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Abstract: In this paper we consider the problem of diagonal stability of interval systems. We investigate the existence
and evaluation of a common diagonal solution to the Lyapunov and Stein matrix inequalities for third order
interval systems. We show that these problems are equivalent to minimax problem with polynomial goal
functions. We suggest an interesting approach to solve the corresponding game problems. This approach
uses the opennes property of the set of solutions. Examples show that the proposed method is effective and
sufficiently fast.

1 INTRODUCTION Diagonal stability have many applications and this
problem has been considered in many works (see (Ar-
Consider state equation cat and Sontag, 2006; Johnson, 1974; Ziolko, 1990;

Kaszkurewicz and Bhaya, 2000; Khalil, 1982; Pas-
travanu and Matcovschi, 2015; Oleng and Narendra,
wherex = x(t) € R" andA = (&;j) (i,j =1,2,...,n) 2003; Buyukkoroglu, 2012; Yildiz et al., 2014) and
is n x n matrix. In many control system applications references therein).
each entrya;; can vary independently within some in- An algebraic characterization of necessary and
terval. Such systems are called interval systems. Insufficient conditions for the existence of a diagonal
other wordsa;; < aj < &; whereg;, &j are given.  Lyapunov function for a single third order matrix has
Denote the obtained interval family by, i.e. been derived in (Oleng and Narendra, 2003). The
) . algorithm submitted in (Pastravanu and Matcovschi,
A={A=(aj): & <aj<a[j=12....n)} 2015) for a common diagonal solution of interval ma-

. . . . (1). trix family is not effective since it uses complicated
Interva! matrices have_manyengmeerlng applications. bilinear matrix inequalities and the solver PENBMI.
Due to its natural tie with robust control system analy-

sis and design, several approach have involved for the
stability analysis of interval matrices (see (Barmish,
1994; Rohn, 1994; Bhattacharyya et al., 1995; Liber- 2 COMM ON DIAGONAL
zngSar:;leem?oi 220(;)1éld;r;astravanu and Matcovschi, SOLUTIONFOR 3x 3
;Yildiz etal., .

We are looking for the existence and evaluation of INTERVAL SYSTEMS
a common diagonal Lyapunov function which guar-
antees diagonal stability of interval systems. In other In this section for 3« 3 interval family we give nec-
words we investigate the problem of existence of a di- €ssary and sufficient condition for the existence of
agonal matrixD = diag(xy, X2, .. ., Xa) With x; > 0 and Hurwitz common diagonal solution and the corre-
with the property sponding solution algorithm.

T Consider 3x 3 interval family
A'D+DA<0 forall AcA4 2

where the symbol T” stands for the transpose and
“<” means negative definiteness.

X = AX
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a a a3
A=(A=| a4 a5 &
a7 ag ag

acla.gl], (i=12...9}. ()

Without loss of generality all % 3 positive diag-
onal matrices diagk, x2,%3) with x; > 0 (i = 1,2,3)
may be normalized to have the form

t 00
D =diagt,1,s)=| 0 1 O
0O 0 s

witht > 0,s> 0.

Problem 1. Is thereD =diag(t,1,s) witht >0,s>0
such that
ATD+DA<0 (4)

forall g € [a ,a] (i=1,2,...,9).
We write

2tag tap+a4 taz+sa
ATD+DA=| tay+as 2as Sag + ag
tag+sa sa+as 2sa

The matrix inequality (4), i.e. the negative definite-
ness ofAT D 4 DA is equivalent to the following

i) a1 <O
ii) (ast+ay)? —4aast < 0

iii) do(t,as,...,a9) + di(t,as,...,a9)s +
da(t,a,... 7ag)52 <O0.
The functiondd; (i = 1,2,3) are low order polynomi-
als and can be explicitly evaluated.
i) is satisfied for alla; € [a;,a;] if and only
if aj < 0. The problem of existence of a com-
mont satisfyingii) for all (a1, a2, a4,as) is equivalent
to the existence of a common diagonal solution for

2 x 2 family Z}l :; and has been investigated in

(Yildiz et al., 2014). There whole interval of com-
mont (in the case of nonempty) has been calculated.
If this interval is empty then there is no common
D = diag(t, 1,s) satisfying (4). Assume that this in-
terval (a,3) of commont is nonempty. Then the
existence of a commob = diagt,1,s) means that
there exist € (a,B) ands > 0 such thaiii) is satis-
fied for all (a1,a2,...,a9). This problem is a game
problem. Indeed denote the left-hand siddiigf by
f(t,s,ai1,...,a9). Theniii) is equivalent to the fol-
lowing minimax inequality

inf max f(t,sa1,...,a9) <0. (5)
te(a,p),s>0 (ay,...,a9)

Solve the game problem (5) is difficult in general, this

game has no a saddle point due to nonconvexity of the

function f.
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We suggest the following interesting approach to
solve (5) numerically. This approach is based on the
openness property of the solution set of (4) . In other
words the following proposition is true.

Proposition 2.1. If there exist a common DB-
diagt,,1,s.) then there exist intervaldt;,t;] and
[s1,s2] which contain t and s respectively such that
the matrix D= diagt, 1,s) is a common solution for
allt € [t1,t2], s€ [s1,).

Due to this proposition we suggest the following
algorithm for a common diagonal solution.

Algorithm 1. Let the interval family (3) be given.
i) Using the results o2 x 2 interval systems from
(Yildiz et al., 2014) calculate the interv@, ) for

t.

ii) Determine an upper boursl for the variable s
from the positive definiteness condition of a suit-
able submatrix of-(ATD + DA).

iii) Divide the interval[a,p] into k equal parts
[ai,Bi] and the interval[0,3 into m equal parts
55551

iv) On each box

[0, Bi] x [s,8]] % [ag,a]] x -+~ x [ag,ag]]
consider the maximization of the polynomial func-
tion f(t,s,as,...,a9).

If there exist indices,iand j. such that the max-
imum is negative then stop. The whole interval
[ai,, Bi,] x [sﬂ,sﬁ] defines family of common diag-
onal solutions.

As can be seen the above game problem (5) is re-
duced to a finite number of maximization problemsin
which low order multivariable polynomials are maxi-
mized over boxes. These optimizations can be carried
out by Maple program or by the Bernstein expansion.
The following examples shows that Algorithm 1 is
sufficiently effective.

Example 2.1. Consider the interval family

—4 1 1
1 —4 02
(0] 1 -5

whereq € [2,3], g2 € [1,2] andgz € [1,2]. We obtain

-8t oit+1 t+agss
ATD+DA= | qit+1 -8 s+
t+0gss s+ —10s

The 2x 2 leading principal minor gives
64t — (qit +1)2 > 0= 64t > (out + 1)2,

max (qit +1)% = (3t+1)? < 64,
mef2.3
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9> —58+1<0, te(0.01736.427). max  (out+q)? = (2t 42)% < 24,
Hence 64— (qut +1)2 > 0 for allt € (0.01736.427), welt2, et
i € [2,3]. t24+2t+1<0, te(2—V3,2+3
The positive definiteness of the submatrix TATL<O0, te(2-V32+V3).
8 (s+p) Hence 24— (qit +q2)2 > O for allt € (0.268 3.732),

- 10s qu € [1,2]andg € [1,2].
(s+a2) The values = 50 is acceptable. We divide the
gives 88— (s+q2)? > 0 or rga)(er d2)? < 80s or intervals [0.268 3.732 and [0,50] into 50 and 200
2

2 _ equal parts respectively. Figure 2 gives all boxes on
ésigc)) iESSU?tS;trlzz 76s+4-<0and the upper bound which detATD + DA) is negative for allg; € [1,2],

We divide the interval$0.0173 6.427 and|0, 80 % €[1,2], g € [4,6] andaa € [-3, 1],

into 20 and 200 equal parts respectively. In Figure 1, S
it is shown the family of boxes on which the deter- 6 1
minant detA" D 4 DA) is negative for ally; € [2,3],
02 € [13 2] andCIS € [17 2]
5 €
S
- 4
7 —+
3 €1
6 18
2 €1
5 .
4 + L i
D B | | | t
3 £ I I I
1 2 3
9 Figure 2: Eactit,s) from each box gives common diagonal
T solutionD = diag(t, 1,s).
1 4+ It should be noted that the sufficient condition
from (Pastravanu and Matcovschi, 2015, Theorem 1)
‘ ‘ ‘ ‘ t is not satisfied for this example since for the matrix
! ! ! ! U from Theorem 1 the maximum real eigenvalue is
1 2 3 4 positive.
Figure 1: Eacht, s) from each box gives common diagonal
solutionD = diag(t, 1,s).
Example 2.2. Consider the interval family 3 DISCRETE SYSTEMS (SCH UR
3 q -5 STABILITY)
e -2 1
3 G4 —6 Common diagonal stability of discrete interval sys-
tems is equivalent to the existence of a positive di-
h 1,2], 1,2], 4.6] and . : L . .
\[N—B‘e,r—ef]l \fVe[ (;b]taiﬂz € L2 gz c 46 andas € agonal matrixD which satisfies the following matrix
inequality
—6t Oit+qg2 —5t403s
ATD+DA=| qut+q —4 s+ 1 ATDA-D < OforallAc 4 (6)
—5t+0ss s+1 —-12s
. ds & where4 is given by (1).
Again The casen = 2 has been solved in (Yildiz et al.,
24t — (q1t+q2)2 >0=24 > (q1t+q2)2, 2014). In the case oh = 3 taking againD =
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diagt,1,s) we get

ATDA-D=

ta?+aZ+s@&—t tajap+ asds+ Sayag
tayay + asds +Sayag  taz+ad+sd—1

tajaz+ ayag + Sayag tapasz + asag + Sagag
tayag + asa6 + Sayag

tapas + asas + Saag
tad+aZ+s&—s

From the principal minors condition the negative def-

Diagonal Stability of Uncertain Interval Systems

We obtain
ATDA—D=

—0.75%+03+0.04s  —0.15 —0.30 — 0.203S
—0.15% - 0.3g2—0.2qss  0.0% + g3s—0.91
—0.501t — 0.602 — 0.02s  0.3qst +0.1gs5+ 0.18

—0.501t — 0.602 — 0.02s
0.3g1t +0.1g3s+ 0.18
2t —0.99s+0.36

We get[a, ] = [1.34947.5833 ands = 20. Divide
the intervals[1.34947.5833 and |0, 20] into 20 and

initeness of the above matrix is equivalent to three 50 equal parts respectively. In Figure 3, it is shown

polynomial inequalities.
Denote

t(aZ—1)+sa&+aZ,

fi(t,sa1,a4,a7)

fa(t,s,a1,...,a8) = Minus 2x 2
leading principal minar
fa(t,s,a1,...,a9) = Determinant

Then the problem (6) is equivalent to the following:
Is there a positive pait,s) such that

f1 < 0, fo < 0, f3<0 (7)

forall (a1,ay,...,a9).
Now we can suggest the following algorithm.

Algorithm 2. Let3 x 3interval family (3) be given.
i) Using the results o2 x 2 interval systems from
(Yildiz et al., 2014) calculate the interv@, ) for

the variable t.

ii) Determine an upper bourglfor s.

iii) Divide the interval[a,p] into k equal parts
[ai,Bi] and the interval[0,5 into m equal parts
s, .57 ]-

iv) On each box

[, Bi] x [sy,s]7] x [ag . af] x -+ x [ag , g
consider the maximization of the polynomial func-
tions f (i=1,2,3).

If there exist indices,iand j. such that the max-
imum each of three functiong fk = 1,2,3) is

negative then stop. The whole interyal, , (3i,] x

[sj:,sjt] defines family of common diagonal solu-
tions.

Example 3.1. Consider the interval family
-05 03 01
g -03 -06
-02 s 0.1

whereq; € [-0.2,0.4], gz € [-1,0] andgz € [0,0.2].

the family of boxes on which all three functiorig
(k= 1,2,3) are negative for allj; € [-0.2,0.4], gz €
[—1,0] andgz € [0,0.2].
S
9 —+

1 2 3 4
Figure 3: Eaclit,s) from each box gives common diagonal
solutionD = diag(t, 1,s).

4 CONCLUSIONS

In this paper we consider the problem of diagonal sta-
bility of interval systems. The proposed approach is
based on finding common diagonal Lyapunov func-
tions. Both Hurwitz (continuous case) and Schur (dis-
crete case) stability are considered for third order sys-
tems. We suggest an interesting approach to solve the
corresponding game problems.
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