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Abstract: This paper describes a geometrical approach for analysing the inverse kinematics of a 7 Degrees of Freedom 
(DOF) redundant manipulator. The geometric approach is desirable since it provides complete and simple 
solutions to the problem and determines the relationship between the joints and the end-effector without 
iterative process. This paper introduces the approach to solve kinematic solution of 7 DOF in an intuitive way 
using conformal geometric approach step by step. We finally present the comparison with pseudo inverse 
solution which is the most well-known method in redundant manipulator kinematic problem at the same 
simulation environment.

1 INTRODUCTION 

A manipulators are designed to have the Degrees of 
Freedom (DOF) only needed in the configuration 
space, but have inherent problems, e.g., it is difficult 
to avoid singularity or obstacles in the operating 
space and lack of the adaptation to changes in 
operating environments. Therefore, many studies are 
conducted on a redundant manipulator in the form of 
human arm with redundancy that uses remaining 
DOF after performing given work to perform 
additional work. 

Generally, velocity kinematics algorithm and 
geometric approach are used to analyse the inverse 
kinematic of redundant manipulators. The velocity 
kinematics algorithm (Whitney 1972, Liegeois 1977, 
Baillieul 1985) is based on the generalized pseudo-
inverse to calculate the velocity transformation from 
Cartesian to joint space. Pseudo-inverse of the 
Jacobian matrix provides a possibility to solve for 
approximate solutions. There is no exact velocity 
solution for redundant robot. It increases the 
possibility of singularity and causes cumulative errors 
due to repeated integration of the value of speed. In 
terms of the geometric approach, Tolani (Tolani, 
Goswami et al. 2000) made a geometric approach by 
the shape of 7-DOF manipulator into three joints of 
shoulder, elbow, and wrist to express the movement 
of human arm naturally in computer graphics, but it 
was difficult to express the entities such as spheres 

and circles in 3D spaces. This paper attempted to 
reanalyse the study of Tolani in conformal geometry. 

Conformal geometry is a mathematical language 
that integrates various mathematical theories, such as 
Projective Geometry, Quaternion, and Lie Algebra 
for easy understanding and has been widely used 
since the 1960s when Hestenes applied geometric 
algebra to physics. Therefore, it is spotlighted as a 
new method in robotics (Hildenbrand, Zamora et al. 
2008, Aristidou and Lasenby 2011), computer vision 
(Bayro-Corrochano, Reyes-Lozano et al. 2006, 
Debaecker, Benosman et al. 2008, Ishida, Meguro et 
al. 2013), and computer graphics (Wareham, 
Cameron et al. 2005, Roa, Theoktisto et al. 2011). 
Conformal geometry easily expresses intuitively and 
mathematically the geometric entities, such as 
spheres and circles, from geometric perspectives to 
allow real-time calculations. For more details on 
conformal geometry, refer to the paper by 
Hildenbrand (Hildenbrand 2012). 

The inverse kinematics analysis of manipulators 
in conformal geometry has already been conducted by 
Hildenbrand (Hildenbrand, Lange et al. 2008) and 
Zamora (Zamora and Bayro-Corrochano 2004). They 
used manipulators with 5- to 6-DOF only suitable for 
given configuration space and the analysis was 
possible only with simple geometric entities. 
However, 7-DOF manipulator has redundancy and it 
is necessary to optimize cost function. 
Recently, many studies are conducted about cost 
function in the inverse kinematics analysis of 
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redundant manipulators. Cost function was suggested 
to make a movement similar to that of human arm 
using redundant DOF and a method was suggested to 
optimize cost function by choosing repetition and 
manipulability(Kim, Miller et al. 2012). However, 
most preceded studies have not considered the 
dynamic properties of manipulators and can be weak 
against vibration caused by link or outer load in the 
actual behaviour of robots. This paper also studied a 
method to determine the position of elbow by creating 
and optimizing the cost function considering the 
dynamic properties of manipulator for the inverse 
kinematic analysis of redundant manipulator in 
conformal geometry. Additionally, it created a 
simulation to plan the target route for the manipulator 
to accurately follow the indicated route, and 
compared it with the velocity kinematics algorithm. 

2 INVERSE KINEMATICS 

In order to express the movement of end effector, the 
kinematics must be analysed between the joint vector 
and output vector. In this chapter, we present an 
inverse kinematics which calculates each joint angles 
from the configuration of the manipulator in 
conformal geometry.  

2.1 Redundant Manipulator 

Figure 1 show a kinematic model of the redundant 
manipulator in this paper. It consists of a series of 
rigid links with seven joints (θ1, θ2, θ3, θ4, θ5, θ6, θ7). 
In order to avoid complexity, we briefly set the basis 
coordinate at the bottom. 

Redundant manipulator 
Before analysing the kinematics, the redundant 

manipulator were analysed for simplicity. Since the 
three axes adjacent to the base and three axes adjacent 
to the end-effector meet at one point, we assume that 
the kinematic model is as follows. 
 The three joints (θ1, θ2, θ3) adjacent to the base 

were assumed as the shoulder (3-DOF) 
 The one joint (θ4) at the center of the 

manipulator was assumed as the elbow (1-DOF) 
The three joints (θ5, θ6, θ7) adjacent to the end-
effector were assumed as the wrist joint (3-DOF) 

2.2 Redundant Degree of Freedom 

For a position of the shoulder joint fixed to the base 
and  a position of the wrist  joint along  with  a  target 
position   and   orientation  of  the  end-effector,   the 

 

Figure 1: Redundant manipulator. 

configuration of a redundant robot is fully defined if 
and only if the position of the elbow joint is fully 
specified. 

As the position of shoulder is always on the z-axis 
of global coordinates, it can be found from the point 
expression of basic geometric entities in conformal 
geometry. Eq. (1) expresses the position of shoulder, 
P2. 

2
2 1 3 1 0

1

2
d e d e e  P  (1)

As the position of wrist is determined by the given 
target position and posture, it can be found using the 
Rigid Body Motion of fixed object in conformal 
geometry and is expressed by symbol, 6P . 

The position of wrist, 6P , is defined as the point 

which rotates the coordinates of target position, tP , 

by target posture ( , ,x y z   ) and translates it by end-

effector, 4d , in the direction of –z axis, as shown in 

Figure 2. To express the motion of fixed object, 
Motor, tM  the geometric product of Rotor, tR  and 

Translator, tT  is used as shown in Eq. (2): 
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Point, 6P , is expressed as Eq. (3) by rigid body 

motion of fixed object: 

6 t t tP = M P M  (3)

The position of elbow, P4, unlike the shoulder and 
the wrist that are expressed by single points, is 

ݖ

ݔ ݕ

 ݖ
 ݕ ݔ
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expressed by infinite points and exists on the 
consistent trajectory of a circle. 
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Figure 2: Wrist Point. 
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Figure 3: Intersection of spheres. 

Let S2 be a sphere with radius d2 and center on 
point P2, and S6 be a sphere with radius d3 and center 
on point P6. 
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The intersection of sphere S2 and S6 is a circle Z4 
that represents all the possible locations of point P4 
known the positions of shoulder and wrist, as shown 
in Figure 3. 

4 2 6Z = S S  (6)

Follows a study on (D'Orangeville and Lasenby 
2003), the center Pc and radius rc of the circle encoded 
by the trivector (=circle) Z4 is given by 

 
4 4

4 4
c

e

e e


 

 


Z Z
P

Z Z
 

2
4

2
4( )cr e

 


Z

Z
 

(7)

We have to define the redundancy angle ϕ to find 
the point P4 on the circle Z4. The position of the elbow 
joint can be expressed as a function of ϕ (Tolani, 
Goswami et al. 2000). 

Let v be a normal vector of a plane containing the 
origin e0, point P2, and point P6. 
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Figure 4: Elbow Circle. 

A vector u perpendicular to the vector v is defined 
as follows: 

26 26u R v R  (9)

where R26 represents a rotor. 

26 26exp
4

   
 

R L  (10)

where L26 is the rotation axis, represented by a 
normalized bivector passing through the points P2 and 
P6. 

Given the geometry depicted in Figure 4, the 
position of the elbow can be expressed as follows: 

 4 ( ) cos( ) sin( )c cr    P P u v  (11)

2.3 Minimization of Cost Function 

This paper defined the cost function that minimizes 
the force imposed on joints as operators operate the 
manipulator considering the property that different 
forces are imposed on manipulators according to the 
location of elbow joint. 

2.3.1 Euler-Lagrange Equation 

Euler-Lagrange Equation is used to calculate the size 
of force imposed on manipulator. As Euler-Lagrange 
Equation uses generalized coordinates, it can be used 
on any coordinates that express the position of objects 
(Fowles and Cassiday 1999). 

This paper defines generalized coordinates as the 
position of elbow, 4P . Euler-Lagrange Equation is 

defined as follows:  

4 4

d L L

dt

  
  

  
F

P P
 (12)
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Lagrangian, L , is the difference between the kinetic 
energy and the potential energy generated in the 
center of mass of each link, as follows:  

4 4
2

1 1

1

2 i i i i
i i

L T U m m gz
 

    r  (13)

2.3.2 Center of Mass of Link 

In the equation of Lagrangian, L , the center of mass 
of each link was converted into the function of 
position of elbow, 4P , with generalized coordinates. 

First, the center of mass of each link was assumed as 
consistent bars so it can always exist on the center of 
link.  

The center of mass of base link, 1r , is as follows 

as it exists on the center of base link:  

2
1 2


P
r  (14)

The center of mass of lower link, 2r , is the 

geometric product of Translator, 2T , that transfers 

from the position of shoulder, 2P , to the center of 

mass of lower link, and can be simplified as follows: 
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 (15)

The center of mass of upper link, 3r , can be 

simplified by the geometric product of Translator, 3T , 

that transfers from position of wrist, 6P , to the center 

of mass of lower link: 
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 (16)

The center of mass of lower link, 4r , is as shown 

below as it exists in between the position of wrist, 6P , 

and the target position, tP : 

6
4 6 2

t  
P P

r P  (17)

2.3.3 Force on Elbow 

When the simplified center of mass of each link is 
applied to Eq. (13), Lagrangian, L , is as shown 
below:  
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(18)

Therefore, the force applied onto the elbow joint 
by Euler-Lagrange Equation is defined as follows: 

  4 2 3 4 3 3 6

1
2  

4
m m g e m     F P P   (19)

2.3.4 Cost Function 

The aforementioned size of force imposed on elbow 
varies according to the position of elbow. Therefore, 
the method of least squares (Haykin 1999) is used to 
find the point, 4.iP , where the size of force imposed 

on elbow joint on the circle, 4Z , becomes the 

smallest. The cost function is defined as the function 
about the size of force imposed on the elbow 
according to the position of elbow joint. For this 
purpose, Eq. (17) combines Sample Point,  4.i iP , 

for the position of elbow and the size of force imposed 
on the elbow joint, 4F , from Eq. (20), and expresses 

the equation in a quartic polynomial to make it easier 
to select the position of elbow. The following is 
defined to express the results as similarly as possible, 
and indicated by symbol, E : 

 

 
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i
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        F
 (20)

Here, i  is the angle that rotates the base position 

of elbow, 4.0P , by the rotation axis, 26L , and 4.iF  is 

the size of force imposed on the position of elbow,

4.iP , that is rotated by rotation angle, i .  

Cost function, E , can be partially differentiated 
by the factors of cost function, 0a , 1a , 2a , 3a , and 4a

, as follows to find the angle, ix , where cost function 

is minimized: 
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The equation equivalent to (23) is obtained by 
equating to 0 the right hand side of (22). This matrix 
form is known as Vandermonde matrix. The factor of 
cost function can be calculated using this matrix:  
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The value that minimizes the cost function is the point 
of inflection of quartic equation, so the value of this 
point of inflection should be found. For this purpose, 
the cost function of quartic equation is differentiated 
and the value of differentiated cubic equation is 
found. The value of cubic equation was found using 
Cardano’s method (Wong and Sandler 1992). When 
the minimum size of force is selected among the three 
values, it becomes the position of value, 4P , that 

becomes the smallest value. 

2.4 Geometric Approach for Solving 
the Joint Angles 

As the positions of joints are decided, the joint angle 
should be found.  For the joint angle of manipulator, 
the included angle created at the intersection of two 
geometric entities (line, plane) can be calculated 
using Eq. (23).  For more details, refer to the paper by 
(Hitzer 2013). 

* *
1

* *
cos 

 
   

 
 

A B

A B
 (23)

where A, B indicates the geometric entities and only 
line and plane can be used as geometric entities. 

However, since the range of usual principal value 
of the function y=cos-1(x) is 0≤y≤π and the geometric 
entities has orientation (Cameron and Lasenby 2008), 
the solution for the joint angles cannot be simply 
calculated using the Eq. (23). Therefore, given the 
position of the elbow and wrist joint with respect to 
the base frame, we propose the solution for inverse 
kinematics that considers the orientation of the 
geometric entities. 

First, all of the auxiliary planes and lines that are 
needed for the computation of the joint angles are 
calculated. We need the following: 
 The plane π026 to which P0, P2 and P6, 

 *026 1 0 2 6e e    π O P P  (24)

 The line L24 though P2 and P6, 

 *24 2 2 4 e   L O P P  (25)

 The plane π246 to which P2, P4 and P6, 

246 3 2 4 6 e    π O P P P  (26)

 The line L46 though P4 and P6, 

46 4 4 6 e   L O P P  (27)

 The plane π46t to which P4, P6 and Pt, 

46 5 4 6t t e    π O P P P  (28)

 The line L6t though P6 and Pt, 

6 6 6t t e   L O P P  (29)

Now, we are able to compute solution for the first 
six joint angles (i=1, 2,⋯ ,6) 
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For Oi-2, Oi is the plane.  
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For Oi-2, Oi is the line. 
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And the solution for last joint angle is 
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v v
v v n

v v
 (39)

3 SIMULATION 

3.1 Overview of Simulation 

The overall program procedure for analyzing 
proposed inverse kinematics algorithm of redundant 
manipulators in conformal geometry is shown in 
Figure 5. 

We compared the performance of proposed 
inverse kinematics analysis and velocity kinematics. 
In this verification, we introduced a well-known 
method with computational time and accuracy of the 
solution. 
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Figure 5: Inverse kinematics algorithm of redundant 
manipulators in conformal geometry. 

3.2 Accuracy 

The accuracy is the most essential evaluation points 
in the inverse kinematic analysis since the accuracy 
of the kinematic solution in a real time effects on the 
control performance of the manipulation. In this 
paper, we proved the inverse kinematic solutions by 
comparing joint variables (position and orientation).  

We created the multiple pose of the end effector 
randomly and performed the test for the analysis 
between the proposed method and the velocity 
kinematics methods. We denoted the case that the 
manipulate works inside the valid workspace in the 
following table. In the case of velocity kinematics, it 
has highly dependence of the initial joints variables 
so that we set to zero. 

Table 1: Comparison of accuracy. 

 Velocity 
Kinematics 

Proposed 
method 

Pos. error [m] 7.102E-8 6.834E-14 
Ori. error [rad] 2.539E-7 1.117E-13 

Finally, we get the competent solution both of 
them. However, the velocity kinematic solution has 
numerical singularity region depending on the initial 
values.  

3.3 Computation Time 

The computational time plays an important role for

 shortening control sample time. In the same way, we 
tested the proposed kinematic solution with the 
velocity kinematic solution at the 100 sample points 
of the endpoint for the reasonable comparison. For the 
experimental setup, we constructed the system with 
3.6GHz CPU and 8GB RAM with LabVIEW and 
performed 10 times iteratively. 

Table 2: Comparison of computation time. 

Velocity 
Kinematics 

Proposed 
method

Comp. time [sec] 7.320E-3 3.615E-3
Relative time 2.025 1

Table 2 represents the average time of the  iterative 
measurements for 10 times. The computational time 
of the proposed method showed satisfactory 
performance at average # μsec  comparing to the 
velocity kinematics. From the simulation results, we 
concluded that the proposed kinematic method have 
an advantage of real time analysis and get a unique 
solution precisely at the same time. 

4 CONCLUSIONS 

For the operating a serial manipulator, the process of 
solving inverse kinematics solution must be fast and 
accurate at the same time since the solutions are used 
to control the robot in a real time. Main contribution 
of this research is that we applied conformal 
geometric algebra to the redundant manipulator’s 
kinematic solution which is intuitive and compact 
geometric concept but fast and accurate.  

In order to compare the kinematic solution, we 
simulate at the same RTOS environment both pseudo 
inverse method and proposed method with conformal 
geometry. We finally concluded the kinematic 
solution accuracy was more satisfactory compared to 
previous methods and less computing time as well. 
This made the robot maintain stability during the 
motion for various operations. 
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