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Abstract: The paper presents a unified approach to the statistical linearization of input/output mapping of non-linear 
discrete-time stochastic systems driven with white-noise Gaussian process. The approach is concerned with 
a possibility of applying any consistent measures of dependence (that is those measures of dependence of a 
pair of random values, which vanish if and only if these random values are stochastically independent) in 
statistical linearization problems and oriented to the elimination of drawbacks concerned with applying cor-
relation and dispersion (based on the correlation ratio) measures of dependence, based on linearized repre-
sentations of their input/output models. 

1 PRELIMINARIES 

Solving an identification problem of stochastic sys-
tems is always based on applying measures of de-
pendence of random values, both within representa-
tion of a system under study either by use of an in-
put/output mapping, or within state-space tech-
niques. Most frequently, conventional linear correla-
tion is used as such measures. Its application directly 
follows from the identification problem statement 
itself, when it is based on applying conventional 
least squares approaches. The main advantage of the 
measure is convenience of its application, involving 
both a possibility of deriving explicit analytical rela-
tionships to determine required system characteris-
tics, and constructing estimation procedures via 
sampled data, including those of based on applying 
dependent observations. 

However, the linear correlation as a measure of 
dependence is known to be able to vanish even un-
der existence of a deterministic dependence between 
random values. In particular, this is valid for the 

quadratic dependence, 2XY  , when X is the La-
placian random value (Rajbman, 1981), and for an 

odd transformation of the form XXY 35 3  , 
where the random value X has the uniform distribu-
tion over the interval  1,1   (Rényi, 1959). 

Just to overcome such a disadvantage, use of 
more complicated, non-linear measures of depend-

ence has been involved into the system identifica-
tion. A key issue of the present paper is applying 
consistent measures of dependence. In accordance to 
the A.N. Kolmogorov terminology, a measure of 
dependence ),( YX  between two random values X 

and Y is referred as consistent, if 0),(  YX  if and 

only if the random values X and Y are stochastically 
independent. 

The statistical linearization of input/output map-
pings relates to those identification problems, whose 
solution is most considerably determined by charac-
teristics of dependence of input and output processes 
of the system subject to identification. Meanwhile, 
known approaches to the statistical linearization are 
based either applying conventional correlations, or 
dispersion (based on the correlation ratio) functions, 
what, due to the reasons pointed out above, may give 
rise constructing models, whose output is identically 
equal to zero. A majority of literature references on 
correlation based statistical linearization may be 
found in the books of Roberts and Spanos (2003) 
and Socha (2008).  

The approach presented in the present paper is 
concerned with a possibility of applying any con-
sistent measures of dependence in statistical lineari-
zation problems and is directed to elimination of the 
drawbacks concerned with applying correlation and 
dispersion measures of dependence under system 
identification based on linearized representations of 
input/output models. 
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2 PROBLEM STATEMENT 

Let in a non-linear dynamic stochastic system )(tz  

be the output random process assumed to be station-
ary in the strict sense and ergodic, )(su  be the out-

put random input process assumed within the present 
problem statement to be the white-noise Gaussian 
process. Processes z(t) and u(s) are also assumed to 
be joint stationary in the strict sense, while the de-
pendence of the input and output processes of the 
system is characterized by the probability distribu-
tion densities  

),,( uzpzu , ,2,1 . (1) 

(being of course not known to the user). For sake of 
simplicity but without loss of the generality, the pro-
cesses z(t) and u(s) are assumed to be zero-mean and 
unit-variance, that is  

    0)()(  sutz EE ,     1)()(  sutz varvar  (2) 

In (2),  E  stands for the mathematical expectation, 

and var , for the variance. 

A model of the system described by the densities 
(1) and condition (2) is searched in the form  







1

)()();(ˆ


 tuwWtz , ,2,1t ,  (3) 

where );(ˆ Wtz  is the model output process, 

   ,1),( wW , ,2,1),( kkw  are coeffi-

cients of the weight function of the linearized model, 
subject to identification in accordance to a criterion 
of the statistical linearization. Such a criterion is the 
condition of coincidence of the mathematical expec-
tations of the system output process, described by 
densities (1), and model output process (3), and the 
condition of coincidence of a given measure of de-
pendence of the input and output processes of the 
system described by densities (1) and input and out-
put processes of model (3), or mathematically, 

    0);(ˆ)(  Wtztz EE , (4)

)()( )(ˆ  uWzzu  , ,2,1 , (5)

where )(  is some measure of dependence.  

Again, in accordance to normalization conditions 
(2), model (3) is implied to meet the condition 

  1);(ˆ Wtzvar , 

Accordingly, the weight coefficients of the model 
meet the condition 

1)(
1

2 



w . (6) 

Thus, expressions (4) and (5) represent a criterion of 
the statistical linearization of a system described by 
densities (1). 

3 CONSTRUCTING THE 
UNIVERSAL APPROACH 

Let 

 out
tx  










1

1

1

)()()()(




jj

jtujwjtujw , 

,2,1  

be a sequence of random values that are, obviously, 
Gaussian, zero-mean, and having the variance 

  out
tx var )(1)()( 2

1

2
1

1

2 kwjwjw
jj

 






 


, 

,2,1 . 

Then within the notations introduced and by virtue 
of model (3) description, one may write the fallow-
ing matrix equalities  

 




























 )(10

)(1

)(

);(ˆ




 tu

xw

tu

Wtz out
t , (7) 

 
















 












 )(

);(ˆ

10

)(1

)( 





tu

Wtzw

tu

x out
t . (8) 

As well known, if two n-dimensional random vec-
tors z and x, having marginal probability distribution 
densities )(YYp  and )(VVp  correspondingly, are 

connected with a one-to-one mapping )(VY  , 

then 

   
)(

)(
)()(

1
1

Y

Y
YY

D

D
pp VY




 , 

where 
 

)(

)(1

Y

Y

D

D 
 is the Jacobian of the inverse 

transformation )(1 YV  . 

In accordance to this relationship, the joint prob-
ability distribution density ),),(ˆ()(ˆ uWzp uWz  of the 

random values );(ˆ Wtz  and )( tu  may be ex-
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pressed via the joint probability distribution density 

     ,,uxp out
tux out

t
 of the random values 

 out
tx   and )( tu . In turn, the density 

     ,,uxp out
tux out

t
 is, evidently, of the form  

          )(,, upxpuxp u
out

tx
out

tux out
t

out
t

   , 

where     out
tx

xp out
t

 , )(upu  are the marginal 

probability distribution densities of the random val-

ues  out
tx   and )( ktu   correspondingly. Hence, 

due to relationships (7) and (8), and by virtue of re-
lationship (6), one may write for the density 

),),(ˆ()(ˆ uWzp uWz : 

),),(ˆ()(ˆ uWzp uWz   )())()(ˆ( upuwWzp ux out
t

  = 

2

)(ˆ

1)(

)(1)(ˆ

2

1
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
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




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
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





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








u

Wz

w

w

u

Wz
T

e
w





,  

(9)

that is this density is Gaussian. 
Thus, calculating the measure of dependence 

)()(ˆ kuWz  for density (9) enables one to express 

the measure as a transformation of )(kw :  

 )()(
)(ˆ)(ˆ  w
uWzuWz  . (10)

Here the lower script “  ” is used to underline the 

dependence of the transformation of )(kw  on a 

given specific measure of dependence in criterion 
(5). 

Hence, virtue of criterion (5), formula (10) di-
rectly implies the relationship for the weight coeffi-
cients of linearized model (3) 

  )()(1  wzu
zu


 , ,2,1  . (11)

To “open” the sign of modulo in (11), one should 
apply the sign of the regression of the output process 
of the system onto the input one, that is 

 








0)(,1

0)(,1
)(sign





zu

zu
zu reg

reg
reg , 

where 







 )(
)()(  tu

tzregzu E , 

and  E  stands for the conditional mathematical 

expectation. Thus, finally,  

   )()(sign)( 1  zuzu
zu

regw  


,2,1 . 

(12)

Accordingly, relationship (12) just determines the 
weight function coefficients of linearized model (3). 

4 TOWARDS CONSISTENT 
MEASURES OF DEPENDENCE 

As pointed out in Section 1, consistent measures of 
dependence play a special role in the system identi-
fication, first of all, with regard to non-linear sys-
tems. A. Rényi (1989) has formulated axioms that 
were recognized to be the most natural to define a 
measure of dependence  YX ,  between two ran-

dom values X and Y, which is to characterize ex-
haustively such a dependence. These axioms are as 
follows: 
A)  YX ,  is defined for any pair of random val-

ues X and Y, if none of them is a constant with 
probability 1. 

B)  YX , =  XY , . 

C)   1,0  YX . 

D)   0, YX  if and only if X and Y are inde-

pendent. 
E)   1, YX  if there exists a deterministic de-

pendence between X and Y, that is either 
)(XY  , or )(YX  , where  and  are 

some Borel-measurable functions. 
F) If  and  are some one-to-one Borel-

measurable functions, then   )(),( YX 
 YX , . 

G) If the joint probability distribution of X and Y is 
Gaussian, then    YXrYX ,,  , where 

 YXr ,  is the conventional correlation coeffi-

cient between X and Y. 
Measures of dependence meeting the Rényi axi-

oms, with the exception, may be Axiom F, will be 
hereinafter refereed as consistent in the Rényi sense. 

The conventional correlation coefficient  YXr ,  

is, of course, most widely known among different 
measures of dependence. More delicate approach to 
characterize the dependence of random values is 
concerned with applying the correlation ratio 
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
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















 Y
Y

X
Y

YX var
var

Evar

 , 

and the maximal correlation coefficient  YXS , , 

originally introduced by H. Gebelein (1941), and 
investigated in papers of O.V. Sarmanov (1963a,b), 
Sarmanov and Zakharov (1960), A. Rényi, and oth-
ers 

 
  

 
   )()(

)(),(
, sup

,
XCYB

XCYB
YXS

CB
varvar

cov
 , 

    0)(,0)(  XCYB varvar . 

In the formula, the supremum is taken over the sets 
of Borel-measurable functions {B} and {C}, and 

 BB ,  CC , while  ,cov  stands for the co-

variance. 
Meanwhile, it was shown in the paper of Rényi 

(1959) that the maximal correlation coefficient 
 YXS ,  meets the above axioms only, while the 

conventional correlation coefficient  YXr ,  and the 

correlation ratio  YX ,  do not. In particular, Axi-

oms D, E, F are not met for the correlation coeffi-
cient, and Axioms D, F are not met for the correla-
tion ratio. 

Here one should underline, that consistent in the 
Kolmogorov sense measures of dependence are not 
mandatory consistent in the Rényi sense. In the first 
turn, this is concerned with meeting Rényi Axioms 
C and G. And, at the same time, the approach to the 
statistical linearization, presented in the preceding 
Section, just directs the method of constructing 
measures of dependence meeting Rényi Axioms C 
and G. Namely, the approach is as follows: 

1) For any measure of dependence XY  be-

tween random values X and Y one should calculated 
this measure for the two-dimensional Gaussian den-
sity depending on the correlation coefficient 
 ),YXr . 

2) Represent the expression obtained as a func-
tion in modulo of the correlation coefficient  

  ),YXr
XY , (13)

and invert this function. 
3) The expression obtained 

 XY
XY




1  (14)

(as a function of the initial measure of dependence 

XY ) defines the measure of dependence between 

two random values X and Y, meeting Rényi Axioms 
C and G. 

In particular, for the maximal correlation coeffi-
cient  YXS ,  the corresponding function 

     ),), ),( YXrYXr YXSXY
  is the identi-

cal transformation. Meanwhile, one should be noted 
that calculation of the maximal correlation coeffi-
cient is concerned with the necessity of applying a 
complex iterative procedure of determining the first 
eigenvalue and the pair of the first eigenfunctions 
(corresponding to this eigenvalue) of the stochastic 

kernel )()(),( xpypyxp xyxy . 

Along with the maximal correlation coefficient 
based, in entity, on the comparison of moment char-
acteristics of the joint and marginal probability dis-
tributions of the pair of considered random values, a 
broad class of measures of dependence is construct-
ed by use of the direct comparison of the joint and 
marginal probability distributions of random values. 
Such a class is known is the measure of divergence 
of probability distributions. Most known among 
them involves (Sarmanov and Zakharov, 1960): 
 Contingency coefficient 











 


)()(),(

))()(),((
),(

2
2

ypxpyxp

ypxpyxp
YX

yxxy

yxxy
E , (15)

 Shannon mutual information 














)()(

),(
ln),(

ypxp

yxp
YXI

yx

xy
E , (16)

Measures of dependence (15), (16) meet all Rényi 
Axioms with the exception of Axioms C and G. 

Correspondingly, the methodology of formulae 
(13), (14) implies the following transforms: 
 for the contingency coefficient (15), 

),(2 YX = )),((1
),( YXYX 

 =
1),(

),(

2

2





YX

YX , (17)

 for the Shannon mutual information (16) 

),(21
),( 1)),((),( YXI

YXI eYXIYX    (18)

Formulae (17), (18) are known in the literature and 
in the present paper are presented as illustrative ex-
amples confirming the applicability of formulae 
(13), (14). Measures of dependence (17), (18) meet 
all the Rényi Axioms and determine solution (12) of 
the problem of the statistical linearization for the 
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linearization criteria based on a corresponding 
measure of dependence ((15), (16)).  

5 MEASURES OF DEPENDENCE 
BASED ON THE RÉNYI 
ENTROPY 

Besides the Shannon definition of the entropy, 
which, in turn, leads to the definition of the Shannon 
mutual information (16), other ways to define the 
entropy are known. For a random value X having the 
probability distribution density )(xpx , the Rényi 

entropy of the order α (Rényi, 1961, 1976a,b) is de-
fined as 

  1)(ln
1

1
)( 


 

 
xpXR xE , 1,0   . 

Meanwhile, as α tends to 1, )(XR  tends to the 

expression determining the Shannon entropy that, 
thus, may be considered as the Rényi entropy of the 
order 1. 

From a computational point of view, especially 
under the necessity of estimating by use of sample 
data, the Rényi entropy was recognized as more 
preferable than that of Shannon, since the Rényi 
entropy is a ''logarithm of integral'', what is compu-
tationally simpler than an ''integral of logarithm'' as 
in the case of the Shannon entropy. Meanwhile, the 
selection of a specific value of the order α, is of a 
special importance, since the larger the order is, the 
more complicated the computational procedure be-
comes. 

Also one may be noted that the Rényi entropy for 
continuous random values takes its magnitude at the 

whole interval   ;  as well as the Shannon 

entropy; and for some probability distributions the 
entropies of Rényi and Shannon may coincide. In 
that case, of course, the Rényi entropy does not de-
pend on the order α. Indeed, this is valid, for in-
stance, for the uniform distribution at the interval 
 ba; , when both the Shannon and Rényi entropy 

have the form  ab ln . Analytical expressions for a 

broad class of univariate and multivariate probability 
distributions are presented in the papers of (Nadara-
jah and Zografos, 2003, Zografos and Nadarajah, 
2005a,b). 

As specific values of the order 1,0    any 

one may be selected, but the problem complexity, 
meanwhile, grows exponentially with the growth of 
α; at the same time the value of 2  was recog-

nized in the literature as providing good results 
(Principe et al., 2000). For 2  the expression 

  )(ln)(2 xpXR xE  

is known as the quadratic entropy. 
So far, the consideration was concerned with the 

Rényi entropy of one (possibly, multivariate) proba-
bility distribution density. Along with such (margin-
al) entropy, one may in a corresponding manner de-
fine the mutual Rényi entropy of the order ),( 21   

for a pair of random values X and Y with a joint and 
marginal probability distribution densities. Within 
such an approach, the first probability measure is 
defined by the joint probability distribution density 

),( yxpxy  of the random values X and Y, the second 

probability measure is defined by the multiplication 
of the marginal probability distribution densities, 
correspondingly px(x) and py(y) of the random values 
X and Y. Then the mutual Rényi entropy 

),(
21, YXR   of the order ),( 21   may be defined 

in this case as follows: 

),(
21, YXR   

=      21 )()(),(ln
1

1 1 


ypxpyxp yxxypxy




E , 

1,0 21
2
2

2
1   , 

where the mathematical expectation is taken over 
),( yxpxy . The marginal Rényi entropy is, thus, a 

partial case of the mutual one, when either 01  , 

or 02  . In the first case (   21 ,0 ) the 

mutual Rényi entropy takes the form  

),(,0 YXR 
 





























 ),(

)()(
ln

1

1

yxp

ypxp

xy

yx
pxy




E , 

in the second case ( 0, 21   ), 

  1
0, ),(ln

1

1
),( 


 

 
yxpYXR xypxy

E . 

In the both cases, the mathematical expectation is 
taken (formally) over pxy(x,y). At the same time, 

),(,0 YXR   does not depend on ),( yxpxy , while 

),(0, YXR  does not explicitly depend on px(y) and 

py(y). So, ),(0, YXR  and ),(,0 YXR   should be 

considered as marginal entropies of the probability 
distribution densities )()( ypxp yx  and ),( yxpxy  

correspondingly. These marginal entropies will be 
designated as )( yx ppR  and )( xypR , that is 
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   ),()()(ln
1

1
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,0
1 YXRypxp
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yxpp

yx

yx 












E
, 

where the mathematical expectation is taken over 
)()( ypxp yx ; and 

  


 1),(ln
1

1
)( 

 
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where the mathematical expectation is taken over 
),( yxpxy . 

Of course, one should be noted that 
)()()( yxxy pRpRpR   , when the random 

values X and Y are stochastically independent. 
Also, within the consideration of non-zero cases, 

when 0,0 21   , the ''symmetric'' case is em-

phasized, when 221
  . It will serve as a 

basis for constructing the mutual Rényi information 
of the order α for random values. 

Again, since the Shannon mutual information 
I(X,Y) for the pair of random values X and Y has the 
representation via corresponding entropies of these 
random values 

),()()(),( YXHYHXHYXI  , 

it would be natural to search for the mutual Rényi 
information ),( YXIR  of the order α in a similar 

form, that is 

)()(),(

),(

32

2
,

2

1 yxxy

R

ppRcpRcYXRc

YXI








, (19) 

where 321 ,, ccc  are normalizing coefficients select-

ed in the manner to provide meeting the condition: 

0),( YXIR , meanwhile 0),( YXIR  

if and only if the random values X and Y  
are stochastically independent. 

(20)

Condition (20) implies infinitely many solutions that 
in a unified form may be written as 
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where 0 . Hence, one may just set 1 , and 
taking into account all above considerations, the 

mutual Rényi information of the order α is written in 
the form 
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, where 
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. 

As well as the Shannon mutual information, thus 
obtained ),( YXIR  takes its values at the interval 

 ,0 . Meanwhile, the fraction, standing inside the 

sign of logarithm, has an evident interpretation as 
the cosine of the angle between vectors of corre-
sponding Hilbert space formed by α times integrated 

functions mapping 2R  into 1R , where the inner 
product of its vectors ),(),,( 21 yxyx   is defined by 

the natural expression  

 








 dxdyyxyxyxyx ),(),(),(),,( 2121  , 

as well as the Euclidean norm of the vector ),( yx  

has the form 

  





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 dxdyyxyx 2
2

),(),(  . 

Thus following to the notations introduced, the mu-
tual Rényi information may be written as 
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For a partial case, when 2 , the preceding ex-
pression directly implies the sol called Cauchy-
Schwartz divergence 

),( YXDCS  
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proposed declaratively in the fullness of time in a 
number of papers (for instance, (Principe et al., 
2000) and subsequent papers), that is by involving 
the Cauchy-Schwartz inequality, but disregarding 
condition (19)-(21) imposed on the relationship be-
tween the mutual Rényi information and correspond-
ing Rényi entropies. Thus the Cauchy-Schwartz di-
vergence ),( YXDCS  is a partial case of the mutual 

Rényi information ),( YXIR  as 2 . 

The Cauchy-Schwartz divergence ),( YXDCS  

meets Rényi Axioms A, B, D, E and does not meet 
Axioms C, F, G. At the same time, ),( YXDCS  

meets Axiom F in the case of affine transformations. 
In accordance to formulae (13), (14), for ),( YXDCS  

in (22) one may construct the following transfor-
mation: 

),( YXdCS ),(4

),(4342
12

YXD

YXD

CS

CS

e

e



 . (23)

One may show that the measure of dependence 
),( YXdCS  in (23) meets all Rényi Axioms with the 

exception of Axiom F, but the property of invariance 
to one-to-one transformations is preserved for any 
affine transformations of random values. The behav-
ior of the measure (23) in dependence of values of 
the Cauchy-Schwartz divergence is displayed in 
Figure 1. 

Measure of dependence (23) determines solution 
(12) of the problem of the statistical linearization for 
the linearization criteria based on the Cauchy-
Schwartz divergence (22). 
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Figure 1: The dependence of the measure ),( YXdCS  in 

(23) of values of the Cauchy-Schwartz divergence (22). 

6 EXAMPLE: SYSTEMS WITH 
ZERO INPUT/OUTPUT 
CORRELATION 

As it was pointed out in Section 1, there exist nu-
merous examples, when applying conventional cor-

relation techniques under model deriving does not 
provide suitable results. Among such systems, one 
may emphasize those ones, for which the depend-
ence between input and output variables is described 
by probability distribution densities belonging to the 
O.V. Sarmanov class of distributions (Sarmanov, 
1967, Kotz et al., 2000). In particular, these involve 
the following one 
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11    

(24)

For density (24), the correlation coefficient  YXr ,  

and correlation ratio  YX ,  are equal to zero, 

while the maximal correlation coefficient is of the 
form: 









 1

7

4
),( YXS . 

Magnitudes of the parameter λ considerably influ-
ence the shape of density (24). In Figure 2, the form 
of probability distribution density (24) under some 
magnitudes of the parameter λ is presented. 

Thus, for instance, stochastic dependence (1) be-
tween the output process, )(tz , and the input pro-

cess, )(su , of a non-linear system is defined by a 

probability distribution density (of course, being not 
known to the researcher) of form (24) with the pa-
rameter )(  , st  , then applying both 

conventional correlation and dispersion techniques 
of the statistical linearization would lead, under con-
structing model (3), to the representation to the out-
put system process as the identical zero, what is ex-
cluded under applying the approach presented, 
which is based on consistent measures of depend-
ence. 
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Figure 2: The shape of density (24) under various magni-
tudes of the parameter λ. 

In Figure 3 (a, b, c), the dependence of the mag-

nitudes of ),(2 XY  (17), ),( XY  (18), and 

),( YXdCS  (23) in the parameter λ is presented cor-

respondingly in the comparison with the magnitudes 
of the maximal correlation coefficient  YXS ,  (the 

dotted line). 
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Figure 3a: The comparison of magnitudes of ),(2 YX  

and  YXS ,  under various values of the parameter λ in 

density (24). 
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Figure 3b: The comparison of magnitudes of  YX ,  and 

 YXS ,  under various values of the parameter λ in densi-

ty (24). 
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Figure 3c: The comparison of magnitudes of ),( YXdCS  

and  YXS ,  under various values of the parameter λ in 

density (24). 
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7 CONCLUSIONS 

An approach to the statistical linearization of in-
put/output mappings of stochastic discrete-time sys-
tems driven with a white-noise Gaussian input pro-
cess has been considered. The approach is based on 
applying consistent measures of dependence of ran-
dom values. Within the approach, the statistical line-
arization criterion is the condition of coincidence of 
the mathematical expectations of output processes of 
the system and model, and the condition of coinci-
dence of a consistent, in the Kolmogorov sense, 
measure of dependence of output and input process-
es of the system and the same measure of depend-
ence of the model output and input processes. Ex-
plicit analytical expressions for the coefficients of 
the weight function of the linearized input/output 
model were derived as a function of this (forming 
the statistical linearization criterion) consistent 
measure of dependence of output and input process-
es of the system. Meanwhile, such a function defines 
the form of a transformation that enables one to con-
struct corresponding consistent in the Rényi sense 
measure of dependence from a consistent in the 
Kolmogorov sense measure of dependence. In the 
paper, a consistent in the Kolmogorov sense meas-
ure of dependence was referred as consistent in the 
Rényi sense, if such a measure meets all Rényi Axi-
oms (Rényi, 1959) with the exception, may be, the 
axiom of invariance with respect to one-to-one trans-
formations of random values under study. In particu-
lar, such a consistent in the Rényi sense measure of 
dependence has been constructed from the Cauchy-
Schwartz divergence, being a consistent measure of 
dependence in the Kolmogorov sense. 

REFERENCES 

Gebelein, H., 1941. “Das statistische Problem der 
Korrelation als Variations- und Eigenwertproblem und 
sein Zusammenhang mit der Ausgleichungsrechnung”, 
Zeitschrift für Angewandte Mathematik und Mechanik, 
vol. 21, no. 6, pp. 364-379. 

Kotz, S., Balakrishnan, N., and N.L. Johnson, 2000. Con-
tinuous Multivariate Distributions. Volume 1. Models 
and Applications / Second Edition, Wiley, New York, 
752 p. 

Nadarajah, S. and K. Zografos, 2003. “Formulas for Rényi 
information and related measures for univariate distri-
butions”, Information Sciences, vol. 155, no. 1, pp. 
119-138. 

Nadarajah, S. and K. Zografos, 2005a. “Expressions for 
Rényi and Shannon entropies for bivariate distribu-
tions”, Information Sciences, vol. 170, no. 2-4, 

pp. 173-189.. 
Principe, J., Xu, D., and J. Fisher, 2000. “Information 

Theoretic Learning”, In: Unsupervised Adaptive Fil-
tering / Haykin (Ed.). Wiley, New York, vol. 1, pp. 
265-319. 

Rajbman, N.S., 1981. “Extensions to nonlinear and mini-
max approaches”, Trends and Progress in System 
Identification, ed. P. Eykhoff, Pergamon Press, Ox-
ford, pp. 185-237. 

Rényi, A., 1959. “On measures of dependence”, Acta 
Math. Hung., vol. 10, no 3-4, pp. 441-451. 

Rényi, A., 1961. “On measures of information and entro-
py”, in: Proceedings of the 4th Berkeley Symposium 
on Mathematics, Statistics and Probability (June 20-
July 30, 1960). University of California Press, Berke-
ley, California, vol. 1, pp. 547-561. 

Rényi, A., 1976a. “Some Fundamental Questions of In-
formation Theory”, Selected Papers of Alfred Rényi, 
Akademiai Kiado, Budapest, vol. 2, pp. 526-552. 

Rényi, A., 1976b. “On Measures of Entropy and Infor-
mation”, Selected Papers of Alfréd Renyi, Akademiai 
Kiado, Budapest, vol. 2, pp. 565-580. 

Roberts, J.B. and P.D. Spanos, 2003. Random Vibration 
and Statistical Linearization, Dover, New York, 
464 p. 

Sarmanov, O.V and E.K. Zakharov, 1960. “Measures of 
dependence between random variables and spectra of 
stochastic kernels and matrices”, Matematicheskiy 
Sbornik, vol. 52(94), pp. 953-990. (in Russian). 

Sarmanov, O.V., 1963a. “Investigation of stationary Mar-
kov processes by the method of eigenfunction expan-
sion”, Sel. Trans. Math. Statist. Probability, vol. 4, pp. 
245-269. 

Sarmanov, O.V., 1963b. “The maximum correlation coef-
ficient (nonsymmetric case)”, Sel. Trans. Math. Statist. 
Probability, vol. 4, pp. 207-210. 

Sarmanov, O.V., 1967. “Remarks on uncorrelated Gaussi-
an dependent random variables”, Theory Probab. 
Appl., vol. 12, issue 1, pp. 124-126. 

Socha. L., 2008. Linearization Methods for Stochastic 
Dynamic Systems, Lect. Notes Phys. 730, Springer, 
Berlin, Heidelberg, 383 p. 

Zografos, K. and S. Nadarajah, 2005b. “Expressions for 
Rényi and Shannon entropies for multivariate distribu-
tions”, Statistics & Probability Letters, vol. 71, no. 1, 
pp. 71-84. 

ICINCO�2015�-�12th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

532


