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Abstract: Competitive advantage of a firm is usually reflected through its superiority in production resources and 
performance outcomes. In order to achieve high performance (e.g., productivity) and significantly improve 
product quality, major US industries have promoted and implemented Robust Design (RD) techniques 
during the last decade. RD is a cost-effective procedure for determining the optimal settings of the control 
factors that make the product performance insensitive to the influence of noise factors. In this research, we 
employ and compare two RD optimum-seeking methods to optimize a flexible manufacturing system 
(FMS). Taguchi Method (TM), which uses robust design concept, i.e., Signal-To-Noise Ratio (S/N) to 
reduce the output variation, is applied first. Taguchi’s approach to robust design drawn much criticism 
because it relies on the signal-to-noise (S/N) ratio for the optimization procedure. Because of this paramount 
criticism, a second method known as the Compromise Programming (CP) approach, i.e., the weighted 
Tchebycheff, is also used. This method formulates the robust design as a bi-objective robust design (BORD) 
problem by taking into account the two aspects of the RD problem, i.e. minimize the variation and optimize 
the mean. This approach seeks to determine the RD solution which is guaranteed to belong to the set of 
efficient solutions (Pareto points). Both methods use a RD formulation to determine an optimal and robust 
configuration of the system under study. The results gained through simulations and analytical formulations 
show that the current ways of handling the multiple aspects of the RD problem by using Taguchi’s S/N ratio 
may not be adequate. 

1 INTRODUCTION 

A variety of approaches has been proposed for the 
design, control and optimization of manufacturing 
systems in order to find the best parameter settings 
for an optimal operation. These techniques include 
mathematical programming, queuing networks, 
computer simulation, Artificial Intelligence (AI). It 
has been noticed that the usefulness of any of these 
tools depends on the nature of the problem. 
Computer-aided and automated production and 
manufacturing systems can be described or 
characterized as a group of processing centers 
connected by an automated material handling system 
under computer control. Selecting the optimal 
setting in such an environment is critically important 
since it affects the manufacturing performance 
measures, production cost and the loss due to a plant 
performance deviation from the company-identified 
target value. The selection of the appropriate setting 
of input factors in order to attain the required 

process target (mean) is of major interest in various 
manufacturing optimization models including 
Robust Design models. Material handling system is 
the back-bone of a Flexible Manufacturing System 
(FMS). It connects various production functions and 
regulates movement of parts through the facility. 
Automated guided vehicles (AGVs) have been the 
most popular choice among the several types of 
material handlers available and used in FMSs. 
Achievement of high performance from an 
Automated Guided Vehicle System (AGVS) is 
influenced by several “Design” and “Operational 
Control" issues. These include specifying the type 
and number of vehicles to be employed, specifying 
appropriate guide path configuration together with 
locating  load transfer stations, locating vehicle 
buffering areas and specifying their loading 
capacity, specifying vehicle dispatching and routing 
strategies, managing traffic, specifying unit load 
sizes, specifying central and/or local work-in-
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process storage capacity, specifying the machine 
queue discipline, etc.  

2 OPTIMIZATION OF FMSS 

Most of the contemporary manufacturing firms, 
typically flexible manufacturing systems possess a 
certain randomness that invites complexity. As the 
degree of complexity increases, it becomes difficult 
if not impossible to use analytical models to study 
the manufacturing system behaviors. Therefore, 
simulation is widely used to study manufacturing 
systems’ performances (Tshibangu, 2004). But, 
although a significant amount of simulation studies 
has been conducted for design and analysis of FMSs, 
especially to construct performance models, this 
technique does not provide optimal solutions.  
The present study analyzes an hypothetical Flexible 
Manufacturing System and aims to maximize the 
Throughput Rate (TR) of such a system while 
making the system robust, i.e., insensitive to 
uncontrollable factors otherwise known as noise. To 
achieve this, the research uses the well-known 
Robust Design (RD) methodology. Typically, when 
implemented by optimization, robust design is 
achieved by optimizing the mean of performance 
and minimizing the variation of performance. 

3 APPROACH IN THIS STUDY 

This study employs one of the well-known robust 
design methodologies, namely the Taguchi Method 
(TM), to find the optimal combination of input 
factor settings (levels) that would optimize (i.e., 
maximize) the throughput rate (TR) of the selected 
hypothetical Flexible Manufacturing System. In 
particular, the research uses the two-part orthogonal 
array for experimental design and the signal-to-
noise-ratio (S/N-ratio) as the robust optimization 
criterion.  
 Although Taguchi’s Methods (TM) are widely 
accepted in the industry, and although the inclusion 
of noise factors for the purpose of design 
optimization has been considered as an innovative 
concept by several researchers, others have severely 
criticized its statistical methods. Taguchi’s approach 
to robust design has particularly drawn a high 
amount of criticism because it relies on the signal-
to-noise (S/N) ratio for the optimization procedure 
(Pignatiello and Ramberg, 1991; Tshibangu, 2004).  

Because of the various criticisms formulated in 
disfavor of using the signal-to-noise ratio as 
optimization criterion following Taguchi robust 
design approach, this research paper has decided to 
address the multiple aspects of the robust design 
problem by exploring a different approach known as 
the Compromise Programming (CP), specifically the 
Tchebycheff method. Compromise Programming 
(CP) was first proposed by Zeleny (1974) and 
subsequently used by many researchers (Randhir, 
2000, Gorantiwar et. al., 2010, Gharis, 2012).  
 CP identifies the best compromise solution as the 
one that has the shortest distance to an ideal point 
where the multiple objectives/responses as 
formulated in the optimization objective function 
problem simultaneously reach their optimal values. 
The ideal point is not practically achievable but may 
subsequently be used as a base point or target.  
 This study uses “Simulation” as an approach to 
modeling an hypothetical FMS and applies the two 
above mentioned methods, namely TM and CP 
separately while using the Throughput Rate (TR) as 
the unique and single performance measure. The 
results of both methods are subsequently compared 
before drawing conclusions in terms of advantages 
and disadvantages of one method over another. The 
paper focuses on the determination of the best 
combination of design- and operational-related 
parameters to optimize the hypothetical FMS with 
respect to the throughput rate (TR). The reason 
being that a high TR would result into the realization 
of a higher productivity, under the assumption that 
the use of specific queue discipline rules such as 
FIFO (First-In-first-Out) or Shortest Processing 
Time (SPT) would generally yield a lower Mean-
Flow-Time (MFT) as demonstrated by several 
researchers (Shang, 1995; Tshibangu, 2004, 2013) 

4 TAGUCHI ROBUST DESIGN  

RD is a cost effective methodology for determining 
the optimal setting of the control factors that would 
make the product performance insensitive to the 
influence of noise factors (Cho et al., 2000). Taguchi 
proposed a three-step approach to product and 
process design. These are system design, parameter 
design, and tolerance design. In this study, the 
philosophy and experimental design principles 
developed by Taguchi (1986) will be applied.  
 The reader is referred to Taguchi (1986), 
Pignatiello et. al. (1991), Tshibangu (2004, 2013) 
for details about Taguchi Method and RD 
implementation steps. The main advantage of using 

ICINCO�2015�-�12th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

486



Taguchi Method (TM) is that products and processes 
become robust to uncertain conditions.  
 The common meaning of “robust” is that product 
functions are insensitive to variations in real 
application environment. Taguchi (1985) first 
suggested the use of the so-called orthogonal arrays 
using inner array for control factors and an outer 
array for the uncontrollable (noise) factors and 
Signal-To-Noise (S/N) ratios as optimization tool. 

4.1 Orthogonal Array 

The goal of this research is to study the effects of the 
noise factors on the performance criterion and 
optimize such effects. Thus, designs that enable this 
research to study these effects in an economical way 
must be favored. Consequently, it is logical to 
choose the orthogonal arrays or fractional factorial 
designs that allow to study the effects of noise 
factors as well as the interaction effects by running 
the minimum (economical) number of experiments. 
The matrix that designates the settings of 
controllable factors for each run is called inner array. 
The matrix that designates the setting of 
uncontrollable factors is called an outer array.  

The nomenclature of the orthogonal array is 

)( b
a XL , where “ X ” represents the number of 

levels to be explored, “ a ”represents the number of 
experimental runs and “b ” represents the number of 
factors that are studied. After the appropriate designs 
for both control and noise factors are chosen, they 
are assigned to the inner and outer arrays, 
respectively. The inner-outer array design is the 
main strategy for robust design. The noise factors 
are assigned to the outer array to find some level of a 
control factor that does not result in much variation 
in spite of noise factors definitely being present. 

4.2 Signal-to-Noise Ratio (S/N) 

An adequate performance measure should 
incorporate both the desirable and the undesirable 
aspects of the output characteristics. A metric 
developed by Taguchi in order to optimize a design 
is the Signal-to-Noise ratio (S/N) using the ratio of 
the variation in output response resulting from 
control factors to that resulting from unpredictable 
or noise factors. In the Taguchi method, the term 
signal represents the desirable component. The term 
noise represents the undesirable component and is a 
measure of the variability of the output 
characteristic, which preferably should be as small 
as possible. The Signal-to-Noise Ratio is defined as:  

)log(10/ MSDNS −=           (1) 

The Mean Squared Deviation )(MSD is defined for 

different quality characteristics. For Smaller-The-
Better (STB): 
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For Bigger-The-Better (BTB): 
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where 
yi =The results of experiments in each row 
T = Target value of results 
n = Number of noise combinations 

4.3 Quality Loss Function (QLF) 

Taguchi also uses the Quality Loss Function (QLF) 
as a metric for robust optimization. The main idea is 
that a loss is always incurred when a product/process 
performance deviates from its target value, 
regardless of how small the deviation is. The QLF is 
given by:  

2)()( TYKYL −=                     (5) 

where K is the (positive) loss function coefficient, 
Y is the random variable of quality characteristic 
y , T is the target or desired value of the quality 

characteristic of interest.  
 The reader is referred to the extensive 
discussions in the literature on various Loss 
Functions (Berger 1985, Pignatiello 1991). An 
interesting and desirable characteristic of the QLF is 
that it was proven (Ribeiro 1995, Tshibangu 2004, 
2013): that for the Nominal-the- Better (NTB) type 
problem, the expected loss is given by:  

])([)],([ 22 μσ −+= TKTYLE        (6) 

where σ and 2σ represent the mean and variance 
of Y , respectively. It is interesting to note that 
minimizing the quality loss can be achieved by 

minimizing both the variance )( 2σ and the bias 

)( T−μ or difference between the mean and the 

target )( μ−T .  

 Chen et al. (1998) found that one issue that has 
not been adequately addressed in the previous 
investigations is the multiple aspects of the objective 
in robust design. They suggest for the robust design 
problem a formulation that would consider 
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“optimizing the performance” and “minimizing the 
variance” as two objective functions to be optimized 
separately. Their approach is used in the present 
study. 
 Therefore, to address the multiple aspects of 
robust design, it is necessary to treat it as a multi-
objective optimization problem. Since the 
performance variation is often minimized at the cost 
of scarifying the best performance, a tradeoff 
between the aforementioned aspects should 
necessarily take place. There are several ways of 
dealing with the tradeoff between multiple 
objectives.  Chen et al. (1998) used a combination of 
the rigorous multi-objective mathematical 
programming method and the principles of decision 
analysis to address the multiple aspects of the 
objective in robust design.  
 They proposed the use of Compromise 
Programming approach (CP), i.e., the Tchebycheff 
method in place of the traditional WS method. For 
details on the Compromise Programming (CP) 
method, the reader is referred to Park et. al. (2001).  

5 COMPROMISE 
PROGRAMMING 

The CP was developed by Zeleny (1974), under the 
motivation of looking for a more powerful method 
in generating a Pareto set.  

Let [ ])(),...,()( 1 xfxfxF m= and mixf i ,...,1),( = , 

be real-valued continuous functions defined in mR . 
Let X denotes the design space that is formed by 
both the design constraints and the range of design 

variables x, and mRxFY ⊂= )(  be the objective 

space, in a multi-objective problem formulated as: 

minimize )( xF  subject to mRXx ⊂∈       (7) 

A point 0x is called a Pareto solution of the multi-

objective optimization problem if there is no other 

feasible point x , such that )()( 0xfxf ii ≤ , 

mi ,...,1= , with strict inequality for at least one 

index i . The image )( 0xF ) of a Pareto solution in 

the objective space is called the efficient solution. 
The common practice for finding Pareto 

solutions has been the Weighted Sum (WS) method 
that performs the minimization of a linear 
combination of the objective functions. The 
corresponding weighted-sum problem ( ))( wWSP is: 

minimize 


=

m

i
ii xfw

1

)(
 

subject to mRXx ⊂∈                  (8) 

where miwi ,...,1,0 =≥  and     1
1

=
=i

iw  

Scalars iw  are referred to as the weights assigned to 

the objective mifi ,...,1, = , and determine the 

importance of each objective. It is well recognized in 
the literature that an optimal solution of the 
( )( ))(wWSP for any positive weights is always a 

Pareto solution of the original problem, which 
consists of minimizing each objective function 
individually over the design space (Gorantiwar et. 
al. 2010, Anita et. al., 2012, Gharis 2012).  
The basic idea of the CP method is to identify an 
ideal solution (utopia point) where each attribute 
under consideration achieves its optimum value. In 
the case of conflict among the different attributes, 
the designer seeks a solution, which is the closest 
possible to the ideal solution. In Chen et al.1998, the 
authors review and compare two approaches to 
finding its Pareto set: the WS approach and the CP 
method. They show the limitations of the former and 
the advantages of the latter. Typically, the 
advantages of the ),( wCP ∞  approach over the 

WS method in locating the efficient multi-objective 
robust design solutions (Pareto points) are 
illustrated. The ),( wCP ∞ also known as the 

weighted Tchebycheff approach is very useful in 
generating Pareto solutions. 
 In this paper, beside the Taguchi’s approach 
(TM), the Compromise Programming ),( wCP ∞  

which guarantees that all efficient solutions of the 
problem are generated, is also used to solve a bi-
objective robust design problem (BORD). The 
results of both methods are further analyzed and 
compared. 

6 ROBUST DESIGN USING CP 

Based on the principles of the CP approach, a robust 
design procedure has been proposed by Chen et al. 
1998 to address the multiple aspects of robust 
design. The first step is to transform the traditional 
optimization problem into a RD formulation, that is, 
an engineering design problem is stated using the 
conventional optimization model as follows: 

minimize )(xf ) 
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subject to ,0)( ≤xg j Jj ,...,2,1=  

UL xxx ≤≤                                         (9) 

where x , Lx  and Ux are vectors of design variables, 

their lower bounds and upper bounds, respectively; 

)(xf is the objective function and )(xg j is 

the thj −  constraint function. The RD design 

model can therefore be stated as a bi-objective 
robust design (BORD) problem as follows (Gharis, 
2012): 

minimize
[ ]ff σμ ,

 

subject to 0)(
1

≤Δ
∂
∂

+ 
=

i

m

i i

j
jj x

x

g
kxg , Jj ,...,2,1=

 xxxx UxL Δ−≤≤Δ+   (10) 

where fμ and fσ are the mean and standard 

deviation of the researched objective function, 
)(xf respectively.  

 The next step once the problem is transformed 
into a BORD is to seek for the ideal solution (utopia 

point) by optimizing fμ and fσ individually, using 

the model as stated in Equation (9).  fμ  can be 

optimized by using either the “Smaller-the-Better”, 
the “Nominal-the-Best” and the “Larger-the-Better”. 

But it is always desired to minimize fσ . The utopia 

point found through the abovementioned process is 

denoted [ ]** , ff σμ .  

 Knowing the ideal solution of the robust design 
problem, the designer needs to specify a preference 

structure by assigning weights 1w and 2w to 

represent the relative importance of the two 
objectives. The process stops only when a 
satisfactory solution is reached. Details on technique 
relating utility function optimization to CP is 
extensively provided in Chen et al. 1998. 

7 EXPERIMENTS + 
METHODOLOGY 

The steps used for the robust design methodology 
applied in this study can be summarized as follows: 

1) Choose the levels of the control factors and 
noise factors. 

2) Chose the appropriate design for both control 
and noise factors. 

3) Assign the control factor to the inner array and 
noise factor to the outer array. 

4) Conduct the experiments using discrete-event 
simulation program (ARENA is used in this 
study). 

5) Calculate the mean and the variance of the 
Throughput Rate (TR). 

6) Apply Taguchi’s Robust Design method to 
optimize the throughput mean and minimize 
the variation in the Throughput Rate, and 
predict the control factors that optimize the 
manufacturing system under study. 

7) Apply the CP approach to Robust Design for 
the same purpose as in 6. 

8) Apply confirmation methods such as residual 
analysis. 

9) Run the confirmatory experiments for each case 
(i.e., Taguchi and CP). 

10) Compare results and make final conclusions. 

7.1 Shop Conditions and Simulation 
Model 

The manufacturing system analyzed in this research 
is composed of 5 workstations, one loading and one 
unloading station, as illustrated in Tshibangu (2003). 
Each workstation is constituted of one machine. The 
control factors explored in this research are the 
number of AGVs, the number of pallets, the buffer 
size per machine, the machine dispatching rule, the 
AGV dispatching rule, the interarrival time and the 
AGV speed. Uncontrollable factors considered are 
the MTBF (Mean Time Between Failure) and 
MTTR (Mean Time To Repair). Taguchi 
experimental design principles and simulation were 
used to measure the Throughput Rate, the single 
performance measure criterion considered in the 
present study. Table 1 gives the factors and their 
associated levels for the simulation of the FMS 
under study.  
 Consider a system involving a response Y (i.e., 
throughput) which depends on the level of k control 

factors ),...,,( 21 kxxx . Suppose that m replicates 

are taken at each of the design points.  
 Finding the true functional relationship between 
the dependent variable Y (Throughput Rate) and the 

independent variables kx will lead, when using 

regression analysis, to an approximating function of 
the form: 

    
ii

k

xY ββ +=
1

0



 

(11) 
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Table 1: Factors and their levels for simulation. 

Designation Controllable Factors Level 1 Level 2 Level 3

X1 Number of AGVs 2 5 8 
X2 Number of Pallets 80 90 100 

X3 
Buffer Size per 

Machine 
4 8 12 

X4 
Machine 

Dispatching Rule 
TPT SPT.TOT SPT 

X5 
AGV Dispatching 

Rule 
FCFS STD LQS 

X6 Interarrival Time 30 min. 20 10 
X7 AGV Speed 60 f/min 80 100 

     

 
Uncontrollable 

Factors 
Level 1 Level 2  

X8 
Mean Time 

Between Failure 
(MTBF) 

300 (Low) 700 (High)  

X9 
Mean Time to 

Repair (MTTR) 
50 (Low) 90 (High)  

Table 2: Parameter design results. 

Inner Array  Outer Array  Response 
n A B C D E F G H1 I1 H1 I2 H2 I1 H2 I2 Y S/N 

1 1 1 1 1 1 1 1 149 133 233 161 169 44.018

2 2 2 1 1 2 2 2 194 140 348 241 230.75 45.889

3 3 3 1 1 3 3 3 279 145 352 242 254.5 46.698

4 2 2 1 2 1 3 3 224 121 399 232 244 45.486

5 3 3 1 2 2 1 1 219 121 369 293 250.5 45.681

6 1 1 1 2 3 2 2 276 207 373 268 281 48.418

7 3 3 1 3 1 2 2 241 187 385 303 279 47.996

8 1 1 1 3 2 3 3 257 195 328 272 263 47.942

9 2 2 1 3 3 1 1 285 215 361 265 281.5 48.55

10 2 3 2 1 1 2 3 318 217 416 305 314 49.24

11 3 1 2 1 2 3 1 240 169 385 255 262.25 47.299

12 1 2 2 1 3 1 2 202 193 265 212 218 46.583

13 3 1 2 2 1 1 2 184 141 375 244 236 45.861

14 1 2 2 2 2 2 3 251 218 352 263 271 48.28

15 2 3 2 2 3 3 1 298 198 415 274 296.25 48.547

16 1 2 2 3 1 3 1 233 190 281 231 233.75 47.126

17 2 3 2 3 2 1 2 269 212 354 241 269 48.148

18 3 1 2 3 3 2 3 376 223 415 346 340 49.857

19 3 2 3 1 1 3 2 353 268 380 328 332.25 50.204

20 1 3 3 1 2 1 3 236 149 316 220 230.25 46.304

21 2 1 3 1 3 2 1 247 196 371 283 274.25 48.085

22 1 3 3 2 1 2 1 243 157 326 207 233.25 46.466

23 2 1 3 2 2 3 2 309 263 389 328 322.25 49.91

24 3 2 3 2 3 1 3 271 220 416 289 299 48.858

25 2 1 3 3 1 1 3 258 214 346 265 270.75 48.279

26 3 2 3 3 2 2 1 241 219 396 318 293.5 48.67

27 1 3 3 3 3 3 2 267 206 377 298 284 48.547

If there is a curvature in the system, then a 
polynomial of higher degree must be used, such as 
the second-order model: 

 
 +++=

i j
jiiji

k

ii

k

ii xxxxY ββββ
11

0


(12) 

Equations 11 and 12 will be used in the CP 
approach. The Taguchi Method experimental design 
as carried out in this study results into 27 design 
configurations to be run using simulation package 
ARENATM. The coded experimental results for the 
27 runs under the four uncontrollable factor 
combination levels are given in Table 2. 

7.2 Taguchi Method Results an 
Analysis 

For the Taguchi approach, analysis of data will first 

involve calculation of Y  and the NS /  ratio. In 
this research, Throughput Rate has the “Bigger-the-
Better” characteristic, because it desired to be 
maximized. Therefore, Equation 4 has to be used for 
the NS / calculations. 
 The ANOVA (not represented here) for the 
regression model including all the variables has 
confirmed what is already known from previous 
studies (Tshibangu, 2003), namely that the number 
of pallets is not a significant factor. Although AGV 
and machine dispatching rules have shown a slight 
significance, they are considered as insignificant 
factors in this study. Therefore, the number of AGVs 
(Xa), the buffer size (Xb), the interarrival time (Xc) 
and the speed of AGV (Xd) as renamed variables will 
be considered as the only factors of interest in this 
study. The confidence interval level used in this 
study is 95%. After analyzing the main and 
interaction effect plots as suggested by Taguchi, the 
factors (and their levels) recommended by the 
Taguchi Method and confirming the regression 
analysis conclusions, study are found to be : Xa  = 5 , 
Xb = 12, Xc = 20, and Xd = 80, leading to a maximum 
throughput of 253 units in coded data. Table 3 
displays the regression analysis coefficients. 

Table 3: Regression analysis coefficient and R2. 

Predictor Coeff. StDev T p 
Constant -36.667 6.023 -6.09 0.000 

AGV 7.667 1.475 5.20 0.000 
Buffer 6.35 1.475 4.32 0.000 

InterArr 6.333 1.475 4.29 0.000 
SpeedAgv 5.667 1.475 3.84 0.001 

S = 6.260       R-Sq = 78.1%     R-Sq(adj) = 74.2% 
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A first-order model to these data by least squares 
gives, for the best subset, in coded variables the 
following equation:   

Ŷ =  7.67 AGV + 6.33 Buffer + 6.33 InterArr + 5.67 
SpeedAgv - 36.7     (13) 

Using now Xa, Xb, Xc , and Xd for number of AGVs, 
Buffer size, Interrarrival time and AGV speed, 
respectively, Equation 13  is written as follows: 

Ŷ = 7.67 Xa + 6.35 Xb + 6.33 Xc + 5.67 Xd - 36.7  (14) 
 
The ANOVA Table for the model is displayed in 
Table 4. It shows all the four factors significant as 
confirmed by the F-test results for the overall 
regression and the regression coefficients. All the 
interactions between factors are considered to be 
insignificant. 

Table 4: ANOVA Best subsets regression model. 

Source DF SS MS F p 
Regression 4 3080 770 19.65 0.0 

Residual Error 22 862 39.18   
Total 26 3942    

7.3 CP Method Results and Analysis 

The BORD problem for the FMS configuration 
under study is formulated as follows: 

Minimize 











∗∗

f

f

f

f

σ
σ

μ
μ

,

 

Subject to  2  + Δ X1≤  X1 ≤  8 - Δ X1 
4  + Δ X2≤  X2 ≤  12 -Δ X2 
-30 +Δ X3≤  X3 ≤ -10-Δ X3 
60 + Δ X4≤  X4 ≤ 80 -Δ X4               (15) 

where the mean function and standard deviation can 
be derived from the following equations: 

fμ = E[Y(xi)] = 7.67 E[Xa] + 6.35 E[Xb] + 

6.33 E[Xc] +5.67 E[Xd] –36.7 (16) 

))((( if xYVar=σ
                  (17) 

= )(67.5)(33.6)(35.6)(67.7 4
2

3
2

2
2

1
2 XVarXVarXVarXVar +++   

It worth it to note that if the function was non-linear, 
the mean function and the standard deviation could 
have been derived using first-order Taylor expansion 

series. To seek the ideal solutions, *
fμ , *

fσ , the 

above optimization problem formulated in (17) is 

solved separately as the design objective. Note that 
in Equation (15), in order to study the variation of 
the constraints, the original constraints are modified 
by adding a penalty term to each of them. The 
penalty factors are to be determined by the designer. 

The bounds of design variable vector ( )x are also 

modified to ensure feasibility under deviation. When 
the size of the variation is considered as Δ X = 0 
(ΔXa = Δ Xb = Δ Xc = Δ X4 = 0) and, and the penalty 

factor k is taken as 1.0 (in this example ( 0=jg , 

the ideal solution under the assumption of equal 
density functions, are obtained in coded values, as 

)2.79,8.19,92.7,95.4(*

f
X μ  for 258* =fμ  

units, and )2.88,0.22,0.4,0.2(*

f
X σ for 

22.109* =fσ .  

8 CONCLUSIONS 

The primary objective of this paper is to propose an 
enhanced optimization strategy by formulating the 
robust design procedure using the recent 
development on mathematical programming 
methods and decision analysis principles. The 
multiple aspects of the objective in RD are 
addressed explicitly and designers are allowed to 
select their preferred structure among a set of 
candidate optimal solutions.  
 The study presents two methods for FMS design 
and optimization, particularly for AGVs and 
machines (work stations). Because it is almost 
impossible to predict the response (Throughput Rate 
in this case) as mathematical functions of the factors, 
an empirical (simulation) approach has been 
adopted.  
 First, Taguchi Method is used to act as a 
screening process and to quickly identify the optimal 
area. This is important, because no more 
experimental effort has to be spent on the non-
significant factors, and the designer can quickly 
concentrate on the important (significant) factors 
that have been identified. Taguchi Method also helps 
to reduce the noise factors rather than eliminating 
them (which is neither practical nor feasible). 
Furthermore, Taguchi Method provides a unique 
fashion for optimization when qualitative factors are 
concerned. 
 Because there is still some controversy about 
optimization tools used by Taguchi Method such as 
orthogonal arrays, signal-to-noise ratios, and linear 
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graphs, a second optimization approach known as 
the Compromise Programming is proposed and 
applied. The basic idea of CP is to identify an ideal 
solution (utopia point) where each attribute under 
consideration achieves its optimum value (Adeyeye 
et. al., 2010, Anita et. al. , 2012).  
 This enhanced optimization model in robust 
design considers both the product/process bias and 
the variance. It was numerically demonstrated that 
this proposed model might provide a better solution 
in terms of control factor settings in an FMS or other 
environments. Many of the previous studies have 
concentrated on the minimization of the variance 
while keeping the bias at zero. But, it has been 
shown (Cho et al, 2000) that there are situations 
where the minimum variance with a zero bias may 
not provide the minimum expected loss. 
 When compared to the existing methods for 
robust optimization such as Taguchi’s S/N ratio, the 
proposed approach has many advantages (Chen et 
al. 1998), namely: capability of generating the 
efficient solutions, interactive robust design 
procedure, significance of the multi-objective 
approach to robust design, etc. As a research 
strategy however, we suggest that these two methods 
be used together, especially when there are 
qualitative factors involved. We propose that the 
region of investigation be determined by the TM 
before using CP. When TM is used alone, the 
interaction factors cannot be fully taken into account 
due to the limit of the linear graph in the orthogonal 
array.  
 On one hand, the optimization is only done over 
the points (three levels in this study) considered in 
the design. These points (factor levels) may not lead 
the true optimum when continuous variable are 
involved. On the other hand the CP approach is 
unable to handle qualitative variables. Using the two 
methods combined will help designers to determine 
what level of the input factors and AGV and 
machine dispatching rules will maximize the 
Throughput Rate for a specific FMS. Simulation, 
Taguchi and CP approaches to RD are powerful 
tools to improve the design and performance in the 
FMS environment. Further research may consider 
multiple performances measures instead of one used 
in this study. 
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