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Abstract: A simple LQG control with no control cost is considered for discrete-time systems with input delay. In such
case the loop transfer recovery (LTR) effect can be obtained especially for minimum-phase systems. The
robustness of this control is analyzed and compared with state prediction control whose robustness stability is
formulated via LMI. The robustness with respect to uncertain time-delay is considered including the control
systems with Smith predictor-based controllers. Computer simulations of a second-order stable, unstable and
nonminimum-phase systems with time-delay are given to illustrate the robustness and performance of the
considered controllers.

1 INTRODUCTION In this paper,the discrete-time Kalman filter based
LQG control with no control cost for input-delayed
. . _ systems with application of LTR technique is consid-
The LQG/LTR control for discrete-time systems is & greqd. The resulting robustness with respect to uncer-
y_vell known problem investigated for exar_nple in(Tad- t5in delay for mph and nmph systems is analyzed and
jine et al., 1994) where the general design aspects ofcompared to prediction based control (Gonzales et al.,
loop transfer recovery (LTR) both at the input and 012) additionally, the Smith predictor-like controls
at the output of the system are presented. In (Ma- 5nq their robustness properties to time-delay uncer-

ciejowski, 1985) the asymptotic case of LQG control, tainty are analyzed by simulations of second-order
i.e. when the control weighting factor tends to zero systems.

is considered for both prediction and filtering type of
controller. The case of nonminimum-phase (nmph)
system is also discussed. Robust LQG/LTR control of
discrete-time systems with time-delay at the input (or 2 LQG/LTR FOR

computation delay) is a specific problem within a gen- DISCRETE-TIME SYSTEMS

eral LQG/LTR framework. In this context some re-

sults are given in the literature like: (Kinnaert, 1990), WITH DELAY

(Kinnaert and Peng, 1990), (Zhang and Freudenberg, ) ) o
1993). In (Kinnaert, 1990) the LQG/LTR problem The state-space discrete-time SISO system is given by
with respect to the system input is solved for the _F 1
square minimum-phase (mph) system with d-sample %p1 = PR QU-d W (1)
delays. The generalization of results in (Kinnaert, Vi = DT>_q +W (2)
1990) are given in (Kinnaert and Peng, 1990) where i

the recovery at both system input and system outputWhere{w} and {w} are sequences of independent
is investigated and the corresponding recovered loop'a@ndom vector and $calar variables W'trz‘ Zero mean
transfer matrices are derived. Further extension of and covarianceBwws = 2y s, Evtvs = 0yd s, and
these results can be found in (Zhang and Freuden-d is a delay given as multiplicity of sampling period.
berg, 1993) where LQG/LTR problem was solved for The system (1), (2) can be transformed to

nmph systems with time-delays and explicit expres-

[ p p
sions of sensitivity and loop matrices are derived for Xi1 = FX+gu+w (3)
the asymptotic behaviour of control system. £ = hT>_<tp7d +W 4)
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wherexf = x4 and the Kalman filter estimate &f
is given by
]T

(5)
whereFP = [F4,Fd-1g Fd-2g ... Fg,g]and the fil-
tered estimatey ), in terms of predictiorx’, _, fol-
lows from

%t :Xt/t—l‘f"_(fytp (6)

whereyf =y — hX% ;1 is an innovation of output.
The Kalman predictor fox,, ; in steady-state is given

X[p/t = Fp[XtT/tautfda"'  Ue—1

by
i1 = F& o1+ 0 g+Koh (7)
and its gain is
k, =FPihlh"Pth+ 07 * (8)

whereP; is the solution of Riccati equation

P = FP{FT + %, — FPihlh"Pih+ of] thTPiFT
©)

The filter gain is

k¢ = Prh[h"Pth+ 022, (10)

sok, = Fk; in view of (8) and (10). Finally, combin-
ing (6) and (7) one gets

%p1=F% 14 1+QU-d (11)
The LQG control law
aims to minimize the cost function
J=ES VY (13)
2
so the gairk; is
ki =—[g"Peg 'g"PeF (14)
andP; is the solution of Riccati equation
P.=F"PF —F'Pglg'Pg 'g"'PF+Q (15)

When the weighting matriQ is Q = hh" and assum-
ing that the system (1), (2) is stabilizable, detectable,
mph andd = 0 in (1) then it can be shown (Tadjine
et al., 1994), (Maciejowski, 1985) thit takes very
simple form

kKl =—(h"g) 'h'F.

(16)

under the condition that" g £ 0 which implies that

system has a natural one-step delay in control chan-

nel.
If G(z) =h"(zI— F)~'gis mph andk, takes a form
(16) then the transfer functioBs(z) of compensator

defined by (6) and (12) can be manipulated into the
form

Gi(z) = —zk[zl—(1—kh")(F—gkl)] ki =
- W-Fegd [, Q)
and the perfect recovery takes place, that is
A(2) = ®(2) - G(2)Gt(2) =0, (18)
where the filter’'s open-loop return rati(z) is
®(2) =h'(zI - F) "k, (19)

When G(z) is nmph then the perfect recovery is in
generalnot possible (this will be commented later on).
Similarly, it is interesting to see what happens when
the LTR procedure is applied for system (1), (2) with
time-delay.

Time-delay in control channel of the system (1), (2)
can alternatively be characterized by takohg- O in

(1) and assuming that delay is incorporated in the sys-
tem(F, g, h) with the Markov parameters fulfilling the
following properties

h'g=h"Fg="--=h"F"?g=0, h'F"g#0

- - - -~ (20)
forr > 1. It is known that the smallest integesatis-
fying the above properties is thelative degreef the
system. It is worthy noting that for relative degnee
and time-delay in (1) it holdsr =d + 1.
In (Zhang and Freudenberg, 1993), (Kinnaert and
Peng, 1990) it was shown that for mph systems the
error functionA(z) for

K;I' — _(DTFrflg)flhTFr.

(21)
has a form

Az =h"(1—z"VF HzI-F) 'k, (22

forr > 1. In general\(z) £ 0, so the perfect recovery
cannot be obtained except the case 1 that corre-
sponds to (18).

2.1 Commentson nmph Systems

As already mentioned LTR for nmph systems is rec-
ommended because the partial recovery could be
achieved (Zzhang and Freudenberg, 1993). The re-
sult for mph systems can be modified for the nmph
systems after the proper factorizationd®fz) (Zhang

and Freudenberg, 1993). For every nmph system the
all-pass factorization is possible

G(2) h'(zI- F)719 = Ga(2)Gm(2) =
Ga(2hn(zI -F) 'g

(23)
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whereG4(2) is all-pass an®m(z) is mph stable trans-
fer function. Partial recovery(z) # 0) for time-
delayed system is then possible with LQG control
gain

ki = —(baF" g thyF . (24)
whereh,, can be easily obtained as a function of sys-
tem parameters.

The recovery error is now
A@2) = (" —z " VGahfF (2l - F) Xk,
(25)
It is worth noting, as shown in (Zhang and Freuden-

Q=¢&l,Qmn==¢&l,Qu==8l,Qs=¢&l,Z=¢&I M=
s;ll,Zl = &l,Zp = gl for some positive small
enough scalars, €.

It is interesting to note that the stabilizable and de-
tectable system with arbitrarily large delay in the con-
trol input can be asymptotically stabilized by either
linear state or output feedback as long as the open
loop system is not asymptotically unstable (Zongli,
2007). The additive uncertain system with input time-
delay and possible unstable poles was considered in
(A. Kodjina and Ishijima, 1994), where it was shown
that achievable robustness margin decreases to zero as

berg, 1993), that full recovery is possible in the sense the time-delay value increases. Problem of time-delay

of loop transfer functiorb(z) if the following condi-
tions are fulfilled

o ®(2) = Ga(2hy(zl —F) *Fk;,
o h"Fk; =h"F2%k; =---=h"F'k; =0.
This means that the observer loop has the same nmp

tem.

2.2 LMI Approach

In (Gonzales et al., 2012) an LMI condition for robust
stability of noise-free system (1) with unknown time-
delay belonging to known interval, i.éy < d < d, is

given. The system is under the state feedback pre-

diction based controlley; = I_(I&H,/t with a given
gaink. and a given prediction horizoh. This ap-
proach is adopted for our comparison study where
h=d and¥_q, can be obtained e.g. from (5), (6),
(7) neglecting the noise terms. Then the following
corollary follows: the global closed-loop stability re-
sult given in (Gonzales et al., 2012) reads: for t_;fly
such thaF + gk! is Hurwitz and ford, = d, =h =d
there exists a feasible solution, i.e. there exist matri-
cesP,L,Q,Qm,Qum,Qd,Z,Z1,Z2,M > 0 that satisfy

I 0
{ 0 —Zu } <0 (26)
where
rr{ O 0 0 I3 4 MNs 1

* FG 0 0 0 rg rlo

* * 17 O Z1 0 0
M= * * * Mo O 0 0

* * * * F13 —rg —r]_o

* ok * * * —L 0

* ok * * * * -M |

and N = -P+Q+Qn+Qu+ Q4 — 2,13
Zp,Ta=A] Ts=(A—1)T,Te=—Q,Tg=B], o=
Bl.N11 = —Qml12 = —Qw,l13= Q4 —Z1 —
25,2 = Z—d?Zy, Ay = F + gk By = Fgk] ,PL=
1.ZM =1, with N =

390

compensation for nonlinear systems was tackled in
(Kravaris and Wright, 1989) using Smith Predictor-
based controllers.

3 SMITH-PREDICTOR

structure and at least as many delay steps as the sys*

APPROACH

Among the variety of Smith Predictor controllers, a
PID Smith Predictor (PIDSP) controller (Bobal et al.,
2011) was derived so that the desired closed-loop

transfer function isi:—‘:i wherea = lni and Ty, is
desired time constant of the first-order closed-loop re-
sponse. For a second-order system the controller has

a form
Ut = Olo€t + J1€t—1 + O2&t—2 + Ug—1 (27)

wherego =Y, qa = a1y, e =azy, y=(1—e"%)/(ba+
bo). The erroris; = r — 9, Wherer is the reference
signal and the signal,} is calculated agp; = €t +
Ymt With €pt = ¥t — %, Yt = Ga¥mt, Yt = Gplk, Ymt =
Gmu;, and finally the PID controller (27) is described

W = Ge(z Vgt
This gives the output-reference closed-loop transfer
function

Gu(z h) = (28)
Gp(z 1)Ge(z )

1+ Gp(z H)Ge(z 1) +Gm(z 1)Ge(z 1)(1-Ga(z 1))
that in case of perfect matching,
Gm(z )Ga(z 1) = Gp(z 1) (d = diy) yields

i.e.

Gp(z 1)Ge(z )

Gu(zH = 29
ol(Z27) 1+Gm(z 1)Ge(z 1) (29)
For the second-order model
b1z 1+ bz 2
~1\ 1 2 —d
Gp(Z )_ 1+ayz 14+ az? ’ (30)
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considered below in the simulations, the specific ry in the model should be used in (35), noting that

transfer functions are rm = dm+ 1. The corresponding closed-loop transfer
Gm(fl) _ 7 1(by + by) funftlon is then
Az 1) Gu(z H = (36)
and (1-0)G(zhH
Gaz 1= 2Bz Y 73(z-2)Gr, (2 )+ (1-a)7 ™ (Gr (2 1)~ Gr (2 1))
Zfl(bl + bz)

] Obviously, for perfect matching we get (34).
It is easy to check from (29) that for a second-order

model (30) in steady state one obta@®g(1) =1, i.e.

perfect tracking for perfect matching.

Consider now the Smith predictor idea presented in 4 LTRFORARMAX MODEL
(Kravaris and Wright, 1989) for continuous-time sys- o

tem and apply it to discrete-time state-space frame- The ARMAX model is given by

U

work. Then for the noise-free system (1), (2) the con- _ _
trol law is Y v abs Yt =Gz U a+Ge(z Ha (37)
t(zl — F ~1y _ Bz} -1y _ C(zh
_ dTe (z_ ) . (M +KT%,), where(%(z ) A(Z,Tl), Ge(z ) AT anoTI at the
det(zl—F) +k; Adj(zl = F)g(1—zm) same timeG(z) = h'(zI — F)'g, Ge(z) = h' (zI —

(31) F) k. + 1 with A(z 1),B(z 1) andC(z 1) polyno-
wherey; is a command signatl, is the time-delay in m)ialsk?n the opera(ltor)i i(.e. ,Z\(z*l) :( 142212}/14_
the model and the statge = (zl — F)*lg_;fdut. The atanz "Bz Y :blf'1+...+bnz’” Czh=1+
closed-loop discrete-time transfer function frgpto cz it ...’+ cnz "and{e} assumed t’o be a sequence
vi takes a form of independentvariables with zero mean and variance

Gu(z 1) = (32) = e _ _ _
hTAdj(zI—F)g ARMAX model (37) has an equivalent innovation

7d state-space representation
det(zl — F) —k.Adj(zl — F)g(1+2z 9 —z 9m)
o . . %1 = FX+gu-datke (38)
With this form it is possible to select closed-loop (39)

poles for the delayed system according to the pole- v = h'x+e
placement method. The feedback gkincalculated  \yhere g = (by,...bp)T, ks = (C1 — ay,....Ch —
using (14) can also be applied. To obtain the asymp- )T hT — (1.0 0)

totic tracking accuracy defined by the ergpe=ry —y; )", b =(1,0..,

the feedforward gaitk; is introduced, i.e.v; = k1 —a; 1 0
wherek; = Gg (1)~ . 0
Finally, the error feedback controller described for ex- F= —an 1 1
ample in (Soroush and Kravaris, 1992) is considered. —an 0
When the condition (20) is fulfilled then it holds ) .
Equations (38), (39) can take the following represen-

Gzl = z'hF'(zI-F) 'g+h"F g = tation

_ —r —1

= z'G (Z ) (33) X1 = F*>_(t +gUtfd +L<eyt (40)
Suppose the required closed-loop response is of the Vi = hTXt +a, (41)
simple first-order with time-delay T

1o whereF* = F —k,h". Kalman predictor associated
) L with eq.(40) is
Gu(z ™) 1T ori’ (34) ’ )
then the controller has the following transfer function Boap = F R+ Q-a +koht (42)
frome to u and Kalman filter is given by
Ge(z 1) = 1-a L 35 Rp=Rp 1 tkie—hRp q),  (43)

S l-azl-(1-a)z'G(z})

where 0< a < 1 and the error ig; = ry —y;. When
the time-delay mismatch occurs the relative degree k¢ = Prh[h"Pth402] 1 (44)

with filter gain
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whereP is the solution of Riccati equation

Pt = F*PiF*T —F*Pthh" P(F*T (h"Pth+02) L.
(45)
The predictor equation derived from (42) is

N N T
%yt = FRj1+ k- + Kot —h %y 1), (46)

where the predictor gain is naky = ki, + ke andky, =
F*K;.

However, in the considered steady state case, the so

lution of (45) isPs = 0 and consequently; =k, =0

andx; 1 =% _1 = %. From (46) or directly from (42)
the Kalman filter equation takes then a simple form

Ri1=F"R 49w _d+kW (47)

Taking this filter form into account together with
(21) or (24) one can see that in order to imple-
ment LQG/LTR control no Riccati equation has to be

solved neither fok. nor fork;.

5 SIMULATION STUDY

First, consider the stable system
s+2 _
G(s)=————€3
() (s+1)(s+3)
discretized with ZOH and sampling peridg= 0.5s
which yields the following transfer function r*

-0.32621-012242 _,

Gz h=
(20 =1 0829% 1701535 2%

(48)

sod = 2.

with one nmph zero at.Z72. Then one can calculate

z—1.772
D= T 1772

and according to (23) and (24)
hi = (0.54521.3077), kI =(-0.8391 ~1.9091).

In computer tests different configurations of dethy

in the system and its modd}, in the controller were
tested. In other words the undermodelihg< d and
overmodelingly > d cases are analyzed.

Simulations of closed-loop step responses with Smith
predictor based controllers have been tested for stable
and nmph systems as they are not suitable for unstable
systems.

An example run of step responses for controller (27)
is shown in Fig.1, for stable system with= 2 and

dm = 2,6,10 and ford, = 2 andd = 2,6,10. Re-
sponses for the same configuration of time-delays for
controller (31) is shown in Fig.2, and corresponding
situation for controller (35) in Fig.3.

An-analogous run of step responses for nmph system
and controllers (27), (31), (35) with the same time-
delays configurations is shown in Figs.4, 5, 6, corre-
spondingly.

One can observe some performance difference be-
tween all these controllers. Looking at the responses
one may say that controller (35) slightly outperforms
others and in case of nmph system there is no typical
undershoot because of pole-zero cancelation in opem-
loop.

LQG/LTR method with control (21) as well as LMI
approach (26) applied to stable and nmph systems

Next, an example of second-order unstable time-delay give stability for all under- and overmodeling con-

system is
S+2 _
Cols) = (s+ 1)(3—3)e )
and its discrete-time form with ZOH anld = 0.5sis
1352z 1-043%22 ,
T 1 5o08& 12712
Finally, nmph time-delay system is considered

Gp(z 1)

(49)

—s+1 _s
&= i+ 2

which after discretization yields the following transfer

functioninz !
~0.1612 14 0.28567 2
Gp(z h) = + z?
1-0.9744140.2232 2
The nominal model iz operator is

—0.1612+0.2856
G2 = 20972z 1 0223 (51)

(50)
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figurations of time-delay. For unstable systems the
global closed-loop stability with respect to time-delay
can not be assured even in case of perfect matching
The obtained values of destabilizing time-delay for
LQG/LTR method aredgest = 5, dgqest = 4 for con-
trollers (14) and (21), respectively and for the noise
varianceo? = 0.01. For variance valueZ = 0.001
one obtainglyest = 10,dgest= 11 for controllers (14)
and (21), respectively. One may observe that the
smaller the variance the larger valuedyts; so the
value of dyest depends on stochastic properties of
noise. In considered case the performance of both
controllers (14), (21) is comparable, however con-
troller (21) is computationally simpler. Additionally,
unstable nmph system was simulated with controllers
(14), (21), (24) yielding the same resdlfesi= 5 for

02 = 0.01. For variances? = 0.001, the values of
dgest = 5,6, 7 are obtained correspondingly for con-
trollers (14), (21), (24).



LQG/LTR Versus Smith Predictor Control for Discrete-time Systems with Delay

—d =2
m

d =6

m

—d =10
m

100

—d=2
d=6
—d=10 [+

1 | | | | 1 | |
0
0 10 20 30 40 50 60 70 80 90 100

t

Figure 1: Step responses for stable system with contr@iéy. (
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Figure 2: Step responses for stable system with contr@tey. (
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Figure 4: Step responses for nmph system with controllex. (27
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Figure 6: Step responses for nmph system with controlléey. (35
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Simulation of state feedback prediction control, Maciejowski, J. (1985). Asymptotic recovery for discrete-

whose stability condition is given by LMI (26), for an time systems. |EEE Trans. Automat. Conr.
unstable system is performed for the feedback gain 30(6):602-605.
k. from (14). For scalarg; = g, = 10-% the ob- Soroush, M. and Kravaris, C. (1992). Discrete-time nonlin-

ear controller synthesis by input/output linearization.
AIChE Journa) 38(12):1923-1945.

Tadjine, M., M'Saad, M., and Dugard, L. (1994). Discrete-
time compensators with loop transfer recovdyEE

tained value of destabilizing time-delay of the system
is dgest = 14, however, it should be remembered that
this is for deterministic system. This value may be

considered as a limit value @fjes; for LQG/LTR as Trans. Automat. Contr39(6):1259-1262.

a noise varlanqe Fiecrease, i.e. as the system beCOmef‘nang, Z. and Freudenberg, J. (1993). Discrete-time loop
more determ'n's'[_'c- . transfer recovery for systems with nonminimum phase
Plots of state variables and control for unstable noise- zeros and time delay#utomatica 29(2):351-365.

free system with non-zero initial conditions add= Zongli, L. (2007). On asymptotic stabilizability of dis¢ee

dm = 5 are given in Figs.7, 8 for controllers (14) and time-linear systems with delayed inpuommunica-
(21), respectively. tions in Information and System3(3):227-264.

6 CONCLUSIONS

LQG control of discrete-time SISO system with time-
delay in the context of LTR effect is presented and
compared with LMI robust stability condition given in
(Gonzales et al., 2012). Moreover, the Smith predic-
tor approach for PID controller, state space controller
and error feedback controller are included into anal-
ysis of robust stability with respect to the modeling
error of time-delay. This is done on the basis of sim-
ulations of second-order system with given nominal
time-delay value. Results show some potential of the
LQG method with LTR effect as a way for robustify-
ing the stability of closed-loop control for stochastic
systems with time-delay and possible unstable open-
loop system.
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