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Abstract: The sign subband adaptive filter (SSAF) algorithm is introduced to reduce performance degradation of least-
mean-square-type algorithms due to a correlated input signal or an impulsive noise environments. However,
this algorithmh has huge computational complexity when the length of the unknown system is large. In
this paper, we focus on reduce computational complexity of the conventional SSAF algorithm and propose
an SSAF algorithm which selects number of subbands according to convergence state. The specific bands
which contributes to decrease the mean-square deviation are used to update the adaptive filter. Thus, the
proposed algorithm reduces the computational complexity compared to the conventional SSAF algorithm.
The selection mehtod is derived by analysing the mean-square deviation. Through the computer simulation,
simulation results are presented that demonstrate the fast convergence rate of the proposed algorithm and save
the computational cost.

1 INTRODUCTION

Adaptive filter algorithm has many applications such
as channel equalization, echo cancellation, and sys-
tem identification (Sayed, 2003; Lee et al., 2009).
The least-mean-square (LMS) and normalized least-
mean-square algorithm (NLMS), which are derived
by minimizing theL2-norm of the error function, are
widely used in this area because of its simplicity and
robustness against background noise. However, these
algorithms exhibit slow convergence rate when an in-
put signal is correlated or a measured signal contains
impulsive noise.

To overcome each problem, two categorizations
are presented. First, the normalized subband adaptive
filter (NSAF) algorithm was developed to improve the
performance of the NLMS algorithm for highly cor-
related input signals (Lee and Gan, 2004). By tak-
ing a pre-whitening operation on the input signal, the
NSAF algorithm achieves fast convergence rate. Sec-
ond, the sign algorithm was developed to improve the
performance of the NLMS algorithm for impulsive
noise environments, because it is obtained by mini-
mizing theL1-norm of the error function (Mathews
and Cho, 1987).

Combining the advantages of these two tech-
niques, in (Ni and Li, 2010), the sign subband

adaptive filter (SSAF) algorithm was introduced,
i.e., the SSAF algorithm is derived by taking the
pre-whitening process and minimizing theL1-norm.
Therefore, the SSAF algorithm can have good perfor-
mance in correlated input signal and impulsive noise
environments.

For subband-type algorithms, the correlated input
signal is close to the white signal in each band when
the number of subbands is high (Lee et al., 2009).
However, this leads to a huge computational complex-
ity when the length of the unknown system is long
(Kim et al., 2010). Therefore, the SSAF algorithm
also has the complexity problem when the algorithm
is applied the long-tap unknown system.

In this paper, we focus on reducing computational
complexity of the conventional SSAF algorithm and
propose an SSAF algorithm with selection of num-
ber of subbands. For every iteration, the only specific
bands which contributes to decrease the mean-square
deviation (MSD) are used to update the adaptive filter
coefficient. That is, the proposed algorithm implies
smaller number of subbands, so it reduces compu-
tational complexity of the conventional SSAF algo-
rithm. In addition, the proposed algorithm achieves
a fast convergence rate than the conventional SSAF
algorithm in impulsive-noise environments. Through
the computer simulation, simulation results are pre-
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sented that demonstrate the fast convergence rate of
the proposed algorithm.

This paper is organized as follows. In Section 2,
the SSAF algorithm is reviewed. Section 3 presents
the proposed algorithm. Section 4 deals with the sim-
ulation results which compare the proposed algorithm
with the SSAF algorithm for system identification.
Finally, conclusions are given in Section 5.

2 SIGN SUBBAND ADAPTIVE
FILTER

The output signald(n) of the system is obtained as

d(n) = wT
optu(n)+η(n), (1)

wherewopt = [w0,w1, . . . ,wM−1]
T denotes the opti-

mal weight vector, which is predicted by an adaptive
filter; superscriptT is the vector transpose;u(n) =
[u(n),u(n− 1), . . . ,u(n−M +1)]T denotes the input
signal vector;η(n) is a noise that consists of a back-
ground and an impulsive noise;n is time index; andM
is the length of the optimal weight vector. The prob-
ability density function of the noise is expressed as
(Rey Vega et al., 2008)

pη(n)(η(n)) =pN (0,(K+1)σ2
b)+ (1− p)N (0,σ2

b),

(2)

where p is the probability of impulsive noise,K is
the magnitude of impulsive noise, andσ2

b is the noise
variance without the impulsive noise.

The structure of the SSAF is shown in Figure
1. The subband signalsdi(n) andui(n) are obtained
by filtering d(n), andu(n) via analysis filtersHi(z)
for i = 0,1, . . . ,N − 1, respectively, whereui(k) =
[ui(kN),ui(kN−1), . . . ,ui(kN−M+1)]T andN is the
number of subbands. The decimated desired signal
di,D(k) and output signalyi,D(k) are obtained by crit-
ically decimatingdi(n) andyi(n), respectively, where
yi,D(k) = uT

i (k)w(k) and subscript D means the dec-
imated signal.n is index of original sequences andk
is index of decimated sequences.Gi(z) is synthesis
filter for i = 0,1, . . . ,N−1.

The weight update equation for the conventional
SSAF algorithm is (Ni and Li, 2010)

ŵ(k+1) = ŵ(k)+µ
U(k)sign(eD(k))
√

∑N−1
i=0 ||ui(k)||2

, (3)

where µ is a step size,|| · || denotes theL2-norm,
sign(·) denotes the sign function,

U(k) = [u0(k),u1(k), . . . ,uN−1(k)], (4)

eD(k) = [e0,D(k),e1,D(k), . . . ,eN−1,D(k)]
T , (5)

ei,D = di,D(k)− yi,D(k), (6)

Figure 1: Structure of the SSAF.

anddi,D(k) = di(kN) denotes the decimated desired
signal.

3 PROPOSED ALGORITHM

3.1 Proposed Algorithm

The proposed algorithm is determined by maximiz-
ing the decrease in the MSD. The MSD is defined as
MSD(k) , E{w̃T(k)w̃(k)}, wherew̃(k) = wopt(k)−
ŵ(k) is the weight error vector, andE{·} is the expec-
tation of random variables. By subtracting (3) from
wopt(k), the equation is expressed in terms ofw̃(k) as
follows:

w̃(k+1) = w̃(k)−µ
U(k)sign(eD(k))
√

∑N−1
i=0 ||ui(k)||2

. (7)

By taking squaredL2-norm and expectation, the MSD
can be obtained as

MSD(k+1) = MSD(k)

−2µE







w̃T(k)U(k)sign(eD(k))
√

∑N−1
i=0 ||ui(k)||2







+µ2. (8)

For a sufficiently long length of the weight vector
(Rey Vega et al., 2008; Bershad et al., 2014), we ob-
tain

E







w̃T(k)U(k)sign(eD(k))
√

∑N−1
i=0 ||ui(k)||2







≈ γE{w̃T(k)U(k)sign(eD(k))}, (9)

where

γ , E







1
√

∑N−1
i=0 ||ui(k)||2







. (10)
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Substituting (9) into (8) yields

MSD(k+1) = MSD(k)

−2µγ
N−1

∑
i=0

E{ei,a(k)sign(ei,D(k))}+µ2, (11)

whereei,a(k) = uT
i (k)w̃(k). The second term on the

right-hand side of (11) is calculated by assuming
thatei,D(k) andei,a(k) are jointly Gaussian and have
zero mean (Sayed, 2003). By using Price’s theorem
(Sayed, 2003), we get

E{ei,a(k)sign(ei,D(k))} = aiσ2
ei,a

(k), (12)

whereσ2
ei,a

(k) , E{e2
i,a(k)} is the undisturbed error

variance of theith subband, and

ai =

√

2
π







1− p
√

σ2
ei,a

(k)+σ2
bi,D

+

p
√

σ2
ei,a

(k)+ (K+1)σ2
bi,D







. (13)

By assuming that the input signal and noise are mu-
tually independent (Shin and Sayed, 2004), thei−th
subband error variance is written as

σ2
ei,D

(k) = σ2
ei,a

(k)+ (1− p)σ2
bi,D

+ p(K+1)σ2
bi,D

. (14)

Combining (12) and (14) into (11), the resulting equa-
tion is expressed in terms ofσ2

ei,D
(k) as follows:

MSD(k+1) = MSD(k)

−2µγ
N−1

∑
i=0

ai

(

σ2
ei,D

(k)−ασ2
bi,D

)

+µ2, (15)

whereα = (1+ pK).
In (15), the MSD tends to decrease whenσ2

ei,D
(k)

is larger thanασ2
bi,D

. On the other hand, the

MSD increases whenσ2
ei,D

(k) is smaller thanασ2
bi,D

.
The proposed algorithm selects subbands satisfying
σ2

ei,D
(k) > ασ2

bi,D
at every iteration for the largest de-

crease in the MSD. Consequently, the number of se-
lected subbands, which is to update the weight vector,
is less than or equal to that of the conventional SSAF
algorithm.

3.2 Practical Consideration and
Computational Computation

In practical application, we can not obtain the exact
expected values, so we assume that the expected value
is approximately the same as an instantaneous value.

E{e2
i,D(k)} ≈ e2

i,D(k). (16)

Table 1: Proposed Algorithm Summary.

Initialization : ŵ(0) = [0,0, . . . ,0]T

Parameters :α ≥ 1

Update :

for i = 0,1, . . . ,N−1 do

SL(k) = [ ]

If |ei,D(k)|>
√

ασbi,D

sl is selected,SL(k) = [SL(k),sl ]

end

If L(k) 6= 0

ŵ(k+1) = ŵ(k)+µ∑L(k)
l=0

usl (k)sign(esl ,D
(k))

√

∑L(k)
l=0 ||usl (k)||2

end

end for

The noise varianceσ2
b can be easily estimated dur-

ing silences (Yousef and Sayed, 2001; Benesty et al.,
2006).

Let SL(k) = [s1,s2, · · · ,sL(k)] means a subset with
L(k) members of the set 0,1, · · · ,N−1, wheresl
denotes the index of the chose subbands, andL(k)
means the number of selected subbands at iteration
k. Finally, the update equation of the proposed algo-
rithm is expressed as

ŵ(k+1)

=







ŵ(k)+µ∑L(k)
l=0

usl (k)sign(esl ,D
(k))

√

∑L(k)
l=0 ||usl (k)||2

L(k) 6= 0

ŵ(k) L(k) = 0
,

(17)

where|esl ,D(k)| >
√

ασbsl ,D
(l = 1,2, . . . ,L(k)). The

proposed algorithm is summarized in Table 1. Table
2 shows the computational cost of the conventional
SSAF and the proposed algorithm.

4 SIMULATION RESULTS

The performance of the proposed algorithm is com-
pared to the conventional SSAF algorithm via com-
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Table 2: Computational Complexity.

SSAF Proposed algorithm
Multiplication 3M+3NL (1+2N(k))M+3NL

Division 1 N(k)
Comparison - 1

(1/TS, N(k) = L(k)/N)
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(a) SSAF (µ = 0.005) (Ni and Li, 2010)
(b) Proposed algorithm (µ = 0.005, α = 1)
(c) Proposed algorithm (µ = 0.005, α = 2)
(d) SSAF (µ = 0.001) (Ni and Li, 2010)
(e) Proposed algorithm (µ = 0.001, α = 1)
(f) Proposed algorithm (µ = 0.001, α = 2)(a)
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Figure 2: NMSD learning curve for the conventional SSAF
(Ni and Li, 2010) and proposed algorithm with various step
sizes.
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Figure 3: Average number of selected subbands in the pro-
posed algorithm.

puter simulation. The adaptive filter has the same
length as the optimal weight vector with 512 or 1024
taps. The input signal is generated by passing a zero-
mean white Gaussian random sequence through

G(z) =
1

1−0.9z−1 . (18)

The background noise is added to the system output
with a signal-to-noise ratio (SNR)= 30 dB. Further-
more, an impulsive noise is also added to the system
output with p= 0.01 andK = 105. In order to com-

pare the performance, we use the normalized MSD
(NMSD), which is defined as||wopt− ŵ(k)||2/||wopt||2
and calculated by ensemble averaging over 50 inde-
pendent trials. We assume that the background noise
varianceσ2

b is known (Yousef and Sayed, 2001; Ben-
esty et al., 2006), soi−th subband noise variance is
obtained asσ2

bi,D
= σ2

b/N (Yin and Mehr, 2011). In

the simulations, the number of subbands(N = 8) are
used. The length of the prototype filter is 64.
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(b) Proposed algorithm (µ = 0.005, α = 1)
(c) Proposed algorithm (µ = 0.005, α = 2)
(d) SSAF (µ = 0.001) (Ni and Li, 2010)
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Figure 4: NMSD learning curve for the conventional SSAF
(Ni and Li, 2010) and proposed algorithm with various step
sizes.
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Figure 5: Average number of selected subbands in the pro-
posed algorithm.

Figure 2 shows the normalized MSD learning
curve for the conventional SSAF (Ni and Li, 2010)
and the proposed algorithm forM = 1024, various
step sizes (µ = 0.005 andµ = 0.001), and values of
α (α = 1 andα = 2). As can be seen, the proposed
algorithm leads to a fast convergence rate when step
size is small. The proposed algorithm has a fast con-
vergence rate but high steady-state MSD ifα is large
because the number of subbands quickly decreases.
Figure 3 shows the average number of selected sub-
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bands. In this result, the proposed algorithm has a
lower computation complexity than the conventional
SSAF algorithm, because the number of used subb-
bands is decreased.

Tracking performance is an important issue in
adaptive filter (Benesty et al., 2006). The unknown
system is changed to−wopt at 5× 105 to evaluate
its tacking performance (Zou et al., 2000). Figure
4 shows the NMSD learning curve of the conven-
tional SSAF (Ni and Li, 2010) and proposed algo-
rithm for M = 1024, various step sizes (µ= 0.005 and
µ= 0.001), and values ofα (α= 1 andα = 2). As can
be seen, the proposed algorithm has fast convergence
rate after the system change. That is the proposed
algorithm properly tracks the changed system coeffi-
cient. AS can be seen from Figure 5, the average num-
ber of selected subbands is increased when the system
changed, but it is decreased again as the iteration in-
creases. Therefore, the proposed algorithm efficiently
reduces the computational cost even for system track-
ing scenario.

In practical application, we can not exactly know
the values ofp andK. Therefore, it is difficult to se-
lect α. However, the user choosesα ≥ 1, becausep
andK are always positive values.

5 CONCLUSIONS

In this paper, we have proposed a new SSAF algo-
rithm with a low computational complexity. By an-
alyzing the MSD, the proposed algorithm selects the
number of subbands at each iteration. In conclusion,
the proposed algorithm was derived by maximizing
the decrease in the MSD at every iteration. Conse-
quentially, the proposed algorithm reduces the com-
putational complexity compared to the conventional
SSAF algorithm. In addition, the simulation results
show the proposed algorithm achieves a fast conver-
gence rate in impulsive-noise environments.
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