subpro-
grams (blocks or modules) such thatP ′ = {p′n}n∈N.
Given an obfuscated programP ′, it may consist of ob-
fuscated and unobfuscated modules, that is:∃p′j , p

′
i ∈

P ′, wherep′i is an obfuscated module andp′j is an
unobfuscated module.

Theorem 10 demonstrates the effect of security pa-
rametersλ on the whole obfuscation process. The
following results show the effect of each individual
security parameter on each obfuscated subprogram.
Choosing a goodλ (with a good source of random-
ness) requires a minimum amount of information to
be shared with obfuscated code and the clear code. It
is important to study the relation between the security
parameter and the original (clear) code. In the follow-
ing theorem, we use a simple way to check the inde-
pendence betweenλ andP on the subprogram level.

Theorem 13. Let P ′ be a set of obfuscated subpro-
grams andP a set of clear subprograms, such that
each subprogramp′ of P ′ has length at mostn, and
is the obfuscation of a corresponding block inP :
∃pi ∈ P,κi ∈ λ. p′ = O(pi, κi). If K(κi, pi) ≥
K(pi) +K(κi) − α, then (up to a logarithmic term):

IK(κi;pi) ≤ α

Proof. Since K(pi, κi) ≤ K(κi∣pi) + K(pi) +

Algorithmic�Information�Theory�for�Obfuscation�Security

85

O(logn), we have by assumption

K(pi) +K(κi) − α ≤K(κi∣pi) +K(pi) +O(logn)

K(κi) − α ≤K(κi∣pi) +O(logn)

K(κi) −K(κi∣pi) ≤ α +O(logn)

IK(κi, pi) ≤ α +O(logn)

The following two theorems address the secu-
rity of two different forms of code obfuscation:
obfuscation-as-encoding and obfuscation-as-hiding.
In the obfuscation-as-encoding technique, the origi-
nal program is transformed in such a way it changes
the structure of original code, but preserving the func-
tionality, for example Data transformation techniques
such as array splitting, splitting variable, Restruc-
ture Arrays and Merge Scalar Variables (Collberg
et al., 1997). The encoding process is considered as
the security parameter that dictates how the obfusca-
tion should be performed and where it should take
place. Encoding differs from encryption, if some-
body knows the encoding process, then the original
code can be recovered. In encoding obfuscation, the
clear program is not presented in the obfuscated code;
what still exists, but hidden, is the encoding process.
Reversing the encoded program (obfuscated) requires
finding and understanding the encoding process. For
instance we used a simple encoding in Fig. 1,x=x+i
is encoded asx=x+4*i;x=x-2*i;x=x-i; the en-
coding process convertsi to 4*i;-2*i;-i, to
figure outx=x+i , we have to find and combine
4*i;-2*i;-i, which is the security parameter in
this case.

The next theorem addresses the security of obfus-
cation code when we apply encoding toP (as a set
of subprograms), here, the encoding process is pre-
sented as a part of security parameter.

Theorem 14(Encoding). LetP ′ be a collection of ob-
fuscated subprogramsp′i usingκi ∈ λ, each of length
at mostn. Then,

IK(κi;p
′
i) ≤ δκi

−O(1),

for δκi
= δ(κi∣P

′).

Proof. SinceP ′ is a collection of sub-programs, we
can assume that it contains all the information inp′i as
well as that of all other sub-programs. Then,

K(κi∣P
′) =K(κi∣p

′
1
, . . . , p′i, . . . , p

′
n) ≤K(κi∣p

′
i)

and so

IK(κi;p
′
i) =K(κi) −K(κi∣p

′
i)

≤K(κi) −K(κi∣P
′)

≤K(κi) − (log#P ′ − δκi
) by Definition 4

Because each subprogram has length at mostn,P ′

can contain at most2n distinct programs. Assuming
that each appears at most a constant number of times,
we have that#P ′ = O(2n) andlog#P ′ = n +O(1).
Then,

IK(κi;p
′
i) ≤ n − n + δκi

−O(1)

≤ δκi
−O(1)

In hiding obfuscation techniques the original sub-
program still exists in the obfuscated program (set of
obfuscated subprograms), the security of such tech-
niques depends on the degree of hiding in the set ob-
fuscated subprograms. An example of such technique
is the control flow obfuscations such as Insert Dead
basic-blocks, Loop Unrolling, Opaque Predicate and
Flatten Control Flow (Collberg et al., 1997). Nor-
mally these techniques are combined and used with
encoding obfuscation techniques, in order to make the
code more resilient to reverse engineering techniques.

For code obfuscation, an opaque predicate is used
as a guard predicate that cannot statistically be com-
puted without running the code; however the original
code still exists too in the obfuscated code, but pro-
tected by the predicate. In Fig. 1 we used opaque pred-
icates with simple data encoding technique. Consider
the following obfuscated code of Fig. 1-(a), where the
encoding has been removed. Obviously,x=x+i is
still in the code, but is hidden under the protection of
opaque predicate.

while(i<n){
i=i+1

if (7*y*y-1==x*x){ //false
y=x*i;

else
x=x+i;}}

opaque predicate with no encoding

Theorem 15(Hiding). Let P ′ be a collection of ob-
fuscated subprogramsp′i, each of length at mostn.
Then,

IK(pi;p
′
i) ≤ δpi

−O(1),

for δpi
= δ(pi∣P

′).

Proof. The proof is very similar to Theorem 14. The
block pi is hidden inP ′ but in its original form, due
to the obfuscation process. SinceP ′ is a collection
of sub-programs, we can assume that it contains all
the information inp′i as well as that of all other sub-
programs. Then,

K(pi∣P
′) =K(pi∣p

′
1
, . . . , p′i, . . . , p

′
n) ≤K(pi∣p

′
i)

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

86

IK(pi;p
′
i) =K(pi) −K(pi∣p

′
i)

≤K(pi) −K(pi∣P
′)

≤K(pi) − (log#P ′ − δpi
) by Definition 4

Similarly to the proof of Theorem 14,#P ′ = O(2n)
andlog#P ′ = n +O(1). Then,

IK(pi;p
′
i) ≤ n − n + δpi

−O(1)

≤ δpi
−O(1)

6 CONCLUSION AND FUTURE
WORK

In this paper, we provide a theoretical investigation
of code obfuscation. We defined code obfuscation us-
ing Kolmogorov complexity and algorithmic mutual
information. Our definition allows for a small amount
of secret information to be revealed to an adversary,
and it gives an intuitive guarantee about the security
conditions that have to be met for secure obfuscation.
We argued our definition is more lenient than the vir-
tual black-box model of Barak et al. and that for that
reason the impossibility result does not apply. In con-
trast, we showed that under reasonable circumstances
we can have secure obfuscation according to our defi-
nition.

To the best of our knowledge, this paper is the first
to propose algorithmic information theory as a the-
oretical basis for code obfuscation. We believe that
our new definition for code obfuscation provides the
first step toward establishing quantitative metrics for
certifying code obfuscation techniques. Currently, we
are working toward deriving new metrics based on our
model, aiming to validate and apply these metrics, em-
pirically, to real obfuscated programs using state of
the art obfuscation techniques.

There are still some questions we want to address
in future work. For example, it is still not clear
whether the complexity of security parameter (key)
has always a positive effect on the the security of ob-
fuscated programs based on algorithmic mutual infor-
mation definition. Furthermore, algorithmic mutual
information has a parallel counterpart based on classi-
cal information theory such as Shannon mutual infor-
mation, it would be interesting to explore the relation
between our definition and Shannon mutual informa-
tion in the context of code obfuscation security. We
are also planning to study and characterize the secu-
rity of particular techniques and to analyze more care-
fully the scenario of active adversaries.

ACKNOWLEDGEMENTS

This research is partially funded by EPSRC-DTA
(Mohsen). We would like to thank Steffen van Bakel
and Emil Lupu for their comments.

REFERENCES

Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sa-
hai, A., Vadhan, S., and Yang, K. (2012). On the
(im)possibility of obfuscating programs.J. ACM,
59(2):6:1–6:48.

Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sa-
hai, A., Vadhan, S. P., and Yang, K. (2001). On the
(im)possibility of obfuscating programs.IACR Cryp-
tology ePrint Archive, 2001:69.

Collberg, C., Thomborson, C., and Low, D. (1997). A Tax-
onomy of Obfuscating Transformations.

Gács, P. (1974). On the symmetry of algorithmic informa-
tion. Soviet Math. Dokl, 15:1477–1480.

Garg, S., Raykova, M., Gentry, C., Sahai, A., Halevi, S.,
and Waters, B. (2013). Candidate indistinguishability
obfuscation and functional encryption for all circuits.
In In FOCS.

Gauvrit, N., Zenil, H., and Delahaye, J. (2011). Assessing
cognitive randomness: A kolmogorov complexity ap-
proach.CoRR, abs/1106.3059.

Goldwasser, S. and Rothblum, G. N. (2007). On best-
possible obfuscation. InProceedings of the 4th con-
ference on Theory of cryptography, TCC’07, pages
194–213, Berlin, Heidelberg. Springer-Verlag.

Jbara, A. and Feitelson, D. G. (2014). On the effect of code
regularity on comprehension. InProceedings of the
22Nd International Conference on Program Compre-
hension, ICPC 2014, pages 189–200, New York, NY,
USA. ACM.

Kieffer, J. C. and Yang, E. H. (1996). Sequential codes, loss-
less compression of individual sequences, and Kol-
mogorov complexity. IEEE Trans. on Information
Theory, 42(1):29–39.

Lathrop, J. I. (1997). Compression depth and the behavior
of cellular automata.Complex Systems.

Li, M. and Vitányi, P. M. (2008). An Introduction to Kol-
mogorov Complexity and Its Applications. Springer
Publishing Company, Incorporated, 3 edition.

McCabe, T. J. (1976). A complexity measure.IEEE Trans.
Software Eng., 2(4):308–320.

Shen, A. (1982). Axiomatic description of the entropy
notion for finite objects. VIII All-USSR Conference
(Logika i metodologija nauki),Vilnjus, pages 104 –
105. The paper in Russian.

Shen, A., Uspensky, V., and Vereshchagin, N. (2014).
Kolmogorov complexity and algorithmic randomness.
MCCME Publishing house.

Taveneaux, A. (2011). Towards an axiomatic system for kol-
mogorov complexity.Electronic Colloquium on Com-
putational Complexity (ECCC), 18:14.

Algorithmic�Information�Theory�for�Obfuscation�Security

87

