
Multiple Model SPGPC for Blood Pressure Control 

Humberto A. Silva1, André L. Maitelli2, Celina P. Leão3 and Eurico A. Seabra4 
1Instituto Federal de Ciencia e Tecnologia do Rio Grande do Norte, Natal, RN, Brazil 

2Departamento de Engenharia de Computação e Automação,  
Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil 

3Departamento de Produção e Sistemas, Escola de Engenharia da Universidade do Minho, Guimarães, Portugal 
4Departamento de Engenharia Mecânica, Escola de Engenharia da Universidade do Minho, Guimarães, Portugal 

 

Keywords: Blood Pressure Control, Predictive Control, Multi-Model, Smith Predictor. 

Abstract: Multiple model adaptive control procedures have been considered for a computer-based feedback system, 
which regulates the infusion rate of a drug (nitroprusside) in order to maintain the blood pressure as close as 
possible to the desirable value. Transfer function parameters can differ significantly between patients, and 
also time-dependent, so the development of a suitable algorithm becomes required not only for maintaining 
steady-state but also the transient specifications. In this paper, based on computer simulations, a multiple 
model adaptive control procedures show to be successfully applied to blood pressure control, despite the 
uncertainty related with delays, time constant and gains associated. 

1 INTRODUCTION 

Arterial hypertension is an important risk factor 
responsible to cause cardiovascular diseases, begin 
responsible for 40% of the deaths caused by 
coronary arterial disease. Twenty-nine percent 
(29%) of the world’s population has arterial 
hypertension with Brazil contributing to 22% to 
44%, depending on the region (Mion et al., 2010). 
These numbers become very important as high blood 
pressure is directly associated to cerebrovascular 
events, coronary arterial disease and mortality 
(Kochar and Woods, 1990). 

Postsurgical complications of hypertension can 
occur, or to be aggravated, in cardiac patients. To 
decrease the probability of complications it is 
necessary to reduce, at the earliest stage possible, the 
elevated blood pressure. A way to reach this 
objective is to use a continuous infusion of 
vasodilator drugs, such as sodium nitroprusside 
(SNP), that can quickly lower the blood pressure in 
most patients, bearing in mind that an overdose of 
nitride could cause toxic side effects. 

It is known that each patient has a different SNP 
sensibility, and therefore it can also be time-
dependent. So, it is necessary to establish an 
appropriate control of the infusion rate of SNP to 
accomplish the desired blood pressure. To maintain 

the desired blood pressure, a constant monitoring of 
arterial blood pressure is required and a frequently 
adjust on drug infusion rate. Manual control of 
arterial blood pressure by clinical personnel it is 
very demanding and time consuming, usually 
leading to a poor control quality of the hypertension. 

The objective of this paper is to develop an 
adaptive method control for a blood pressure 
management for any patient without changing the 
controller. Blood pressure control of a patient under 
the influence of SNP, that is a vasodilator, is 
modelled through an uncertain model (Slate, 1980; 
Maitelli and Yoneyama, 1997). A multi-model 
approach is used in order to control the blood 
pressure under the influence of this drug. Multi-
model approaches are commonly applied to control 
non-linear systems that operates in long ranges 
(Cavalcanti et al., 2007; Cavalcanti et al., 2009; 
Silva et al. 2010; Silva, 2010). The basic idea of 
multi-model approach consists in decompose the 
system’s operating range into a number of operating 
regimes that completely cover the chosen trajectory 
(Cavalcanti et al., 2009). There are, basically, two 
approaches for multi-model. The first one consists of 
designing a set of suitable controllers (one for each 
operating regime) and to calculate weighting factors 
to them as showed by the study by Cavalcanti et al. 
(2009). The global control signal is a weighting sum 
of the contributions of each controller. The second 
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one consists of building a global model as a 
weighting sum of each local model as showed in 
(Cavalcanti et al., 2009). In both cases, a way to 
measure distances between models is defined. 

In this work, a multi-model is used to control the 
blood pressure control. A set of models is chosen 
and a Smith Predictor Generalized based Predictive 
Control (SPGPC) is designed for each chosen 
model. A validity function is defined in order to 
calculate the weight of each controller. The weight 
factor selected considers the residual error between 
the output of a given model and the plant (patient) 
output. 

2 PROBLEM FORMULATION 

A model of the mean arterial pressure (MAP) of a 
patient under the influence of sodium nitroprusside 
can be represented, as in Slate (1980), by: 

0( ) ( ) ( )MAP t P P t v t     (1)

where MAP is the mean arterial pressure, Po is the 
initial blood pressure, also called a background 
pressure, ∆P(t) is the pressure differential  due to 
infusion of Nipride, and v(t) is a stochastic 
background noise. In this paper it is assumed that Po 

is constant. A continuous-time deterministic model 
describing the relationship between the change in the 
blood pressure and drug infusion rate (Slate, 1980) is 
as follows: 
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where ∆P(s) is the blood pressure variation, I(s) is 
the infusion rate, K is drug sensitivity, α is the 
recirculation constant, Ti is the initial transport 
delay, Tc is the recirculation time delay, and τ is a 
time constant. 

The corresponding discrete-time deterministic 
model for this process can be given as follows: 
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where 1q
 denotes a unit delay operator. The 

parameters bo, bm, a1, d, and m are obtained from the 
sampled version of the continuous-time model given 
in (2). 

A range of typical values for the parameters of 
the model (2) for different patients is given by Slate 
(1980). Values for the parameters in the model (3) 
for the case with the sampling time 15 s are found in 
Table 1. 

Table 1: Range of values for parameters of the discrete-
time deterministic plant model for sampling time of 15 s. 

Parameter Minimum Maximum Nominal 
bo 0.053 3.546 0.187 

bm 0 1.418 0.075 

a1 0.606 0.779 0.741 

d 2 5 3 
m 2 5 3 

It can be seen that there is a considerable 
difference in the parameter values, including the 
pure time delay, for different patients. For a given 
patient, time delays are unknown, but are assumed to 
be constant over a long period of time. The 
parameters b0, bm and a1, however, change during 
the infusion procedure. In this work, it is assumed 
that the parameters change in an exponential 
manner. The change of parameters is modeled as 
follows (Pajunen et al., 1990): 

)2)(0()( / tepartpar   (4)

for increase and decrease in the parameter value, 
respectively, where par(t) represents the parameter 

of the continuous-time model and  is the change 
time constant. Thus, the controller when turned for a 
particular patient, should be able to handle time-
varying parameters and initially unknown time 
delays. An automated drug SNP infusion system for 
blood pressure control should produce good 
response characteristics, such as pressure undershoot 
(i.e., maximum excursion below commanded level) 
less than 10 mmHg, 20 percent settling time of 5-10 
min, steady-state error within +5 mmHg, and also 
satisfy the following clinical conditions (Slate, 
1980), where: 

 UM = maximum infusion rate (ml/hr); 
 Wp = patient weight (kg); 
 iM = maximum recommended dose (

1 110 . ming kg   ); 

 CS = drug concentration ( /g ml ). 

For patient safety, the infusion rate should be 
reduced under hypotension, i.e., when there is a drop 
in excess of 20 mmHg from the set point. 

3 SMITH PREDICTOR BASED 
GENERALIZED PREDICTIVE 
CONTROL (SPGPC) 

The Smith Predictor (SP) was the first control 
system proposed in the literature that introduces a 
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delay compensator (Smith, 1957). The SP improves 
the performance of a system with a delay compared 
to other techniques, such as PID, especially when 
the delay is dominant (greater than twice the 
dominant time constant of the system). 

The idea of using a Smith predictor instead of an 
optimal predictor in generalized predictive 
controllers for stable plants was presented in 
Normey-Rico and Camacho (1996). The advantages 
in the use of this control strategy instead of the 
standard Generalized Predictive Control (GPC) in 
real applications was also shown in Normey-Rico et 
al. (1998). This has great interest in the case of time-
delay systems. These authors have shown that, by 
modifying the GPC algorithm, it is possible to 
improve the robustness of the closed-loop system 
while maintaining the nominal performance. The 
basic idea of the Smith predictor based generalized 
predictive control (SPGPC) is to use a Smith 
predictor structure to compute the predictions of the 
output of the plant and to calculate a sequence of 
future control signals in order to minimize a 
multistage cost function defined over a control 
horizon, as follows: 
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where N1 and N2 are the minimum and maximum 
costing horizons, respectively, d is the delay of the 
process model, δ(j) and λ(j) are weighting sequences, 
w(t+j) is a future set-point or reference sequence, 
∆u(t) is the incremental control action (∆u(t) = u(t)- 

u(t - 1)) and ŷ (t+j|t) is the j-step ahead prediction 

of the system output on data up to time t computed 
using the following model of the plant: 

)1()()()( 11   tuzBztyzA d  (6)

where 

nb
nb

na
na

zbzbzbbzB

zazazazA











2

2
1

10
1

2
2

1
1

1

)(

1)(
 (7) 

Using this procedure, the final control law can be 
written as: 

 
(8)

where lyi, lui and fi are constants and the prediction of 
the output of the plant is computed using the 
prediction of the output using the open loop model 
of the plant given in (6). Moreover, a correct 
prediction in each open loop can be used, by adding 
the mismatch between the output and the prediction: 
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To compute the coefficients of the control law in (8), 
the same procedure as in the GPC is used. First, 
consider that the horizons N1 and N2 are computed as 
N1=d+1 and N2=N+d where d is the dead time of 
the plant model. Then, using these horizons, the 
prediction of the output of the plant is computed 
using an incremental model of the process 
(Camacho, 2003). 

4 MULTIPLE MODEL SPGPC 
METHOD 

The Multiple Model SPGPC (MMSPGPC) 
procedure, shown in Figure 1, is based upon the 
assumption that the plant can be represented by a 
finite number of models and, for each model a 
controller can be priori designed. 

An adaptive mechanism is then need to decide 
which controller should be dominant for a given 
plant. One procedure for solving this problem is to 
considered a weighted sum of all the controller 
outputs, where the weighting factors are determined 
by the relative residuals between the plant response 
and the model responses (Silva et al., 2010). 

In Figure 1, since the plant gain is negative, the 
system error is expressed as: 

 (10)

where k is the sampling time and pc, is the 
commanded or set-point pressure level. 

4.1 Model Bank Design 

The model bank consists of a number of models with 
constant parameters characterizing the individual 
plant subspace (He et al., 1986). Since these models 
should have the same structure as the plant, the 
following discrete model will describe them: 
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where the output pressure from model j is: 
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Figure 1: Multi-model SPGPC schema.

0)()( PkPkP mjmj  (j=1,…,N) (12)

where ∆Pmj(k)is the change in the jth model output, 
u(k) is the model input, P0 is the initial value of each 
model’s output and equals the initial plant output. 

The relative residual Rj
2(k) will be defined as the 

normalized squared error between plant and model, 
i.e., as follows: 

2 2
0( ) {[ ( ) ( )] / ( )}j mj cR k P k P k P P    

(j=1,…,N) 
(13)

At each sample time k, the model that has the 
smallest residual is defined as the matching model, 
which is used to represent the plant characteristics. 

4.2 Control Algorithm 

To reach desirable system performance and to 
guarantee patient safety, the control algorithm 
should converge quickly to the optimal values and 
should react to time varying plant characteristics, as 
well as ensure a reasonable rate of blood pressure 
change. Thus, the control was computed as a 
weighted sum of controller bank signals, and 
represented by the following equation: 

1
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where N is the number of models, uc(k) is the control 

variable, uj(k) are the individual controller outputs 
and Wj(k) are the weighting factors. The weights 
were selected as follows: 
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2.  Bounding away from zero  
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where Rj(k) are the residuals and defined in (13), V is 
a parameter controlling the convergence rate of 
W'j(k) with Rj(k) and δ is a threshold to limit the 
importance of past information. 

Equations (14) and (15) express the basic 
relationship between the control, the weighting 
factors, and the relative residuals. Equation (16) is 
used to delimit the importance of past information 
enabling the adaptive mechanism quickly react to 
the new information about the plant characteristics. 
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Equation (17) is used to normalize the weighting 
factors so that their square sum is equal to unity. 

5 SIMULATION RESULTS 

Computer simulations were used to evaluate the 
response of the system design (Section 4) over a 
representative plant parameter envelope. Of interest 
were the response to step command in the presence 
of plant background noise, the adaptation of the 
algorithm to time-varying plant parameter. 

The regime blood pressure considered was 150 
mmHg and the multi-model controller deviation 
reference of -50 mmHg. The plant background noise 
v(t) was simulated as a white Gaussian noise 
sequence with standard deviation of 2 mmHg. Figure 
2 shows the blood pressure of a given simulated 
patient, with time varying parameters, calculated by 
the Equation (4). Figure 3 shows the deviation in 
infusion rate.  

Simulations results have shown the convergence 
process of the weighting factors Wj(k), in Figure 4, 
such as the global control effort is calculated to the 
closest model (less residual error). Figure 2 shows 
that the schema leads the blood pressure of the 
chosen patient to the given reference. Thus, the drug 
infusion rate and the blood pressure both change in a 
smooth manner. These responses also show that the 
MMSPGPC algorithm is robust even in the presence 
of the plant background noise.  

 

Figure 2: blood pressure (mmHg). 

6 FINAL REMARKS 

The results showed that this multi-model schema 
MMSPGPC presented has a great potential of 
application in uncertain systems. Even in presence 
of  representative  noise  background,  the  presented 
approach has shown a reasonable result and could be 
applied, as first approach, in tests with animals. 

Others basic controllers, in order to attenuate the 
delay effect, may be considered. 

The results also show that the controller using 
GPCs with Smith predictor, in the controllers bank, 
provides a faster control (in the order of 6 min) and 
with a reasonable rate of infusion, compared to the 
results obtained in Cavalcanti et al. (2009), that used 
only GPCs in the controllers bank, with an obtained 
response times of 20 min. 

In the future, robustness tests can be 
implemented with the submission of the system to a 
larger range of disturbances and parameters. 
Comparative studies with other control algorithms, 
as adaptive control, they would also be important to 
accomplish. 

 

Figure 3: deviation in infusion rate. 

 

Figure 4: weighting factors. 

REFERENCES 

Camacho, E. F., Bordons, C., 2003. Model Predictive 
Control, (2ª Ed., Chap. 4, pp. 47-77), Spain: Springer. 

Cavalcanti, A. L., Fontes, A. B., Maitelli, A. L., 2007. 
Generalized Predictive Control Based in Multivariable 
Bilinear Multimodel. Proceedings of 8th International 
IFAC Symposium on Dynamics and Control of 
Process Systems, pp. 91-96, Cancún. 

Multiple�Model�SPGPC�for�Blood�Pressure�Control

567



Cavalcanti, A. L., Silva, H. A., Maitelli, A. L., 2009. 
Multiple Model GPC for Blood Pressure Control. XVI 
Congresso Internacional De Ingenieria Eletrónica, 
Eléctrica Y Computación, INTERCON, Arequipa, 
Peru. 

He, W. G., Kaufman, H., Roy, R., 1986. Multiple Model 
Adaptive Control Procedure for Blood Pressure 
Control. IEEE Transactions on Biomedical 
Engineering, vol. BME 33, no. 1. 

Kochar, M. S.,Woods, K. D., 1990. Controle da 
hipertensão: para enfermeiras e demais profissionais 
da saúde.. 2. ed. São Paulo: Andrei, 317 pp. 

Maitelli, A. L.,Yoneyama, T., 1997.Suboptimal Dual 
Adaptive Control for blood pressure management. 
IEEE Transactions on Biomedical Engineering, vol. 
44, no. 6. 

Mion, Jr. D., CA. Machado, M. Gomes et al., 2010. VI 
diretrizes brasileiras de hipertensão arterial. Brazilian 
Journal of Hypertension, vol. 17, no. 1, pp. 2-19. 

Normey-Rico, J. E., Camacho, E. F., 1996. A Smith 
Predictor Based Generalized Predictive Controller. 
Technical Report GAR 02-96, University of Seville. 

Normey-Rico, J. E., Camacho, E. F., Gomez-Ortega, J., 
1998. A Smith Prediction Based Generalized 
Predictive Controller for Mobile Robot Path Tracking. 
III IFAC Symposium on Intelligent Autonomous 
Vehicles, Madri, Spain, pp. 471-476. 

Pajunen, G. A., M. Steinmetz, R. Shankar, 1990. Model 
Reference Adaptive Control with Constraints for 
Postoperative Blood Pressure Management, IEEE 
Transactions on Biomedical Engineering, vol. 37, no. 
7, pp. 679-687. 

Silva, H. A., Cavalcanti A. L. O., Maitelli, A. L., 2010. 
SPGPC Multi-Modelo para controle de Pressão 
Arterial. XVIII Congresso Brasileiro de Automática, 
CBA, Bonito, MS, Brazil. 

Silva, H. A., 2010. Multi-Model Generalized Predictive 
Controller Applied to Blood Pressure Control (in 
portuguese). Master's Thesis, Department of Electrical 
and Computer Engineering, Universidade Federal do 
Rio Grande do Norte, Rio Grande do Norte, Brazil. 

Slate, J. B., 1980. Model-based design of a controller for 
infusing nitroprusside during postsurgical 
hypertension. PhD thesis, University of Wisconsin-
Madison. 

Smith, O. J. M., 1957. Closed control of loops with dead- 
time. Chemical Engineering Process, 53: 217-219. 

 
 

ICINCO�2015�-�12th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

568


