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Abstract: In a teleoperated system, robots are often required to easily change among various modes of operation; 
further, an efficient development of large-scale teleoperated systems is desired. Thus, we propose a three-
layer software architecture implemented using a database node module (DNM). All modules are connected 
to a DNM, with connections among modules defined as virtual connections. It is possible to change 
connections during operation via the virtual connection of the DNM, and the DNM can achieve high-speed 
communication and high-speed connection changes. We examined the evaluation index of our module 
design using this architecture because module interface and function design influence the architecture. 
Finally, we confirmed that a robot based on our architecture worked in a real environment. 

1 INTRODUCTION 

Remote mobile robots often work in extreme 
environments such as planetary surfaces, disaster 
sites, and other dangerous zones. In general, they are 
required to achieve a stable performance during 
advanced missions in these environments. Several 
system architectures for robots have been proposed 
for achieving such capabilities (Ahn et al., 2010; 
Medvidovic et al., 2011; Volpe et al., 2001). 

Teleoperators comprise several functions such as 
action planning, recognition, and motion control and 
various subsystems such as moving mechanisms, a 
communication system, and various sensors. 
Because these systems are multifunctional, they 
often become bulky and complex. Conversely, these 
systems are required to be scalable and efficiently 
adapt to any situation. Thus, their control and 
operating software must enable users to freely 
combine installed elements via a network and 
modify system components. 

To flexibly respond to environmental changes or 
unpredictable problems, it is necessary to change the 
system configuration or add new functions from a 
remote site over a network. Most conventional 
software architectures for teleoperation cannot 
operate a robot if a failure occurs at a remote site 
(Estlin et al., 2008; Baranyi, 2011; Hoshino and 
Kunii, 2012; Galambos, 2012). This arises because 

of difficulties in the dynamic modification of robotic 
functions. From this viewpoint, an architecture with 
advanced scalability and variability is required for a 
mission-critical operation. 

Teleoperated systems must also address info-
communication, i.e., the transmission of sensory 
information from a remote site to a human operator. 
For the safe operation of a robot, information of 
system conditions should be known; however, the 
complexity of the system makes it difficult to 
understand its various states. To overcome these 
limitations, we propose a system architecture that 
emphasizes variability in the structure of functions 
and data transparency (Ando et al., 2011). 

In short, we need a fault-tolerant robot system. In 
widely used robot middleware such as R.O.S. and 
RT-Middleware targeted at easily implementing 
robot systems, adapting teleoperated systems is 
especially important. Therefore, we propose our 
architecture for a fault-tolerant system in which the 
ease of implementation is crucial. Accordingly, our 
architecture was constructed using RT-Middleware. 

In this study, we discuss the importance of a 
module design and the granularity of the module in 
our three-layer architecture. Moreover, we show the 
evaluation index of the module design and confirm 
the validity of our architecture via experimentation. 

349Kunii Y., Matsui Y. and Furukawa M..
Three-Layered Software Architecture and Its Variability for Teleoperated System.
DOI: 10.5220/0005547703490356
In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO-2015), pages 349-356
ISBN: 978-989-758-123-6
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



2 PROPOSED SOFTWARE 
ARCHITECTURE FOR 
TELEOPERATED SYSTEMS 

In general, teleoperators operate at locations that are 
not amenable to human activity. Moreover, the 
environment of these locations may not be well 
known. Therefore, system failures may occur 
because of the nonconformity of parameters or 
algorithms. Further, harsh environmental conditions 
often cause hardware problems. In such cases, the 
system should be alterable by software alone without 
physical restriction, i.e., the system should be 
flexible and adapt the structure of its functions to 
suit a situation. Moreover, as mentioned above, the 
safe operation of the robot requires knowledge of the 
state of the system during its operation. 

Therefore, we designed a system that emphasizes 
flexibility and variability in its structure of functions 
and transparency and accessibility of data. In our 
proposed architecture, which is illustrated in Figure 
1, each function is modularized and connected via a 
network. Advanced variability is achieved by 
defining real and virtual connections within different 
layers. Each layer of the architecture is detailed in 
the subsections as follows. 

2.1 Physical Layer 

In the bottom layer, all hardware is connected via a 
network, as shown in Figure 2. Any function can be 
directly accessed and connections can be changed 
using software, which imposes no physical 
restrictions. Thus, our system is accessible and has 
an advanced variable structure. In addition, it 
increases fault tolerance by minimizing lost units in 
the event of system failures. 

2.2 Connection Layer 

A robot operating in remote locations must be able 
to switch among multiple tasks, each task 
comprising a module’s behavior logic, in response to 
a given situation; however, connection switching is 
very expensive to realize in practice. Thus, the 
middle layer of our proposed architecture manages 
the actual modules of the system and virtually 
realizes task dependencies defined at the top layer. 
This is performed by the database node module 
(DNM), which relays information among the 
functions of modules. In particular, all modules are 
connected to the DNM, as shown in Figure 3, and 
data are exchanged at a high speed via shared 

memory. The DNM transmits destination addresses 
of each module containing task dependencies 
defined by a user in a logical layer. In this manner, 
the DNM realizes a network list. Hence, module 
connections can be switched by changing reference 
pointers, while the DNM manages the timing of the 
switches. 

Moreover, because the DNM contains the data of 
all modules, it realizes high system transparency. To 
achieve load balancing and reduced traffic, the 
DNM can be arranged in a hierarchical structure, 
illustrated in Figure 4. Further, because the 
hierarchical structure limits the range of failures, this 
structure enables an easy identification of the causes 
of failures. 

 

Figure 1: Conceptual diagram of our three-layered 
architecture. 

 

Figure 2: All hardware is connected via a network. 

2.3 Logical Layer 

The top layer enables users to intuitively compose 
tasks, thereby improving the efficiency of task 
development. Users can collect the necessary 
modules and connect them according to the intended 
task flow, as shown in Figure 5. Our method allows 
free swapping, addition, replacement, and deletion 
of modules. Thus, the system can effectively 
reconstruct its functions and respond quickly to 
changing situations or any problems encountered. 
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3 DATABASE NODE MODULE 

The efficiency of development and operation 
processes is enhanced in our proposed architecture 
by function modularization. By modularizing every 
function, the development process can be shared and 
both development and maintenance can be quick. 
Moreover, the development process becomes more 
efficient because a once-developed function is 
essentially a software resource that can be diverted 
to other systems. 

To execute task flows designed by an operator 
on the logical layer, task connections of the flows 
have to be converted to virtual connections of 
software modules. These virtual connections are 
controlled and managed by the DNM. 

3.1 Task Flow by Virtual Connection 

When executing logic constructed on the logical 
layer, the DNM reads the netlist of the virtual 
connection, delivers the data to each functional 
module, and controls its behavior. To construct more 
flexible logic into the logical layer, we introduce a 
port same as that adopted in RT-middleware. To 
establish a virtual port connection, the DNM 
generates shared-memory space corresponding to the 
number of ports in each module and executes data 
communication. 

Moreover, when a task module straddles two or 
more DNMs, intermodule data communication 
requires the synchronization of the memory space 
among databases. While realizing this 
synchronization, a user-designed idea should not be 
input into the connection layer. Therefore, the DNM 
reads the netlist and automatically constructs data 
routing among databases based on real connections, 
as shown in Figure 6. The overall flow is as follows: 
1) Data searches the position of an addressee 

module. 
2) The course from a transmitting agency module to 

an addressee module is established.  
3) The database of an addressee generates the 

memory space for transmitting agency modules. 
4) Memory space is synchronized among databases, 

and data communication is performed. 

By virtual connections using the DNM, a task can be 
switched dynamically and at high speeds. In a 
conventional system in which modules are directly 
connected during task switching, the modular 
connection is reconnected by a single separation re-
degree. Because task switching merely involves 
replacing the virtual connection information read 

into the DNM, modules can be switched at a reduced 
cost. When a hardware component breaks down, the 
system can shift to the backup node at a high speed 
by rewriting the virtual connection. This is an 
important stabilizing feature that is advantageous to 
manipulate a robot in remote places where direct 
maintenance is impossible. 

 

Figure 3: Module connections with the DNM. 

 

Figure 4: Hierarchical structure of the DNM and modules. 

 

Figure 5: Changing the initial task flow. 

 

Figure 6: Analysis of virtual connections on the DNM. 

3.2 Data Communication among 
Modules using Shared Memory 

The function Shared-Memory (SHM) Server 
supplied to a database enables data communication 
among modules. Data communication is executed 
when the SHM Server creates a shared-memory 
space according to demand from the SHM Client 
(functional modules), which then accesses data in 
the space, as illustrated in Figure 7. When a 
functional module wants to access data, it displays a 
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pointer to the storage address of the data. In this 
manner, data are exchanged at higher speeds than 
possible using typical middleware. Moreover, 
although shared memory is generally implemented 
using a single CPU, two or more memory spaces are 
synchronized using the Common Object Request 
Broker Architecture network, enabling the DNM to 
share data among two or more CPUs. Therefore, 
modular data access can be distributed, and high 
system performance can be maintained. 

Further, the SHM Server offers a semaphore that 
secures data consistency. Using the semaphore, data 
can be safely exchanged within shared memory by 
an exclusive control of data access to the shared-
memory space. 

 

 

Figure 7: Shared memory system for task flow. 

3.3 Realization of Remote Control and 
Task Management using Our 
Three-Layer Architecture 

The system controls a multitasking robot from a 
remote location; this requires the implementation of 
our Three-Layered Architecture on both operator 
and robot sides and their connection via a 
communication module, as shown in Figure 8. Thus, 
the two separate systems are incorporated into one 
large system. By constructing a separate tree for 
each side, the mutual system ensures a more stable 
communication path and robustness for severe 
environments. Each communication module is 
equipped with a data transceiver function among 
systems, a modular controlling function, and a task 
controlling function using TCP. 

A user selects a required module, creates various 
tasks, and assigns duties via flexible exchange from 
an operator side. Examples of user-defined tasks 
include combined mapping, course planning, driving 
the wheels of remote investigation vehicles, and 
operating a camera and a manipulator during remote 
sampling. 

4 MODULE DESIGN 

Our architecture is regarded as having high 

variability. To improve the variability of the system, 
the connections among modules should be able to be 
easily changed. 

 

Figure 8: DNM structure in a tele-navigation system. 

4.1 Structural Variability 

To increase structural variability, module 
connections should be able to be easily changed. Our 
architecture cannot connect modules that have 
different interfaces. Developers can define interfaces 
when creating a module; further, modules can have 
multiple interfaces. A module that has many 
different interfaces is difficult to connect. When the 
number of interfaces of a module is reduced, 
structural variability improves. The interface shows 
the relation among modules. 

4.2 Module Function 

Functions that include a module should have a deep 
relation with one another. Because modules consist 
of their functions, they are not allowed to contain 
unrelated functions. To support structural variability, 
a module should be divided into smaller 
components. Choices of the structure increase if 
there are many small modules. In other words, 
variability can be improved. 

4.3 Evaluation of Module Design 

It is possible to evaluate the architecture to 
determine whether it has high variability (as 
described later); however, implementation modules 
are different from modules created for evaluation. 
Modules created for evaluation consider variability, 
but modules in actual operation may not consider 
variability. Because module design for actual 
operation depends on developers, it is necessary to 
evaluate the design. A module is quantitatively 
evaluated to eliminate the differences in variability 
based on creators. At the same time, we evaluate 
whether the module is suitable for our architecture. 
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In general, a module design of large-scale 
systems has been discussed in the literature (E. 
Yourdon et al., 1979). It is clear that the design of 
each module has a large influence on a system. A 
general architecture has strict regulations regarding 
module design. In such cases, a module is evaluated 
according to the design regulations. However, in our 
three-layer architecture, there are no regulations 
governing module design. Instead, module design 
guidelines exist. We need a method to estimate 
whether a given module deviates from these 
guidelines. The evaluation of module design of our 
three-layer architecture is different from that of 
general architectures. 

4.4 Evaluation Index of Modules 

Module design and its interface are important in 
terms of changing module connections while a robot 
is operating. It is necessary to estimate whether the 
module is of a good design; this is the heart of 
evaluating module design. Therefore, evaluation is 
estimated first using the number of lines of the 
module source code itself. The subsections given 
below summarize a number of different indexes we 
used for our evaluation. 

4.4.1 Degree of Relation 

This index shows the strength of the relation of a 
module and other modules. The number of lines 
used for communication among modules and the 
number of lines of an entire module are compared as 
follows: 

∑ ௌ௧ሺௌሻ೙∈ೄ

ெሺ௫ሻ
. (1) 

Here, S is a set of programs for communication, 
St(S) is the number of lines for the communication 
of module x, and M(x) is the total number of lines of 
module x. A module should be designed that the 
relationship between modules is low. When one 
constructs a module with a good design, the related 
degree described here is low. 

4.4.2 Degree of Concentration 

This index shows the strength of the relation among 
the functions of a module. Modules are evaluated by 
the total percentage of the number of lines of a 
related function (Okamoto et al., 2012) as follows: 

∑ ∑ ܴ݁ሺ݂1, ݂2ሻ ∙ ܴܵሺ݂1ሻ ∙ ܴܵሺ݂2ሻ௙ଶ∈ி௙ଵ∈ி . (2) 

Here, F is a set of all functions in modules, Re(f1,f2) 
defines the relation of function f1 and f2, which a 

modules should be composed of high relationship 
function. The degree of concentration becomes high 
with good designs. 

4.5 Module Design Experimentation 

We evaluated a module of a traveling system in 
which three modules exist. We calculated the degree 
of relation and the degree of concentration of these 
modules, and then, we made alterations on the basis 
of these calculations. We revalued each module after 
such change and argue variability of the entire 
system. 

4.5.1 Evaluation using the Suggestion Index 

We calculated the suggestion index using three 
modules (results shown in Table 1). Reviewing the 
degree of concentration for module A, it was the 
lowest value (less than 50%) as compared with other 
modules. Such a module appears to be a bad design; 
thus, it was redesigned. The related degree of 
module B was also evaluated and was observed to 
have the highest value (more than 70%) as compared 
with other modules. Therefore, this module was also 
redesigned. 

4.5.2 Redesign of Modules 

Module A was the module that revises the distortion 
of the run course. A different calculation system was 
included in one module. The degree of concentration 
was the low value because different calculation 
method exists in single modules. This module 
divided every calculation system because a relation 
was the low function, which is illustrated in Figure 9. 

Next, module B makes a run order with handed 
data. The same type of data is received at the same 
time. It was designed so that it might be used 
exclusively. The degree of relation was the high 
value because it was the module from which much 
data was received. A data conversion module was 
recreated because the same data connected to this 
module was set to one, as shown in Figure 10. 

4.5.3 Evaluation after Design Changes 

Table 2 shows the calculated suggestion index 
values after redesign. Both the degree of relation and 
the degree of concentration are better. When 
changing a module, a programmer is conscious of an 
index because an index uses the number of lines of a 
given program. 

This change will benefit this architecture. While 
a robot operates, connections between the modules 
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can be easily changed. Note that another benefit is 
that the module does not depend on data interface. 

5 EXPERIMENTATION 

5.1 Simulation Results 

5.1.1 Data Communication Time 

To evaluate the performance of our system, we 
compared data communication time of our virtual 
intermodule connections with that of conventional 
RT-Middleware. Results of this comparison are 
shown in Figure 11. As shown in the figure, the 
communication time of the virtual connections in 
our architecture was lower than that of conventional 
RT-Middleware. Therefore, we conclude that data 
communication in this system is efficient. 

5.1.2 Variability 

To compare variability, we measured the task-
switching speed of actual connections using RT-
Middleware and that of the virtual connections in 
our proposed architecture. Results of the comparison 
are shown in Figure 12. The switching speed of our 
architecture was faster than that obtained from RT-
Middleware. Therefore, we confirm that our 
architecture offers efficient operation and task 
execution. 

5.1.3 Load Distribution 

We investigated how the load applied to a system 
would change when all modules are connected to a 
single DNM and when a module is distributed 
through two DNMs, each assigned to a separate PC. 
The load average as a function of time for the two 
cases is shown in Figure 13. As shown in the figure, 
we observe that adopting the multi-CPU 
configuration reduces system load relative to 
connecting all modules to a single DNM. 

5.2 Implementation Experiment 

The robot system adopted in the implementation 
experiment was Beetle-One, shown in Figure 14. 
Beetle-One is a test prototype for the planetary 
exploration Rover Micro6. An electric wheelchair, 
designed in the same manner as the Rover, was used 
as the test system. A joystick and computer control 
was made compatible with the two-wheel 
differential-steering system adopted in both systems.  

Table 1: Evaluation using the suggestion index. 

 

 

Figure 9: Module division. 

 

Figure 10: Creating a new module. 

Table 2: Evaluation after design changes. 

 

Figures 15–18 show an implemented system 
using our proposed architecture. Three distinct tasks 
were assigned to the half-autonomous travel system 
Beetle-One; each task was governed by the 
corresponding operator side task. Figure 15(a) shows 
the navigation system task in which a user specifies 
a target location, and then, the system automatically 
generates the run course of Beetle-One and directs it 
safely to the target. 

Another task is assigned to the GUI modules 
mediated by a user on an operator side. Figure 15(b) 
shows a visual odometry landmark tracker system 
task; this task acquires geographical feature data for 
the navigation system or visual odometry (i.e., the 
run orbit of Beetle-One) using the stereo camera on 
board of Beetle-One. It is run by the module group 
that acquires the azimuth difference picture from a 
stereo camera, the GUI display, and the operation 
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module group that calculates the details and 
generates visual odometry. 

 

Figure 11: Comparing communication times in a system 
with 10 modules for our proposed architecture and RT-
Middleware. 

 

Figure 12: Switching time of module connections for our 
proposed architecture and RT-Middleware. 

 

Figure 13: Load averages for single and double CPU 
experiments. 

Figure 16(a) shows the map system task; this 
task creates a map using the Laser Range Finder 
(LRF) carried on Beetle-One. The task is run by a 
module group that acquires instructional data for the 
pan–tilt mechanism, the LRF, and an operation 
module group that collates the latest and 
accumulated data to generate the map. 

A half-autonomous run of Beetle-One is realized 
by assigning these tasks in combination. In this 
system, task switching and multitasking are 
managed by an operation GUI for system 
management. The navigation system and visual 

odometry landmark tracker system interlock, 
whereas the map system operates independently. 
Moreover, these tasks are virtually connected by the 
logical layer in our Three-Layered Architecture. The 
actual connection with the DNM in the connection 
layer is shown in Figure 16(b). 

A network assigns two PCs and the 
microcomputers of Beetle-One to the same LAN via 
a cable LAN, and each module is assigned to a 
separate PC. Programmed with the above tasks, the 
robot was directed to run the enclosure of a 
university. The experimental situation is shown in 
Figure 17. This experiment tests the performance of 
orbit compensation and the landmark tracking 
system, as well as whether the system is operating 
normally from both sides of arithmetic processing, 
such as picture acquisition from the camera, visual 
odometry generation, course planning, DEM data 
access, and processing to the GUI. Clearly, from this 
experiment, the DNM of our proposed architecture 
ensures normal data communication and task flow 
and demonstrates the capacity to operate a robot. 
The final run locus and terrain evaluation map are 
shown in Figure 18. The system operated 
successfully for a long time, with proven stability 
and disaster tolerance. 

The DNM was implemented on our test-bed 
rover and evaluated by operating experiments. 
Functions and stability of the architecture with the 
DNM were confirmed by successful long-distance 
traversal of the rover. As mentioned above, we 
showed that our proposed architecture can improve 
the efficiency in the development and operation 
stages of a teleoperated system. 

6 CONCLUSIONS 

In this paper, we proposed a system architecture for 
teleoperators that offers advanced flexibility and 
variability, efficiency, scalability, and transparency. 
We realized advanced variability by defining real 
and virtual connections in different layers. Software 
modules are managed by the DNM. Further, system 
transparency is improved because the DNM contains 
the data of all modules. We validated our 
architecture characteristics via simulation. Thus, our 
proposed architecture provides significant 
contributions to the development and operation of 
teleoperators. In future work, we plan to further 
improve the efficiency of our proposed architecture 
by incorporating a task scheduler into the logical 
layer. 

Three-Layered�Software�Architecture�and�Its�Variability�for�Teleoperated�System

355



 

Figure 14: Beetle-One (left) and Micro6 Rover (right). 

 

Figure 15: (a) Navigation system task (left); and (b) image 
processing system task (right). 

 

Figure 16: (a) Map system task (left); and (b) Connection 
Layer (right). 

 

Figure 17: System implementation. 

 

Figure 18: Run locus and terrain evaluation map. 
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