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Abstract: For more than three decades now simulation of recrystallization and grain growth phenomena in annealed 
metals have been studied through a variety of computer modeling techniques including that of Monte Carlo 
(MC) simulation. In this study, we have been able to show the efficiency of the MC technique by evolving 
simulated microstructures comparable very closely to real microstructures. The real microstructures were 
generated in about a 50% cold-worked alloy of Al-4% Cu (Duralumin) annealed to various degrees. The 
digital microstructures were evolved through a 2D simulation of a square lattice using Potts model Monte 
Carlo simulation technique based on the Metropolis algorithm. Through our work we have been able to 
show the close similarity between microstructures of real metals and microstructures digitally evolved 
through simulation, perhaps for the first time, thereby validating the MC technique as an efficient computer 
simulation tool for grain growth studies.  

1 INTRODUCTION 

Annealing is an important heat treatment process 
carried out widely in the industry during mechanical 
and thermal processing of cold-worked 
polycrystalline materials. During this process, 
metals undergo three stages of microstructural and 
behavioral transformation - recovery, 
recrystallization and grain growth. While the first 
two stages are driven by the energy stored in the 
metals during cold working, grain growth is driven 
primarily by the reduction of excess energy stored in 
the grain boundaries (Humphreys and Hatherly, 
2005). The final microstructure in a polycrystalline 
material, i.e., the grain size & its distribution, grain 
shape & its geometry, depends largely on the extent 
of grain growth that has taken place which in turn is 
influenced by time, temperature and the presence of 
second phase particles.  

The microstructures of polycrystalline materials 
carry valuable information which helps predict their 
mechanical behavior through study of their grain 
shapes and sizes. The average grain size, especially, 
has a profound effect on the strength of materials, as 

given by the Hall-Petch equation. The average grain 
size of polycrystals are known to vary according to 
degree of growth driven by curvature on the one 
hand, and on the other hand stunted by the presence 
of second phase particles. The study of growth and 
stagnation of grain size in polycrystals has been 
widely aided by the simulation approach of 
generating digital microstructures, which follow the 
basic guide lines of formation of real 
microstructures.  

Microstructures of metals resulting from normal 
grain growth is distinguished by two characteristics 
– the first is the presence of microstructural 
homogeneity, in the sense that the size of the largest 
grain present in the ensemble is only 2.5 – 3 times 
bigger than the average grain size of the 
microstructure. The second characteristic is the time 
invariance of the grain size distribution which 
suggests self-similarity in grain shapes and sizes at 
different stages of grain growth (Anderson et al., 
1984). Both these conditions of normal grain growth 
found in real microstructures have been sufficiently 
displayed in simulated microstructures by many 
researchers through MC simulation studies 
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(Srolovitz et al., 1984; Saito, 1997; Wang et al., 
2009 and Phaneesh et al., 2013). These studies also 
show the statistical similarity between 
microstructures generated in real materials and 
microstructures generated through MC simulation. 
But what has not been very well demonstrated is the 
grain shapes in simulated microstructures imitating 
the grains in the real microstructures. Through our 
work, and perhaps for the time according to our 
studies, we have been able to show a stark similarity 
between certain grains of digital and the real 
microstructures, and in the process, validate further 
the relevance of MC simulation technique in grain 
growth studies. What is exceptional here is the fact 
that the digital microstructures that have been 
selected for comparison have been drawn from 
various combinations of parameters such as various 
surface fractions of static second phase particles (f) 
which inhibit grain growth, variation in matrix sizes 
(N) which represent the sample material surfaces, 
different Q states which represent grain orientations, 
various simulation temperatures (kT) which act as 
effects of higher temperatures during simulation, 
various stages of grain growth as given by Monte 
Carlo steps (MCS), and so on. Thus this is a 
comprehensive comparison between digital 
microstructures drawn from a large simulation 
domain and some real microstructures generated 
from a very commonly used non-ferrous alloy, 
Duralumin. 

2 THE MONTE-CARLO 
METHOD OF SIMULATION 

The Monte Carlo method is a probabilistic computer 
simulation technique used to study grain growth and 
related phenomena. While analytical models predict 
ensemble characteristics of microstructural 
evolution, computer simulations have helped to 
generate snapshots of the evolving microstructure 
with time. Using the computational version of 
metallography, both local and ensemble properties 
of the microstructure may be determined from these 
snapshots. Among a few computer simulation 
methodologies which have been evolved over the 
years, the Monte Carlo method is one of the 
prominent techniques employed to simulate 
microstructural evolution in crystalline materials. 
This method was developed by Ulam et al., (1947) 
for basically studying the diffusion of neutrons in 
fissionable materials. But adaptation of Monte Carlo 
technique using Potts model for the simulation of 

microstructure was first introduced by (Anderson et 
al., 1984 and Srolovitz et al., 1984) for two-
dimensional grain growth and extended to three-
dimensional grain growth by Anderson et al., 
(1989). 

The procedure for Monte Carlo Potts model 
simulation of grain growth based on Metropolis 
Algorithm is as follows: 
1. Choose the lattice type i.e. square or triangular. 

It is square in our case.  
2. A square matrix of size ‘N’ is then generated, 

which contains all its elements as random 
numbers ranging from 1 to Q, where Q stands for 
the number of grain orientations.  

3. Among the N2 elements present in the matrix, a 
random site is chosen and is compared with all 
its nearest neighboring elements, which is eight 
in case of square lattice. 

If i = element randomly picked, and j = any of the 
eight neighboring elements that i is compared with, 
then, 

∂ij = 0 if i ് j 
∂ij = 1  if i = j 

where ∂ij = Kroneckar delta, a relative interaction 
energy value between one element and any other 
neighboring element. The Hamiltonian (E1) is then 
calculated for the chosen element by the following 
relation, 

(E1) =	െ	ܬ ∑ ሾ߲si ∂sj െ 1ሿ௡
௜  (1) 

where J ( > 0) is an interfacial energy constant of the 
system and n the total number of lattice sites in the 
system. 

4. The grain orientation corresponding to the 
chosen element is changed into a new random 
element in its place and the Hamiltonian (E2) is 
calculated again for the new element using 
equation (1), and then giving the energy change,  

ΔE = E2 - E1 (2) 

5. If ΔE ≤ = 0, the change is accepted else 
if ΔE > 0, compute probability  

p = exp (-ΔE/kT) (3) 

where k = Boltzmann constant, and, T = temperature 
If r < p where r is a random number generated and 
uniformly distributed between 0 & 1, the change is 
still accepted, else, rejected. 

 

The entire steps from 3 to 5 form one iteration and 
are repeated ‘N2’ times, which then constitute one 
Monte Carlo Step (MCS), which is the measure of 
time in simulation. Also, in the current paper, 
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simulations have been carried out at both kT=0 and 
at values 1>kT>0, under periodic boundary 
conditions. It is to be noted here that the term kT in 
simulation replaces both the Boltzmann constant and 
the temperature as an assumed combined product. 
The term kT generally takes a value between 0 and 1 
and represents the thermal energy of simulation. It is 
analogous to the thermal energy of experimental 
systems but not directly related (Janssens et al., 
2007). Just as in the real world, when a phase 
change is imminent when a metal is heated beyond a 
critical temperature, there is a critical value for the 
term KTs, beyond which the microstructure 
evolution through simulation seizes and a disordered 
state sets in. 

3 EXPERIMENTAL HARDWARE 
AND SOFTWARE 

All the experiments were carried out on a specially 
built system with 16 GB ram, INTEL CORE 15-
2500K-6M-3.3 GHZ Processor and a Asus P8H67-
MLE Motherboard B3 Model. The code was written 
on a Java Core Eclipse platform and close attention 
was paid to memory management since very large 
arrays were run. The code invokes generation of 
massive random numbers which was achieved 
through the JAVA virtual machine (JVM).  

Random number generation plays a crucial role 
in the process of computer simulation of grain 
growth. Since computers are basically calculating 
machines, and use deterministic algorithms to 
generate random numbers, they basically produce 
pseudo random numbers, unless and until they are 
accessing some external device such as a gamma ray 
counter or a clock. The very foundation of Monte 
Carlo method lies on generation of robust and long 
range random numbers, especially since certain 
simulation trials have to last millions of Monte 
Carlo Steps, preferably without repeating the 
sequence. The JAVA virtual machine (JVM) has a 
reliable random number generator based on linear 
congruential algorithm and can produce billions of 
random numbers (248, to be precise) on the trot, 
before it repeats the sequence. 

4 RESULTS AND DISCUSSIONS 

In this work, Al-4% Cu samples, initially hot 
extruded to about 50%, were annealed at a 
recrystallization temperature of 4800C, and held for 

various durations such as 1, 2, 3, 4 and 10 hours. 
They were then polished with emery sheets (with 
grit sizes 80 – 1200) and etched with Keller’s 
reagent (2.5% HF, 1.5% HNO3, 1% HCl, rest 
ethanol) for 10 seconds. They were then washed in 
running water and dried with methanol and hair 
dryer. The microstructures were observed under a 
microscope and snapshots were taken, at 
magnifications of 50x, 100x, 200x, etc. Al-4% Cu 
was selected because upon annealing the alloy 
precipitates fine second phase particles of CuAl4 
which pin grain boundaries and stagnate the average 
grain size. 

On the other hand, simulations were run on 
various matrix sizes with different quantities of 
second phase particles randomly interspersed to 
represent polycrystalline materials. The matrices 
were processed with millions of steps of the 
Metropolis algorithm simulating grain growth which 
takes place in metals during annealing. Simulated 
grain structures were captured at different stages of 
grain growth evolution of various matrix samples 
and selected portions of these microstructures have 
been used for pictorial comparisons with real 
microstructures. Pictures from stagnation stage, 
which refers to a stage where no more evolution is 
possible due to grain growth inhibition by second 
phase particles, have also been used in the 
comparison.  

Table 1 shows pictorial comparisons between 
various real microstructures on the left hand side, 
and, the simulated microstructures on the right hand 
side. The first set of pictures shown in Figure 1(a) 
and 1(b) allows for a comparison between an Al-
4%Cu alloy annealed at 4800 C for one hour, and 
photographed at 100x magnification, with a portion 
of the simulated microstructure evolved with a 
square matrix of size (N) 1000 x 1000, a Q-state 
value of 16, with zero percent of second phase 
particles representing a pure metal and finally a 
certain stage in grain growth as represented by the 
number of Monte Carlo steps of 50,000.  

Figures 2(a) and 2(b) show the comparison 
between the same alloy annealed for two hours with 
a digital microstructure having parameters N=1000, 
Q=64, f=0.001, kT=0.5 and MCS=1,394,926 (at 
stagnation). The selected crystal surface is based on 
1000 x 1000 matrix with an assumed 64 (Q) grain 
orientations. A value of f=0.001 means that a 
surface fraction representing 0.1% of the surface of 
the microstructure is occupied by second phase 
particles each having a size of one unit being 
randomly distributed throughout the matrix. These 
static particles are shown as tiny dark spots in the 
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digital photos. Such second phase particles are also 
present in the real microstructure of the Al-4% Cu 
alloy but cannot be seen under normal metallurgical 
microscope and at lower magnifications. These 
second phase particles pin the grain boundaries and 
stagnate them from growing any further. This is 
observed both in reality as well as in Monte Carlo 
simulation making it another valid reason for 
adopting this technique. Figure 2(b) here represents 
the stagnated stage of grain growth in simulated 
environment. A value of kT=0.5 means that a higher 
temperature effect (but which cannot be equated to 
an exact real temperature) is introduced into grain 
growth under simulation. It is very well known that 
grains grow faster at higher temperatures and higher 
values of kT show the same effect as well. Finally 
grain growth has been stagnated due to inhibition of 
grain boundaries by second phase particles at more 
than a million steps of the algorithm, which is 
equivalent to passage of time in simulation.  

It should be, however, noted here that there are 
no conclusions made to equate the simulation 

samples to the real alloy samples but an effort is 
made towards realistic representation of actual 
microstructures through computer simulation. At 
current levels of research, simulated microstructures 
just represent generic metals and not particular 
alloys. But future research may well be represent 
real alloys through their simulated counterparts. This 
opens the door for understanding grain structures of 
real metals and their grain growth better.  

All the rest of the photos from Figure 3 to Figure 
8 show comparison between real and simulated 
grain regimes under different parameters but show 
excellent shape similarities between certain grains 
on either side. Figures 3(a) and 3(b) show a 
comparison between two vertices on either side by 
encircling them. According to theory (Smith, 1952) 
three grains meeting at a vertex should be at an 
angle of 1200 to each other for a stable grain 
structure. This could very well be seen in the 
vertices encircled and also in all real and simulated 
microstructures further validating the technique. 

Table 1: Comparison between Real and simulated microstructures. 

Real microstructures from annealed Al-4% Cu alloy Simulated microstructures 

 

Figure 1(a): Annealed at 4800 C for 1hr, at 100x. 

 

Figure 1(b): N=1000, Q=16, f=0, MCS=50000. 

 

Figure 2(a): Annealed at 4800 C for 2hr, at 100x. 

 

Figure 2(b): N=1000, Q=64, f=0.001, MCS=1394926 (at 
stagnation). 
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Table 1: Comparison between Real and simulated microstructures. (cont.) 

Real microstructures from annealed Al-4% Cu alloy Simulated microstructures 

 

Figure 3(a): Annealed at 4800 C for 3hr, at 100x. 

 

Figure 3(b): N=1000, Q=32, f=0, MCS=50000. 

 

Figure 4(a): Annealed at 4800 C for 3hr, at 100x. 

 

Figure 4(b): N=1000, Q=32, f=0, MCS=50000. 

 

Figure 5(a): Annealed at 4800 C for 3hr, at 100x. 

 

Figure 5(b): N=1000, Q=32, f=0, MCS=50000. 

 

Figure 6(a): Annealed at 4800 C for 3hr, at 200x. 

 

Figure 6(b): N=1000, Q=64, f=0.001, MCS=60000. 
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Table 1: Comparison between Real and simulated microstructures. (cont.) 

Real microstructures from annealed Al-4% Cu alloy Simulated microstructures 

 

Figure 7(a): Annealed at 4800 C for 4hr, at 200x. 

 

Figure 7(b): N=1000, Q=64, f=0.001, kT=0.4, 
MCS=1589026(stagnation). 

 

Figure 8(a): Annealed at 4800 C for 10hr, at 50x. 

 

Figure 8(b): N=1000, Q=64, f=0.001, kT=0.4, 
MCS=1589026(stagnation). 

 

5 CONCLUSIONS 

This work has been able to show close similarity 
between microstructures generated after annealing a 
prominent non-ferrous alloy and the simulated 
microstructures evolved by the Monte Carlo 
simulation technique. The striking closeness 
especially between certain set of grains between real 
and simulated microstructures enhances the validity 
of the MC technique to investigate grain growth and 
its inhibition in polycrystalline materials. The 1200 
angle vertices found in stable grain structures in real 
metals can also be seen prominently in digital 
structures. But it should be iterated here that the 
comparison only allows for the topological and grain 
shape similarities between the two sets of 
micrographs and no other comparisons are made 
with respect to their evolution vis-a-vis time and 
temperature. It is an ongoing work to relate real and 
simulated microstructures on all parameters so that 

MC simulation can be applied to particular alloys as 
against generic as is being done now. 
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