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Abstract: This paper expounds a control procedure and a control algorithm with two levels to solve the control 
problem of a cooperating multi-arm robotic system. This system is composed of a structure like a gripper 
with n fingers manipulating a usual object. The control system is a hierarchical system. The problems of the 
inter-coordination and the force distribution are decided by the top tier coordinator which brings together all 
the appropriate information. This information is directed towards the n inferior level subsystems. The local 
control is solved by assigning the local controllers based on the inverse model method. The robotic structure 
is either in a correct position when possible, or by minimising the movements and using the adequate 
commands to the functional joints, in an acceptable proximity position of the desired co-ordinates. It is also 
proposed a synthesis of the commands. The paper presents a workspace analysis and an algorithm for the 
actuators in the terms of a good working for finding the optimal motions by blocking or unblocking some 
robotic joints. 

1 INTRODUCTION 

 

Figure 1: A cooperative robotic system. 

There are an important number of aspects in control 
of the robotic systems with cooperative tasks in real 
time (Figure 1), as dispatching of mobile robot legs, 
mechanical hand fingers, dispatching two robotic 
arms in co-operant tasks, etc. The two aspects of 
control system are as follows: the first one is the 
general coordination that presumes dispatching of a 

couple of robotic elements to assure a required 
trajectory of the tip and the second one is the local 
control problem which delivers the control of the 
individual components of the arms (fingers, legs) to 
generate the appropriate position and orientation. 
The force allocation must be determined, mentioning 
that the motion is completely specified and the 
internal forces/torques which generate this motion 
must be found. A two-level hierarchical control 
system (Cheng and Orin, 1991a), (Cheng and Orin, 
1991b), (Cheng, 1995), (Zheng and Luh, 1998), 
(Khatib, 1996), (Wang, 1996) is used to determine 
the solution for this control problem. All the 
appropriate information is gathered by the top-tier 
system and is determined by the inter-chain 
dispatching problem, the force allocation problem. 
The problem is divided into a lot of inferior-level 
problems, one for every element of the robotic 
system. An algorithm for establish the inputs of the 
control system (joint variables) on lower-level in 
fault conditions and without, is also expounds. 

Analysing the work-envelope geometry it is 
essential the locus of points in R3 that could be 
reachable by the tool tip. If the tool tip is considered 
a reference point, it must include the effects of both 
the major axes used to position the wrist and the 
minor axes used to orient the tool.  
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Figure 2: The finger. 

Considering the shape or geometry of the work 
envelope as a subset of R3, although this work 
envelope varies from robot to robot, it can be viewed 
as well within the framework of joint space Rn.  

The work envelope is typically characterised by 
bounds on linear combinations of joint   variables 
related to joint space. The constraints   of   this   
nature generate a convex polyhedron in Rn named 
the joint-space work envelope. Let qmin and qmax be 
the joint limits vectors in Rn and let A be an m× n 
joint coupling matrix. The set of all values of the 
joint variables q is called the joint-space work 
envelope. It is denoted Q and is of the form: 

         { }maxmin: qAqqRqQ n ≤≤∈=   (1) 

The relation A = I represents no inter axis coupling. 
The joint-space work envelope Q is the locus of 
points in R3 that can be reached by the tool tip. 
The locus of  the points reachable from at least one 
tool orientation is referred to as the total work 
envelope, or simply the work envelope and the locus 
of points reachable from an arbitrary tool orientation 
is called the dextrous work envelope (Shilling, 
1993), (Beni and Hackwood, 1985), (Craig, 1990). 

Let's consider the RRR planar robotic structure 
as it is shown in Figure 2. The structure presented in 
Figure 2 is a non-redundant structure because the 

joints variable number ( )321 ,, kkk θθθ  as well as the 

operational co-ordinate number (x, y and zθ ) are 

equal to 3. The structure can be a finger, a leg, a 

robotic arm, etc. The point ( )333 , kkk yxM  is belonging 

to a specified trajectory and their values are known. 
The index k represents the actual step in the 
evolution on the trajectory. So: 

[ ] [ ]Tkkk
T

kkkk qqqq 321321 ,,,, θθθ==  (2) 

For simplicity we consider that the length of the 3 
arm elements is the same: l1 = l2 = l3 = l. In this 
paper is proposed to establish the values of the 

angles 321 ,, kkk θθθ  as well as the differences 
321 ,, kkk θΔθΔθΔ  which are the base for generating the 

commands to the actuators in the terms of a good 
working (finding the optimal motions) and in terms 
of the blocking of some robotic segments. 

 

Figure 3: The inputs and outputs of the algorithm. 

Practically is an inverse kinematics problem. The 
input and output variables of the proposed algorithm 

are shown in Figure 3. The angles 321 ,, kkk θθθ , the 

displacements 321 ,, kkk θΔθΔθΔ  and the co-ordinates 

of  the  points  M1  and  M2     (which are necessary in 
workspace analysis for avoiding some existing 
obstacles) are determined on the base of the angles 

3
1

2
1

1
1 ,, −−− θθθ kkk from the previous step, on the 

base of the desired co-ordinates 33 , kk yx  of the arm 

tip and on the base of  some information related of 
the physical structure (segments length, maximal 
and minimal limits of the angle displacement and the 
blocking status of some segments). The algorithm 
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proposed by the authors allows, if the blocking 
exists, either a correct positioning by other 
displacements of the unblocked segments (if it is 
possible) or a positioning in an acceptable proximity 
of the desired coordinates by minimising of optimal 
criteria (Iancu et al., 1999), (Vinatoru et al., 1998). 

2 ALGORITHM FOR 
UNBLOCKED JOINTS 

Let's consider the robotic arm as shown in Figure 1. 
We wish the positioning of the arm tip in the point 

( )333 , kkk yxM  without any specification of the 

orientation. The co-ordinates of the point 3
kM  are: 

( ) ( )3212113 sinsinsin kkkkkkk lllx θ+θ+θ+θ+θ+θ=  

( ) ( )3212113 coscoscos kkkkkkk llly θ+θ+θ+θ+θ+θ=  (3) 

Because the inverse kinematics problem has 
infinity of solutions, let's consider some 
supplementary conditions imposed by an optimal 
working, the avoiding of blocking, a. s. o. (e.g.: 

      *321
kkkk θ=θ+θ+θ =constant; 321

kkk θ=θ=θ ; 

     *3
kk θ=θ  - imposed, a. s. o.).                             (4) 

In some situations, when the passing from the 

point 3
1−kM  to the next point 3

kM  because of its 

advantageous position is made, it is not necessary 
the movement of all the 3 elements, being possible 
an energetic consumption economy. 

If we note L1, L2, and L3 the elements having the 
length l, A -“Active” status and B –“Blocked” 
status, 1 logic - the movement status (operative) of 
the active element and 0 logic - the non-operative 
status of the active element, all the possible 
situations for unblocked joints above mentioned are: 

(L1  L2  L3) →   (0 0 0),   (0 0 1),   (0 1 0),   (1 0 0),  
(0 1 1),  (1 0 1),  (1 1 0),  (1 1 1). 

The proposed algorithm is presented in the 
following step sequence: 
STEP 1: The robot parameter set is read: 

l, i
0θ , i

minθ , i
maxθ , i = 1, 2, 3. 

STEP 2: k = 1 

STEP 3: *33 ,, kkk yx θ  are specified. 

STEP 4: If (L1 L2 L3) = (A A A) 
then Jump to STEP 5 else Jump to STEP 13 

STEP 5: If ( ) ( ) 22323 9lyx kk ≤+  

then Jump to STEP 7, else Jump to STEP 6 

STEP 6: "IMPOSSIBLE TO REACH THE POINT 
(operational space too small)" is displayed. The 
information is transferred to upper level 
controller. Jump to STEP 3. 

STEP 7: If ( ) ( ) 22
1

322
1

3 lyyxx kkkk =−+− −−    

then Jump to Ad001, else Jump to STEP 8 
STEP 8: 

 If ( ) ( ) ( )( )23
1

21
1

321
1

3 2/cos2 −−− θ=−+− kkkkk lyyxx  

then Jump to Ad010, else Jump to STEP 9 

STEP 9: 
3

1
2

1

3
1

2
1

coscos1

sinsin
atan

−−

−−

θ+θ+
θ−θ=α

kk

kk  

        ( ) ( )[ ]α+θ+α+α−θ= −−
3

1
2

1
123 coscoscos kkk ll  

If ( ) ( ) ( )21232323
kkk lyx =+    

then Jump to Ad100, else Jump to STEP 10 

STEP 10:  If ( ) ( ) 221
1

321
1

3 4lyyxx kkkk ≤−+− −−  

 then Jump to Ad011, else Jump to STEP 11 

STEP 11: ( )2/cos2 2
1

12
−θ= kk ll  

 If ( ) ( ) ( ) ( )21233212 llyxll kkkk +≤+≤−  

 then Jump to Ad101, else Jump to STEP 12 

STEP 12: ( )2/cos2 3
1

23
−θ= kk ll   

If ( ) ( ) ( ) ( )llyxll kkkk +≤+≤− 2333223   

then Jump to Ad110, else Jump to Ad111 

3 ALGORITHM FOR BLOCKED 
JOINTS 

If during the movement process on the trajectory, 
one or more joint are blocked (the information is 
given by the transducers), then the control system try 
to control the arm to continue on the trajectory by 
the rest of the joints. The possible situations are:  

(L1  L2  L3) →   (0 0 B),   (0 1 B),   (1 0 B),   (1 1 B),  
(0 B 0), (0 B 1),  (1 B 0),  (1 B 1), (B 0 0), (B 0 1),  
(B 1 0),  (B 1 1), (0 B B), (1 B B),   (B 0 B), (B 1 B), 
(B B 0), (B B 1), (B B B). 

The step sequence of the algorithm is:        

STEP 13: If (L1 L2 L3) = (A A B) 
then Jump to STEP 14, else Jump to STEP 17 

STEP 14: If 

 ( ) ( ) ( )( )23
1

21
1

321
1

3 2/cos2 −−− θ=−+− kkkkk lyyxx  

then Jump to Ad010 (for 01B status) 
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else Jump to STEP 15 

STEP 15: 
3

1
2

1

3
1

2
1

coscos1

sinsin
atan

−−

−−

θ+θ+
θ−θ=α

kk

kk  

( ) ( )[ ]α+θ+α+α−θ= −−
3

1
2

1
123 coscoscos kkk ll  

If ( ) ( ) ( )21232323
kkk lyx =+    

then Jump to Ad100 (for 10B status) 
else Jump to STEP 16 

STEP 16: ( )2/cos2 3
1

23
−θ= kk ll   

If ( ) ( ) ( ) ( )llyxll kkkk +≤+≤− 2333223   

then Jump to Ad110 (for 11B status) 
else Jump to STEP 31 

STEP 17: If (L1 L2 L3) = (A B A) 
then Jump to STEP 18 
else Jump to STEP 21 

STEP 18: If ( ) ( ) 22
1

322
1

3 lyyxx kkkk =−+− −−    

then Jump to Ad001 (for 0B1 status) 
else Jump to STEP 19 

STEP 19: 
3

1
2

1

3
1

2
1

coscos1

sinsin
atan

−−

−−

θ+θ+
θ−θ=α

kk

kk  

       ( ) ( )[ ]α+θ+α+α−θ= −−
3

1
2

1
123 coscoscos kkk ll  

If ( ) ( ) ( )21232323
kkk lyx =+    

then Jump to Ad100 (for 1B0 status) 
else Jump to STEP 20 

STEP 20: ( )2/cos2 2
1

12
−θ= kk ll  

If ( ) ( ) ( ) ( )21233212 llyxll kkkk +≤+≤−  

then Jump to Ad101 (for 1B1 status) 
else Jump to STEP 31 

STEP 21: If (L1 L2 L3) = (B A A) 
then Jump to STEP 22, else Jump to STEP 25 

STEP 22: If ( ) ( ) 22
1

322
1

3 lyyxx kkkk =−+− −−    

then Jump to Ad001 (for B01 status) 
else Jump to STEP 23 

STEP 23: If 

 ( ) ( ) ( )( )23
1

21
1

321
1

3 2/cos2 −−− θ=−+− kkkkk lyyxx  

then Jump to Ad010 (for B10 status) 
else Jump to STEP 24 

STEP 24: If ( ) ( ) 221
1

321
1

3 4lyyxx kkkk ≤−+− −−  

then Jump to Ad011 (for B11 status) 
else Jump to 31 

STEP 25: If (L1 L2 L3) = (A B B) 
then Jump to STEP 26, else Jump to STEP 27 

STEP 26: 
3

1
2

1

3
1

2
1

coscos1

sinsin
atan

−−

−−

θ+θ+
θ−θ=α

kk

kk  

( ) ( )[ ]α+θ+α+α−θ= −−
3

1
2

1
123 coscoscos kkk ll  

If ( ) ( ) ( )21232323
kkk lyx =+    

then Jump to Ad100 (for 1BB status) 
else Jump to STEP 31 

STEP 27: If (L1 L2 L3) = (B A B) 
then Jump to STEP 28, else Jump to STEP 29 

STEP 28: If 

 ( ) ( ) ( )( )23
1

21
1

321
1

3 2/cos2 −−− θ=−+− kkkkk lyyxx  

then Jump to Ad010 (for B1B status) 
else Jump to STEP 31 

STEP 29: If (L1 L2 L3) = (B B A) 
then Jump to STEP 30, else Jump to STEP 31 

STEP 30: If ( ) ( ) 22
1

322
1

3 lyyxx kkkk =−+− −−    

then Jump to Ad001 (for BB1 status) 
else Jump to 31 

STEP 31: “IMPOSIBLE ACTION (because of 
blocking)” is displayed. The information is 
transferred to upper level controller. STOP.  

4 VERIFICATION OF THE 
CONSTRANTS 

Different constraints can exist and these must be 
certified before generating the outputs of the 
algorithm. The step sequence for that is: 
STEP 32: If  

( ) ( ) ( )3
max

2
max

1
max

3213
min

2
min

1
min ,,,,,, θθθ≤θθθ≤θθθ kkk  

then Jump to STEP 33, else Jump to STEP 36 

STEP 33: i
k

i
k

i
k 1−θ−θ=θΔ  ; i = 1, 2, 3. 

11 sin kk lx θ= ; 11 cos kk ly θ=         

( )2112 sinsin kkkk llx θ+θ+θ= ; 

( )2112 coscos kkkk lly θ+θ+θ=  

STEP 34: k = k+1 

STEP 35: Jump to STEP 3 

STEP 36: "IMPOSIBLE DEPLACEMENT FOR Li 
(because of constraints)" is displayed. The informa-
tion is transferred to upper level controller. 

 Jump to STEP 3 
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5 DETERMINATION OF THE 
INTERNAL VARIABLES 

To different addresses there are statements of 
program which determine the expressions of the 
internal variables for the situations (with blocked 
and unblocked joints) above mentioned:  

Ad001: 1
1

1
−θ=θ kk ; 2

1κ
2
κ θθ −= ; 

( )21
2

1
3

2
1

3
3 atan kk

kk

kk
k

yy

xx
θ+θ−

−

−
=θ

−

−  

Jump to STEP 32 

Ad010: 1
1

1
−θ=θ kk ; 3

1
3

−θ=θ kk ; 

        










−
−−

−
−+θ=θ

−−

−−

−

−
− 1

1
3

1

1
1

3
1

1
1

3

1
1

3
2

1
2 atanatan

kk

kk

kk

kk
kk

yy

xx

yy

xx
 

Jump to STEP 32 

Ad100: 2
1

2
−θ=θ kk ; 3

1
3

−θ=θ kk ; 











−+=

−

−
− 3

1

3
1

3

3
1

1
1 atanatan

k

k

k

k
kk

y

x

y

x
θθ   

Jump to STEP 32 

Ad011: 1
1

1
−θ=θ kk  

( ) ( )
2

221
1

321
1

3
3

2

2

l

lyyxx
c kkkk

k

−−+−
= −−  

( )
3

23
3

1
atan

k

k
k

c

c−
=θ  

( )
( )3

1
1

331
1

3
21

cos12

sin

2
k

kkkkk
k

l

yy

l

xx
s

θ+

−θ
−

−
= −−  

( )
1

1221

21
2

1

atan −θ−
−

=θ k

k

k
k

s

s
 

Jump to STEP 32 

Ad101: 2
1

2
−θ=θ kk  

( ) ( ) ( )
12

22122323
*3

2 k

kkk
k

ll

llyx
c

−−+
=  

( )
*3

2*3
*3

1
atan

k

k
k

c

c−
=θ ; 2/2

1
*33

−θ−θ=θ kkk  

( )*312 cos2 kk llb θ+=  ; *3sin klc θ=  

( )
( ) 22

4

atan2
2

1
3

2232

1 −θ
−

+





 −−±

=θ k

k

k

k
cx

cxbb

 

Jump to STEP 32 

Ad110: 3
1

3
−θ=θ kk  

 
( ) ( ) ( )

23

22232323
23

2 k

kkk
k

ll

llyx
c

−−+
= ;  

( )
2

1
atan

3
1

23

223
2 −θ

−
−

=θ k

k

k
k

c

c
 

( ) ( ) ( )
l

llyx
b kkk

2

22232323 +−+
= ;  

( ) ( )
3

223233
1 atan2

k

kkk
k

yb

byxx

+

−+±
=θ   

Jump to STEP 32 

Ad111: *31 sin kkk lxr θ−= ; *32 cos kkk lyr θ−=  

( ) ( )
l

rr
r kk
k 2

2221
3 +

= ; 
l

r
c k

k

3
2 = ; 

( )
2

22
2

1
atan

k

k
k

c

c−
=θ  

( ) ( ) ( )


















+

−+±
=θ

32

2322211
1 2atan

kk

kkkk
k

rr

rrrr
 

( )21*3
kkkk θ+θ−θ=θ ; Jump to STEP 32 

6 A MODEL FOR COOPERATIVE 
ROBOTIC SYSTEM 

An example of multiple-chain robotic system is 
depicted in Figure 1. The robotic system forms 
closed-kinematics loops. The individual chains are 
closely coupled with one another through the load 
(Iancu and Vinatoru, 1999). The dynamic relations 
for each chain of the system (finger) are: 

            iTiF)i(qiDiqiCiqiM =++              (5) 

where Mi, Ci are (ni x ni) contact diagonal matrixes, 
D is (ni x 2) non-linear matrix. 
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  ( )i
Y

i
x

i F,FcolF =  

  ( )i
n

i
1

i
iqqcolq =                        (6) 

  ( )i
n

i
1 iTTcolT =     

In the relation (5), Fi assures the object motion 
on the established trajectory. The uncertainty of the 
object specificates an uncertainty of the force Fi. FMi 
is an estimation of the force upper bound. We 
assume:  

                      1,2...j;ρFF jj

iMi =≤−                (7) 

( ) ( )icosq
i

l
n

1i

i
y

Fisinq
i

l
n

1i

i
x

F
n

1i

iτ 
=

+−
=

=
=

 i=1, 2..  (8) 

We employ the symbols: qj - inner generalized 
coordinate of finger i, t ∈ [0, tf], τ i = the moment 
vector which establishes the required trajectory of 
the object. All these variables are related to the 
coordinate frame of the finger i. All the relations are 

closely coupled through the terms τι, Fx
i, FY

i where 

all of these terms define the required comportment. 
We use a hierarchical control scheme with two-level 
(Cheng, 1995) for this robotic system. The control 
strategy is to decouple the control system into k 
control sub-systems that are controlled by the upper 
level control system. The task of the top tier 
coordinator is to collect all the appropriate 
information to establish the force distribution and 
then to decide this constrained, optimization 
problem. The optimal solutions for the contact 

forces Fi are established. The optimal contact forces 
became the inputs for the second level subsystems. 
We use the notations F0- the resultant force vector 
which acts to load related to the inertial coordinate 

frame (R0), 0Hi - the partial spatial transform from 

the frame of the finger i to the frame (R0). We 
consider a hard point contact with friction and that 
the force balance relation on the load is:  

                      = i
i

00 FHF                         (9) 

The load dynamic relations have the form 

                           M0 r = GF0                          (10) 

where M0 is inertial matrix of the load and r is the 
load coordinate vector  

                             r = (x, y, θ)Τ                       (11) 

and r(t) depicts the required trajectory. The 
inequality constraints which define the friction 
constraints and the maximum force constraints may 
be adjoint to (9): 

                            ≤ QFP ii                       (12) 

where Pi is a coefficient matrix of inequality 
constraints and Q is a boundary-value vector of 
inequality constraints (Mason, 1981). The problem 

of the contact forces Fi can be considered as an 
optimal control problem if an optimal index is 
associated to the equations (9) - (12) 

= iiFAΨ         (13) 

This situation is answered in the papers: (Cheng, 
1995), (Zheng and Luh, 1988), (Khatib, 1996), 
(Wang, 1996) by the general procedures of the 
optimization or by the specific methods (Cheng and 
Orin, 1991a), (Cheng and Orin, 1991b). When all of 
the contact forces Fj are established, the dynamical 
relations of each finger i are decoupled. The 
equations (5), (8) become decoupled and τi act on 
the tip of the finger i. 

7 CONTROL SYSTEM 

The control system needs determining the torques 

(control variable) Tj
i such that the motion of the 

overall system (object and fingers) will generate the 
desired trajectory. The inverse model of the robot 
will be used here to acquire the control law for a 
desired motion. The used closed-loop control is 
presented in Figure 4. Let i

d
i
d

i
d q,q,q   be prescribed 

parameters of the motion, Fd
i the prescribed force 

applied at the i - contact point of the object, and 
iii q,q,q  , Fi - the same variables measured on the 

real or estimated system. The error and its 
derivatives of the feedback system are: 

ii
d

i qqΔq −= ; ii
d

i qqqΔ  −= ; ii
d

i qqqΔ  −= ; ΔFi 

= Fd
i - Fi. The controller represents a trajectory 

perturbation controller which generates the new 

variations iδq , iqδ  , iqδ  , iδF . It assures the 

performances of the motion for the overall system 
on the trajectory. We propose the control law 
(Ivanescu and Stoian, 1998):  

ii
13

ii
12

ii
11

i qΔKqΔKΔqKδq  ++=  
ii

23
ii

22
ii

21
i qΔKqΔKΔqKqδ  ++=  

ii
33

ii
32

ii
31

i qΔKqΔKΔqKqδ  ++=        (14) 
i
X

i
f

i
X

i
f

i
X

i
f

i
X FΔKFΔKΔFKδF

X3X2X1

 ++=  

i
Y

i
f

i
Y

i
f

i
Y

i
f

i
Y FΔKFΔKΔFKδF

Y3Y2Y1

 ++=  

From (14) and error definitions result: 
ii

d
i Δqqq −= , ii

d
i qΔqq  −= , ii

d
i qΔqq  −=    (15)
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Figure 4: The control system. 

ii
d

i δqq~q~ −= , ii
d

i qδq~q~  −= , ii
d

i qδq~q~  −=   (16) 

      iii
y

ii
x

ii BT)q~c(F)q~a(F)q~f(q~ =+++       (17) 

Assuming that  
i
d

i qδq << , i
d

i qqδ  << , i
d

i qqδ  <<  
i
d

i qq <<Δ , i
d

i qq  <<Δ , i
d

i qqΔ  <<      (18) 

Using Taylor-series expansion and neglecting the 
high-order terms from (17) it results: 

( ) ( )( )iii
d

i
d

ii δqΔqF,qdqδqΔ −+−   

+ ( )( ) ( )( ) 0δFΔFqcδFΔFqa i
y

i
y

i
d

i
x

i
x

i
d =−+−       (19) 

“d” is a [ni x ni] matrix and 

   ( )
i
d

i
d

i
d q

i
yd

q

i
xd

q

i
d

i
d δq

δc
F

δq

δa
F

δq

δf
F,qd 








+








+








= (20) 

From (14) and (19) it results: 

( ) ( ) ij
12

i
32

ij
13

i
33 qΔKdKqΔKdKI  ⋅−−⋅−−  

           ( )[ ] 0ΔqKKId ii
31

i
11 =−−⋅+               (21) 

 ( ) 0ΔFK1FΔKFΔK i
x

i
f

i
x

i
f

i
x

i
f x1x2x3

=−++      (22) 

 ( ) 0ΔFK1FΔKFΔK ii
f

ii
f

ii
f 123

=−++ yyy yyy

      (23) 

For the nesingular matrix ( )i
13

i
33 KdKI ⋅−− , these 

equations of the motion can be written as: 

       ( ) ( ) 0ΔqRVqΔWVqΔ ii1iii1ii =−−
−−

       (24) 

          ( ) 0ΔFK1FΔKFΔK ii
f

ii
f

ii
f 123

=−++           (25) 

The control laws for the motion (i) and for the 
force (j) ask to be stable the matrix: 

               E = 







−− −− WVRV

I0
11               (26) 

and to be right (Ivanescu and Stoian, 1998): 

                        ( )i
1f

i
3f

2i
2f K1K4K −≤                 (27) 

The relations use the notations: 

Vi = I – Ki
33 – d Ki

13 

                      Wi = Ki
32 + d Ki12            (28) 

Ri = d (I - Ki
11) - Ki

31 

where we consider 

;KKK;KKK i
2f

i
z2f

i
x2f

i
1f

i
z1f

i
x1f ====  

                   i
3f

i
z3f

i
x3f KKK ==              (29) 

The relations (26), (27) specificate the principal 
conditions required to the control system to assure 
the global stability for the motion and for the force 

Fj
d at the terminal point of the arm. The condition 

from relation (27) is easy to apply but the stability 
established by the matrix (26) is more complicated 
to determine. We can obtain a simplified procedure 

if we choose appropriate matrices Kj
m, n (m, n =1, 

2, 3) in the control law from relations (14): 

I - Ki
33 – d Ki

13 = α I 

      Ki
32 + d Ki12 = 2 Ξi            (30) 

d (I - Ki
11) - Ki

31 = Ωi 
 

where               Ξi = diag ( )i
n

ii ξξξ ...., 21  

                     Ωi = diag ( )22
2

2
1 ......, i

n
ii ωωω           (31) 

  

Now, the relations (g) become 

       02 2 =Δ⋅+Δ⋅−Δ⋅ i
j

i
j

i
j

i
j

i
j qqq ωξα          (32) 

The relations for the control of the finger 
parameters (32) and for the control of the force are 
adequate for a Direct Sliding Mod Control which 
presumes two phases. In first phase the system 
motion develops towards the switching line: 

Sq : 0=Δ+Δ i
j

i
j

i
j qpq  

SF: 0=Δ+Δ ii
jF

i FpF                 (33) 
 

On this trajectory segment: 
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[ ] 2/12 )(min si
j

i
j αωξ <  

( )[ ] 2/1

132
12 i

f
i
f

i
f KKK −<             (34) 

When the trajectory penetrates Sq (or SF), the 

damping coefficients i
f

i
j K

2
,ξ are increased (Shilling, 

1993), (Ivanescu and Stoian, 1998): 

[ ] 2/12 )(max si
j

i
j αωξ >  

( )[ ] 2/1

132
12 i

f
i
f

i
f KKK −>           (35) 

In the second phase, on the last trajectory 
segment, the system develops towards the origin, 
directly, on the switching line Sq (or SF). 

8 CONCLUSIONS 

This paper presents a control procedure and a 
control algorithm with two levels to solve the 
control problem of a cooperating multi-arm robotic 
system like a gripper with n fingers manipulating a 
usual object. The control system is a hierarchical 
system. The problems of the inter-coordination and 
the force distribution are decided by the upper-level 
coordinator which brings together all the appropriate 
information. This information is directed towards the 
n lower-level subsystems. The local control is solved 
by assigning the local controllers based on the 
inverse model method. 

A control algorithm is also presented. This 
allows for the robotic structure, under the terms of 
the actuator blocking occurrence during the working, 
either a correct positioning (if it is possible) or a 
positioning in an acceptable proximity of the desired 
co-ordinates by minimising the movements (by the 
adequate commands to the functional elements). 

A synthesis of the commands is proposed. First, 
a workspace analysis is made and then an algorithm 
for the actuators in the terms of a good working 
(finding the optimal motions) is presented in terms 
of the blocking or unblocking of some robotic 
segments.   

ACKNOWLEDGEMENTS 

This research work is supported by the Project no. 
PO9003/1138/31.03.2014, Romanian Government 
under the Sectorial Operational Program "Economic 
Competitiveness Growth". 

REFERENCES 

Beni, G., Hackwood, S., 1985. Recent advances in 
Robotics, Willey-Interscience. New York. 

Cheng F.T., Orin D.E., 1991. Optimal Force Distribution 
in Multiple-Chain Robotic Systems. In IEEE Trans. on 
Sys. Man and Cyb., vol. 21, pp. 13-24. 

Cheng F.T., Orin D.E., 1991. Efficient Formulation of the 
Force Distribution Equations for Simple Closed-Chain 
Robotic Mechanisms. In IEEE Trans on Sys.  Man and 
Cyb., vol. 21, pp. 25-32. 

Cheng F.T., 1995. Control and Simulation for a Closed 
Chain Dual Redundant Manipulator System. In 
Journal of Robotic Systems, pp. 119-133. 

Craig, J. J., 1990.  Introduction to Robotics, Addison-
Wesley Publishing Company. New York. 

Iancu, E., Vinatoru, M., 1999. Fault detection and 
isolation, SITECH. Craiova. 

Ivanescu, M., Stoian, V., 1998. A Control System for 
Cooperating Tentacle Robots. In Proceedings of the 
IEEE International Conference on Robotics and 
Automation, vol. 2, pp. 1540-1545. 

Khatib D.E., 1996. Coordination and Decentralisation of 
Multiple Cooperation of Multiple Mobile Manipula-
tors. In Journal of Robotic Systems, 13 (11), 755-764. 

Luck, C.L., Lee, S., 1995. Redundant Manipulators under 
Kinematic Constraints: A Topology Based Kinematic 
Map Generation and Discretization. In Proceedings of 
the IEEE International Conference on Robotics and 
Automation, vol. 2, pp. 2496-2501. 

Mason, M. T., 1981. Compliance and Force Control. In 
IEEE Trans. Systems Man Cyb., No. 6, pp. 418-432.  

Shilling, J. S., 1993. Fundamentals of Robotics. Analysis 
and Control, Prentice Hall. London. 

Vinatoru, M., Iancu, E., Patton, R.J., Chen, J., 1998. Fault 
Isolation Using Inverse Sensitivity Analysis. In Prooc. 
of Internat. Conference on Control'98, pp. 964-968.  

Zheng Y.F., Luh J.Y.S., 1988. Optimal Load Distribution 
for Two Industrial Robots Handling a Single Object. 
In Proc. of IEEE Int. Conf. Rob. Autom., pp. 344-349. 

Wang L.C.T., 1996. Time-Optimal Control of Multiple 
Cooperating Manipulators. In Journal of Robotic 
Systems, pp. 229-241. 

ICINCO�2015�-�12th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

288


