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Abstract: Automation of excavators offers a promise for increasing productivity of digging. At the same time, it’s a 
highly difficult issue due to presence of various nonlinearities and uncertainties in excavator mechanical 
structures and hydraulic actuators, disturbance when a bucket contacting the ground etc. This paper 
concerns the problem of robust trajectory tracking control of an excavator arm. To solve this problem, the 
computed torque control with the guaranteed cost control is considered. The mathematical tool of R-
functions as an alternative to the linear matrix inequality approach to constructing information sets of an 
excavator arm state is used. Simulation results and functional ability analysis for the proposed control 
system are given. 

1 INTRODUCTION 

Hydraulic excavators are used at a wide variety of 
sites from civil construction to disaster elimination, 
therefore efficiency and productivity increase of 
these machines is a highly important problem. One of 
the ways to solve the problem is to design a robotic 
excavator. In addition to the increase of productivity, 
the automation of excavators reduces loads on an 
operator, improves his safety and makes it possible to 
work in places that are inaccessible for humans. 

However, robotic excavators are created 
extremely slowly due to high dynamic loads during 
the bucket and soil interaction, which is difficult to 
predict, and other uncertainties such as backlashes 
between machine parts, variability of a fluid 
viscosity in hydraulic actuators, oil leaks, etc. 

There are a lot of papers focused on the robotic 
excavator design and creation of digging process 
control system. For example, some works (Koivo et 
al, 1996; Gao et al., 2009; Gu et al., 2012) describe 
PD and PID controllers application to control a 
robotic excavator arm movement. Besides, in one of 
the papers (Gu et al., 2012) a proportional-integral-
plus (PIP) controller and a nonlinear PIP controller 
based on a state-depended parameter model structure 
were proposed.  

In one of the works (Yokota et al., 1996) a 
disturbance observer in addition to PI-controller to 
control a mini excavator arm was proposed. Along 
with the computed torque control, the adaptive and 
robust controls of the excavator arm were designed in 
(Yu et al., 2010).  

In (Bo et al.) a fuzzy plus PI controller with fuzzy 
rules based on the soft-switch method was 
developed. In (Zhang et al., 2010) an adaptive fuzzy 
sliding mode control to realize the trajectory tracking 
control of an automatic excavator was designed. Two 
controllers based on fuzzy logic, including the fuzzy 
PID controller and fuzzy self tuning with neural 
network, were developed in (Le Hanh et al., 2009) to 
control the electro hydraulic mini excavator. In 
(Choi, 2012) the Time-Varying Sliding Mode 
Controller with fuzzy algorithm was applied to the 
tracking control system of the hydraulic excavator. 
Time-delay controllers were proposed for motion 
control of a hydraulic excavator arm in (Chang and 
Lee, 2002; Vidolov, 2012).  

All these works have made a valuable 
contribution to solve the problem of robotic 
excavator creating, but a commercial fully robotic 
excavator will probably appear not soon due to the 
mentioned above factors.  

In this paper we propose the guaranteed cost 
control for the trajectory tracking control of the 

52 Gurko A., Sergiyenko O., Hipólito J., Kirichenko I., Tyrsa V. and Lopez J..
Guaranteed Control of a Robotic Excavator During Digging Process.
DOI: 10.5220/0005536000520059
In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO-2015), pages 52-59
ISBN: 978-989-758-123-6
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



excavator arm during digging operation. The control 
guarantees the robustness against uncertainties of 
modelling and unexpected disturbances due to, for 
instance, the bucket and soil interaction. 

2 EXCAVATOR MODELLING 

2.1 Modelling of an Excavator Arm 

The dynamic model of an excavator arm can be 
obtained using the Lagrange equation and can be 
expressed concisely in matrix form as the well-
known equations for a rigid-link manipulator (Spong 
et al, 2006):  

( ) ( , ) ( ) ( ) LD C G B           , (1)

where , ,     are the 41 vectors of the measured 
joint position, velocity and acceleration angles as 
shown in Figure 1; ( )D   is the 44 symmetric, 

positive-definite inertia matrix; ( , )C    is the 44 

Coriolis and centripetal matrix; ( )G   is the 41 

vector of gravity terms; ( )B   is the 41 vector of 

frictions;   is the 41 vector specifying the torques 
acting on the joint shafts; and L  is the 41 vector 

representing the interactive torques between the 
links and environment during the digging operation. 

For the convenience, dynamic equation (1) can 
be rewritten as follows: 

( ) ( , ) LD N        . (2)

where ( , ) ( , ) ( ) ( )N C G B           .  

 
Figure 1: Coordinate frames of an excavator. 

Note that since during the digging operation the 
joint variable 1  is not changed, it is therefore 

assumed that 1 1 0     . 

2.2 Digging Resistance Force 

Digging by an excavator is performed due to the 
bucket movement in two directions. The main 
movement, named lifting, cuts a slice of soil. The 
second movement (penetration) is perpendicular to 
the main movement and regulates the thickness of 
the cut slice of the soil. 

 

Figure 2: Bucket and soil intersection. 

During digging of soil by an excavator there acts a 
resistance force rF  at the cutting edge of the bucket 

teeth (Figure 2). rF  is a resultant reaction force of the 

tangential tF  and the normal nF  forces. According 

to M.G. Dombrovskij (Alekseeva et al. 1985), the 
tangential force can simplistically be determined as  

t сF k bh , (3)

where сk  is the specific cutting force in N/m2 that 

takes into account soil resistance to cutting as well 
as all other forces (frictional resistance of the bucket 
with the ground, resistance to the movement of the 
prism of soil etc.); h and b are the thickness and 
width of the cut slice of soil.  

The normal component nF  is calculated as:  

n tF F , (4)

where  is a dimensionless factor depending on the 
digging angle, digging conditions and the cutting 
edge where  = 0.1–0.45. Higher values of  
corresponds to more dulling of the bucket teeth edge. 

Thus, the torques of resistance forces for each 
link of an excavator arm can be calculated as: 

2
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0 1 1

0 0 1
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L L
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, (5)
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where  4 4 sin cosL t b n bl F F     ; 

            3 3 4 4sin( ) cos( )L t b n bl F F       ; 

             2 2 34 34sin( ) cos( )L t b n bl F F       ; 

b  is the angle between the axes 4x  and the 

direction of the force tF  (Figure 2); 34 3 4    

(Figure 1); jl , 2,4j   are the lengths of the 

excavator arm links. 
It is obvious that using more accurate models of 

a bucket and soil interaction, for example given in 
(Luengo, 1998), still possible improve the 
performance of proposed control system. 

2.3 Controller Model 

In classical case of manipulator control, the 
computed-torque control (CTC) and computed-
torque-like controls are widely used.  

The equation for the CTC is given by Spong 
(Spong et al., 2006)  

( ) ( , ) Lu D a N      , (6)

where u is the control vector; d
v pa K e K e    ; pK  

and vK  are symmetric positive-definite matrices; 
de   is the position error vector; de    is the 

velocity error vector; and superscript “d ” means 
“desired”.  

As far as the values of the parameters in (2) are 
not known exactly due to the uncertainties in the 
system, we have to rewrite the control (6) as  

ˆ ˆ( ) ( , ) Lu D a N      , (7)

where the notation ( )  represents the estimates of 

the terms in the dynamic model. 
Having substituted (7) in (2), we can obtain 

a   , where  is the uncertainty. Hence, 
de a   . We can set the outer loop control as 

a a  , where a  is to be chosen to guarantee 
robustness to the uncertainty effects . By taking 

[ ]T T Tx e e   as the system state, the following 

first-order differential matrix equation is obtained: 

( )x Ax B a   , (8)

where A  and B  are the block matrices of the 
dimensions (66) and (63) respectively: 

0

p v

E
A

K K

 
   

; 
0

B
E

 
  
 

. 

Thus, the issue of the control of an excavator 

arm movement is reduced to finding an additional 
control input a  to overcome the influence of the 
uncertainty  in the nonlinear time-varying system 

(7) and to guarantee ultimate boundedness of the 
state trajectory x in (8). 

3 CONTROLLER DESIGN 

3.1 Kinematic Control 

Previously to development of control system as 
subject to improve an excavator dynamics, it is 
necessary to solve the problem of its kinematic 
control. In (Sergiyenko et al., 2013) it was 
considered an optimal solution of inverse kinematics 
task for robotic excavator that provides bucket teeth 
movement along the desired path. As optimality 
criterion the minimizing of quadratic function (9) of 
joint angles associated with the respective weights 
was accepted: 

 
4 20

0
2

minI
j j j

j

J




      θ
, (9)

where 0
j  and I

j  are the initial and the final values 

of the angles j, 2,4j  , respectively (Figure 1);  

j  are the weighting factors, that prioritize the 

angles changing j;   is the given subset. 

To solve the problem (9) it is necessary to solve 
the matrix equation (10): 

i i iH F  , (10)

where 2 3 4[ ]i i i T
i     ; i

j  are increments of 

the joint angles of an excavator arm at each step i in 

time domain; [ ]i i T
i b bF x z   ; i

bx  and i
bz  are 

increments of a bucket teeth coordinates in a 
Cartesian frame at each i-th step in time domain; 

4 4
1 1 1

4 4
2 3

4 4
1 1 1

4 4
2 3

sin sin sin

cos cos cos

i i i
j j j j

j j
i

i i i
j j j j

j j

l l l

H

l l l

  

 

  

 

 
   

 
  
    
 

 

 
; 

2

j

j k
k

   , 2,4j  . 

Using the Tikhonov's regularization method we 
can write the original equation (10) in the next form 
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 T T
i i i i iH H H F   , (11)

where  is arbitrary small positive parameter that 

provides stability of the matrix 1( )T
i iH H 

computation;  is the square 3×3 matrix.  
In classical problems the matrix  has equal 

diagonal elements. Taking into account the specifics 
of the vector i, we will use the diagonal matrix  
which non-zero elements are defined as: 

  1, 1j j j   , 2,4j  . (12)

If the values of j are known, solution of (12) is 
trivial. 

The weighting coefficients j we propose to 
define in next way. The value of 2 is selected 
wittingly large to minimize the boom motion. 
Values 3 and 4 depend on the method of digging:  

- when digging with the bucket 3 >> 4; 
- when digging with the stick 4 >> 3; 
- when excavator digs simultaneously with the 

stick and with the bucket, the 3 and 4 ratio is 
chosen to equate the maximum angular acceleration 
of 3 and 4. Accelerations j are calculated by the 
well-known formula: 

1 1

2

2i i i
j j ji

j
t

    
 


. (13)

3.2 Robust Control 

For an additional control a  determining, we 
propose the optimal guaranteed cost control 
approach. According to this approach, it is assumed 
that uncertainties in the system are known with 
accuracy to a certain guaranteed bounded set. 
During the control system operation the new sets 
representing the estimates of the system state are 
built. The advantage of this approach is in providing 
an upper bound on a given performance index and 
thus, the system performance degradation incurred 
by the uncertainties is guaranteed to be less than this 
bound (Gurko, et al., 2012). 

Let's derive the digital version of the equation 
(8) for the digital control system implementation: 

1 { } ( 0,1,..., 1)k d k d k kx A x B a k n       , (14)

where dA  and dB  are the digital versions of the 

matrices A  and B in (8); the uncertainty k  is 

bounded by the known set k
 ; k – moments of 

quantization. 
Control is formed on the basis of joint angles  

measurements are represented in the form of the 
vector ky : 

( ), ( 1,2,..., 1)k d k ky C x v k n    . (15)

where dC  is the output matrix; kv  is the vector of 

measurement noises bounded by the known set v
k . 

As the aim of the control we assume the 
minimizing of the following cost function: 

1( , ) ( ) ( , )k k k k k k k kJ x a V x x a    , (16)

where kV  is Lyapunov function that allows 

estimating the quality of the further excavator arm 
motion in the absence of perturbations; k  is the 

given function, which defines the control costs and 
assigns limitations on their value. 

For the well-posed task (16) formulation, 
information about the uncertainty k  has to be 

redefined. As far as the k  can take on any value 

inside the set k
 , we have to consider the values 

maximizing the cost function (16).  
Moreover, the fact that k  and kv  belong to the 

proper sets k
  and v

k  enables to suppose that as a 

result of measurement (15) of the excavator arm 
joint angles , information about the current state is 

obtained in the form of the set r
k kx  . For the 

additional control a  determining the point 

estimation of r
k kx   is required. For this purpose 

we will consider the point maximizing the cost 
function (16). So, the objective of the additional 
control ka  is to solve the following task: 

min max max max ( , )
u v r

k k kkk k kk

k k k
a v x

J x a
    

 . (17)

It’s obvious that the task (17) solution guarantees 
the proper excavator control system performance 
that depends on kJ  at any allowed k  and kv .  

The description of the sets of the possible states 
of the excavator arm we will carry out according to 
following algorithm (Gurko at al., 2012). 

1. Let at an arbitrary moment of quantization k 
there is an estimate of the excavator arm state as 

r
k kx  . The transformation (18) should be realised 

to find the set of states , 1
f
k k  

, 1
f r

d kk k A   , (18)

where , 1
f
k k  is a prediction of possible system 

states 1 , 1
f f

k k kx    at the [ 1]k  th moment to which 
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it must transit moving freely from the state r
k kx  .  

2. A new set , 1
w
k k  of possible system states is 

developed by transformation (blurring) of the set of 

states , 1
f
k k : 

, 1 , 1
fw

k k dk k kB 
    , (19)

where k
  is the aggregate of boundary elements 

of the set k
 . 

Thus, the set , 1
w
k k  is a prediction of the 

excavator arm state at the [k + 1]th moment with 
allowance for the influence exerted by uncertainties 

k  on values of parameters of the vector 1
f

kx  . 

3. A value 1 , 1
u w
k k kx    of the system state is 

found. The 1
u
kx   is used for an additional control 

ka  determined to solve the task (16). 

4. The moving of the set , 1
w
k k  by the 

additional control ka  is provided and a new set 

1
u
k  is constructed. The set 1

u
k  is an estimation 

of the system state to which it must transit at the 
[k + 1]th moment under ka  and k  action. 

5. The new measurement of joint angles k is 

carried out to find a posteriori estimate 1 1
r

k kx    

of the system state at the [k + 1]th moment: 

1 1 1
r u v
k k k     . (20)

Further, the mentioned procedure is repeated 
iteratively.  

4 DETERMINING A SET OF 
POSSIBLE STATES 

Until recently linear matrix inequalities have been 
used to construct sets of control system possible 
states. In (Gurko and Kolodyazhny, 2013) we 
proposed to use R-functions for this purpose. This 
significantly simplifies the estimation of a control 
system state. 

The R-function ( )kx  of the set k  has the 

following properties: 

( ) 0, when ,

( ) 0, when ,

( ) 0, when ,

k k k

k k k

k k k k

x x

x x

x x

  
  
    

 

where k  is the aggregate of boundary elements 

of the set k . 

Let’s denote R-functions of the sets r
k , , 1

f
k k , 

k
 , v

k , u
k  and , 1

w
k k  as ( )r

kx , ( )f
kx , 

( )kx , ( )v
kx , ( )u

kx  and ( )w
kx . For 

instance, the set r
k  is constructed using the 

following R-function:  

( ) ( ) ( )r u v
k k k

R

x x x   , (21)

where 
R
  is the R- operation of conjunction:  

2 2( ) ( )u v u v u v

R

        . (22)

5 SIMULATIONS 

A simulation study of the excavator arm motion with 
the numerical values given in Table 1 (Koivo et al, 
1996) was performed in MATLAB.  

Table 1: Excavator parameters. 

Link Mass, kg Inertia, kgm2 Length, m 
Boom 1566 14250.6 5.16 
Stick 735 727.7 2.59 

Bucket 432 224.6 1.33 

A bucket desired trajectory is presented in Figure 3.  

 
Figure 3: Bucket desired trajectory. 

The desired joint angles j , 2,4j   was calculated 

by the equation (11) and are shown in Figure 4. 

At simulating only the joint angles j , 2,4j   

have been measured. It was assumed that the 
measurement noise is in the foregoing range 

3.5 4 4.5 5 5.5 6 6.5 7 7.5
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0.5iv  deg and is subject to the uniform 

distribution law. The resistance forces experienced 
when the bucket penetrates into the soil are 
calculated by (3)-(4). 

 
Figure 4: Desired angles. 

Loam as the type of soil has been considered; the 
loam density varied arbitrarily in the range 
1600  s  1900 kg/m3. The exact value of the force 
kc in (3) was considered to be unknown except for 
the fact that it belongs to the set 
117600  kc  245000 N/m2. The value of the factor 
  in (4) was assumed to be 0.25. Changing of the 

bucket mass has been also taken into account. The 
true load torques L  acted at the links are shown in 

Figure 5.  

 
Figure 5: Load torques L acted at the links. 

As the aim of the control the task (16)-(17) 

solution has been assumed, where 1 1
T

k k kV x Px  ;
T

k k ka R a   ; {0.7,0.5,0.2}R diag  and 

3.2 0 0 1.12 0 0

0 3.2 0 0 1.12 0

0 0 3.2 0 0 1.12

1.12 0 0 1.86 0 0

0 1.12 0 0 1.86 0

0 0 1.12 0 0 1.86

P

 
 
 
 

  
 
 
 
  

. 

Sampling time was Ts = 0.1 s. For the sets of the 
system possible states R-functions have been used. 

The simulation results are presented in 
Figures 6-8. As depicted in Figure 6, the joint angles 
tracking errors are less than 0.1, 0.2, and 1 degrees 
for the boom, stick and bucket, respectively.  

 
Figure 6: Joint angles tracking errors versus time. 

In Figure 7 the predicted sets of possible states 
r  vs. the true system states xt at t = 4 s are shown. 

It corresponds to the maximum value of the bucket 

tracking error. For the sets r  determine the 
expressions (18) - (20) have been used. 

 
Figure 7: Predicted sets r and the true system states Xt: a 
– for the boom; b – for the stick; c – for the bucket. 
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Figure 7: Predicted sets r and the true system states Xt: a 
– for the boom; b – for the stick; c – for the bucket (cont.). 

The digging error is less than 1.2 cm or 3.5% 
(Figure 8). 

 
Figure 8: Digging error. 

The simulation results illustrate that the proposed 
controller provides high quality of digging under 
uncertainties.  

6 CONCLUSIONS 

The work presented in this article investigates a new 
controller to do digging trajectory tracking for a 
robotic excavator. The controller requires two 
circuits: the first circuit calculates the main control 
using the CTC, and the aim of the second one is to 
provide an additional control to compensate effect of 
uncertain factors on the basis of differential games 
with quadratic cost. 

The mathematical tool of R-functions as the 
alternative of the linear matrix inequality approach 
to constructing information sets of the excavator arm 
state is used. 

The practical value of the proposed controller is 
in providing an upper bound on a given performance 
index at any uncertainties from the given bounded 
set, as well as in requiring a relatively low 
computational capability compared to other 
reviewed methods. 

Since the uncertainties do not always tend to 
maximize the cost function, the implementation of 
an additional circuit of adaptation which adjusts the 
bounds of sets of uncertain parameters is desirable. 
Our future work will investigate this aspect. 
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