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Abstract: This study deals with the formal modeling and verification of Adaptive Probabilistic Discrete Event Control 
Systems (APDECS). A new formalism called Generalized Reconfigurable Timed Net Condition Event 
Systems (GR-TNCES) is proposed for the optimal functional and temporal specification of APDECS. It is 
composed of behavior and control modules. This formalism is used for the modeling and control of 
unpredictable as well as predictable reconfiguration processes under memory and energy constraints. A 
formal case study is proposed to illustrate the necessity of this formalism and a formal verification based on 
the probabilistic model checker Prism. 

1 INTRODUCTION 

Adaptive Probabilistic Discrete Event Control 
Systems (APDECS) such as chirurgical robots are 
able to change their behaviors with an unpredictable 
way during run-time processes. Reconfiguration is 
the qualitative change in the structure, functionality, 
and algorithms of the control systems (Radu et al., 
2011). This is due to qualitative changes of goals of 
control, the controlled system or of the environment 
the system behaves within. Partial failures, 
breakdowns, or even human intervention may cause 
such changes (Yang et al., 2013). Thus, the 
development of Probabilistic Reconfigurable 
Discrete Event Control Systems (PRDECS) is not an 
easy activity to perform since they should be 
adapted to their environment under functional, 
memory, energy and real-time constraints. Many 
systems and protocols run under devices with 
limited memory and energy resources, so the system 
could violate them during an adaptation process. For 
this reason, we should have real-time reconfigurable 
supervised control architecture in order to evaluate 
and improve its performance. In this work, we focus 
on the optimal modeling and verification of 
PRDECS running under memory and energy 
constraints. 

In general, all requirements for DECS can be 
reduced to two general properties: value correctness 
and temporal correctness (Kopetz, 2003). These can 
be further split up into two corresponding questions: 
Will the system respond to an input change with the 
correct output change (value correctness)? and Will 
it do so within the correct time bounds (temporal 
correctness)?  

Many researchers have tried to deal with the 
formal modeling of control systems with potential 
reconfigurations. Wu and Zhou (2011) presented 
intelligent token Petri nets. In their model, tokens 
represent job instances to carry real-time knowledge 
about system states and changes. It is like smart 
cards in practice such that the dynamical changes of 
a system can be easily modeled. Dumitrache et al., 
(2000) developed a real-time reconfigurable 
supervised control architecture for large-scale 
manufacturing systems in order to evaluate 
performance of the control architecture. Ohashi and 
Shin (2011) established a model based control 
design for reconfigurable manufacturing systems 
(RMS) using state transition diagrams and a general 
graph representation. Kalita and Khargonekar (2002) 
defined a hierarchical structure. It allows reusability 
and rapid reconfigurability of the controller while 
the machining system is reconfigured. 
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All the aforementioned studies have tried to 
describe the reconfigurability and reflect the 
characteristics of APDECS. Nevertheless, some of 
them do not consider the temporal constraints. Most 
of them do not treat unpredictable, probabilistic and 
infinite characteristics of APDECS. Since these 
formalisms are not able to cope with these systems, 
this study tries to model APDECS using a direct 
method by defining a new formalism that is an 
extension of R-TNCES. We assign new controllers 
for the memory and energy resources at run-time 
process to cover the problem of resources violation. 
We should not have a deadlock problems caused by 
lack of resources at reconfiguration process. We 
suppose that each firing transition consumes one 
token from the energy and memory reserves. A new 
formalism called Generalized Reconfigurable Timed 
Net Condition/Event Systems (GR-TNCES) is 
proposed for the optimal functional and temporal 
specification of systems. It is defined by a behavior 
module and a control module. This formalism is 
used to model and verify a formal case study to 
show its suitability.  

The paper is organized as follows: the next 
section describes the preliminaries on top of which 
our new formalism is built. Section 3 introduces our 
new formalism and its formalization. A case study is 
provided in section 4. Finally, section 5 concludes 
the paper.  

2 BACKGROUND 

In this section, we present reconfigurable 
probabilistic discrete event systems and their formal 
verification. We thereafter expose the formalisms 
TNCES (Hanisch et al., 1997) and R-TNCES 
(Zhang et al., 2013), which extend Petri nets for the 
modeling of adaptive control systems, and the 
related existing tools. 

2.1 Verification of Reconfigurable 
Probabilistic Systems 

Adaptive probabilistic systems are modular, 
extensible and reconfigurable (Sharifloo and 
Spoletini, 2013). These systems have an 
unpredictable behavior that could change during a 
run-time process (Forejt et al., 2012). Hence, we 
need an expressive formalism for their optimal 
modeling and verification. CTL is used to specify 
functional properties of a reconfigurable system 
(Zhang et al., 2013). It offers facilities for the 

specification of properties to be checked. The 
process of checking whether a temporal formula 
holds for a system is called model checking (Martin 
and Christian, 2009). Probabilistic model checking is 
an automated method to verify quantitative 
properties based on Probabilistic Computation Tree 
Logic (PCTL) (Forejt et al., 2012). Due to 
qualitative changes of goals of system control or of 
the environment the system behaves within, we are 
focusing on a new method for the optimal modeling 
of probabilistic reconfigurable systems under 
memory and energy constraints.  

2.2 Modeling Formalisms and Tools  

In this section, we introduce two formalisms 
extending Petri nets which are useful to model 
distributed reconfigurable control systems.  

2.2.1 Timed Net Condition/Event System 

A Timed Net Condition/Event Systems (TNCES) 
have modular structures which can be basic or 
composite (Salem et al., 2014). It allows the 
representation of hierarchical models and provides a 
way to express exchange of event and the state of 
information. It is a suitable formalism for systematic 
structured modeling of automated objects, machines 
and processes (Hanisch et al., 1997). A TNCES, as 
shown in Figure 1 is formalized as a tuple as 
follows: 

NCES = (P, T, F, W, CN, EN, Cin,Ein, Cout,Eout,V,m0) 

Where:  

• P (respectively, T) is a non-empty finite set 
of places (respectively, transitions),  

• F is a set of flow arcs F ⊆ (P × T) ∪ (T × 
P),  

• W :(P × T) ∪ (T × P) →{0, 1} maps a 
weight to a flow arc, W(x, y) > 0 if (x, y) ∈ 
F, and W(x, y)=0 otherwise, where x, y ∈ P ∪ T, 

• CN (respectively, EN) is a set of condition 
(respectively, event) signals with CN ⊆ (P 
× T) (respectively, EN ⊆ (T × T)), 

• Cin (respectively, Ein) is a set of condition 
(respectively, event) inputs,  

• Cout (respectively, Eout) is a set of condition 
(respectively, event) outputs 

• V : T →{∨, ∧} maps an event-processing 
mode (AND or OR) to each transition, 

• m0: P →{0, 1} is the initial marking. 
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Figure 1: Example of a TNCES. 

2.2.2 Reconfigurable Timed Net 
Condition/Event Systems  

An R-TNCES, as defined in (Zhang et al., 2013) is 
an extension of the formalism TNCES with a 
specific function of self-reconfiguration. It is a 
structure RTN = (B, R), where R is the control 
module consisting of a set of reconfiguration 
functions R = {r1,...,rm}. The reconfiguration 
function is a structure r= (Cond, S, X). Cond→ (true, 
false) is the precondition of r. S is the structure 
modification instruction. X is the state processing 
function that links the states before and after the 
reconfiguration process. B is the behavior module 
which is a union of multi TNCES, represented as 
follows:  

B =(P, T, F, W, CN, EN, DC, V, Z0)  (3) 

where: (i) P (respectively, T) is a superset of places 
(respectively, transitions), (ii) F ⊆ (P × T) ∪ (T × P) 
is a superset of flow arcs, (iii) W: (P × T) ∪ (T ×P) 
→{0, 1} maps a weight to a flow arc, W(x, y) > 0 if 
(x, y) ∈ F, and W(x, y)=0 otherwise, where x, y ∈ P ∪ T, (iv) CN ⊆ (P × T) (respectively, EN ⊆ (T × T)) 
is a superset of condition signals (respectively, event 
signals), (v) DC: F ∩ (P × T) → {[l1,h1],...,[l|F n (P × 

T)|, h|F n (P × T)|]} is a superset of time constraints on 
output arcs, where ∀ i ∈  [1, |F ∩ (P × T)|], li, hi ∈  
N, and li, < hi, (vi) V : T →{∨ , ∧ } maps an event- 
processing mode (AND or OR) for every transition, 
(vii) Z0= (M0, D0), where M0 : P → {0, 1}is the 
initial marking and D0: P →{0} is the initial clock 
position. R-TNCES is a novel formalism for 
adaptive systems. But this formalism cannot deal 
with probabilistic running under memory and energy 
constraints. 

3 CONTRIBUTION: GR-TNCES 

System modeling and control is not a trivial activity 
because a failure can be critical for the safety of 
human beings, e.g., air and railway traffic control 
(Suender et al., 2011). This process consumes an 

amount of memory and energy resources that is 
estimated depending on the chosen scenario. To 
cover these goals, a new formalism, called (GR-
TNCES), which is an extension of Petri Nets, is 
proposed. It is defined by behavior and control 
modules. It is necessary to guarantee the state 
feasibility before and after probabilistic 
reconfigurations under memory and energy 
constraints. We aim to guarantee the optimal 
functional and to be sure that never we will face a 
scenario in which the system has to establish a 
reconfiguration process with insufficient memory or 
energy resources. 

3.1 Motivation 

Reconfiguration can be unpredictable, i.e., we do not 
have any idea about the behavior of the system in 
the future (Carlo, 2011). Memory and Energy 
resources are mandatory to run all processes.  So, 
before running the system and applying a 
reconfiguration, we have to check that there are 
enough memory and energy resources. We propose a 
real-time probabilistic reconfigurable supervised 
control architecture. We add a new parameter on the 
arcs of the model to design the probability of this 
TNCES branch. We design also controllers for the 
supervision of the memory and energy resources 
during running processes. 

3.2 Formalization 

We present in this section the formalism (GR-
TNCES) for the optimal modeling of unpredictable 
systems under memory and energy constraints.   

3.2.1 Generalized R-TNCES  

We define the formalism GR-TNCES that is a 
network of R-TNCES. It is a structure G = {∑ R-
TNCES}. R-TNCES = (B, R), where R is the control 
module consisting of a set of reconfiguration 
functions {r1, r2, r3, r4,.}. B is the behavior module 
that is a union of multi TNCES, represented as 
follows:  

B = (P, T, F, W, CN, EN, DC, V, Z0) 

Where:  

• P (respectively, T) is a non-empty finite set of      
places (respectively, transitions), 

• F is a set of flow arcs F ⊆ (P × T) ∪ (T × P), 
• W :(P × T) ∪ (T × P) →{0, 1} maps a weight 

to a flow arc, W(x, y) > 0 if (x, y) ∈ F, and 
W(x, y)=0 otherwise, where x, y ∈ P ∪ T, 
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• CN (respectively, EN) is a set of condition     
(respectively, event) signals with CN ⊆ (P × T) 
(respectively, EN ⊆(T × T)), 

• DC: F (P ×T) → {[l, h ]} is a superset of time 
constraints on output arcs,  

• V: T →{∨, ∧} maps an event-processing mode 
(AND or OR) to each transition, 

• Z0 = (T0, D0) where T0 : P →{0, 1} is the initial 
marking and D0 : P →{0} is the initial clock 
position. 

Let  TN = P ×T ×F ×W × CN × EN × DC × V   
be the set of all feasible net structures that can be 
performed by a system. Given a TNCES:  
β=(P’,T’,F’,W’,CN’,V’, DC’ ,Z’0),  TN(β) = (P’, T’, 
F’ , W’, CN’, EN’, DC’, V’) denotes its net 
structure, where TN(β) ∈ ∑ TN. We have P’ ⊆ P, T’ ⊆ T, F’ ⊆ F, W’⊆ W, CN’ ⊆ CN, EN’⊆ EN, DC’ ⊆ 
DC, and ∀t ∈ T, V’ (t) =V (t). Each reconfiguration 
is controlled by the controller. It is a structure: 

R = {Condition Cond, Probability P0’, Energy E’, 
Memory M’, Structure S, State X} 

Let •r (respectively, r•) denotes the original 
(respectively, target) TNCES before (respectively, 
after) the reconfiguration function r is applied, where 
TN(•r), TN(r•) ∈ ∑ TN. A reconfiguration function r 
is a structure r = (Cond, P0, E, M, S, X). A 
reconfiguration r is enabled at a state if the following 
conditions are fulfilled.  

Cond → {true, false}: the precondition of r,  
P0’:  P0: F→ [0..1] TNCES probability which 

could be a functional (internal to the TNCES) or a 
reconfiguration probability, 
       E0’: P→ [0..max] : controls the energy 
requirements by the TNCES to token number of 
energy in the controller, else the second 
reconfiguration probability is chosen, 

M0’ :  P → [0..max]: controls the memory 
requirements by the TNCES to token number of 
memory, else the second adaptation probability is 
chosen, 

S : TN(•r) → TN(r•) : is the structure 
modification instruction for reconfiguration scenario, 

X : last state (•r) → initial state (r•) :  is the state 
processing function, where last state (•r) 
(respectively, initial state (r•)) denotes the last 
(respectively, initial) state of •r (respectively, r•) 
before (respectively, after) the application of r. 

A state machine specified by an TNCES, which 
is called Structure_changer, is defined to describe 
the control module. In this state machine, each place 
corresponds to a specific TNCES of the GR-TNCES 
model. Thus, each transition corresponds to a 
reconfiguration function. The fact that a place sp 
gets a token implies that the TNCES, to which sp 

corresponds, is selected. If a transition st (∀st ∈ sp• ) 
fires, then it removes the token away from sp and 
brings it into a place sp’  with sp’ ∈ st•. Firing st 
implies that a reconfiguration function is applied. 
The Structure_changer is formalized as follows:  

Structure_changer = (P, T, F, V, M0, P0) 

Where ∀t ∈ T, |•t| = |t•| =1, ∑M0(P)=1, which means 
state and only one TNCES is performed at any time. 
The controller manages the GR-TNCES model using 
the Structure_changer model. Each place of this 
structure contains the whole information about the 
corresponding TNCES e.g. its energy and memory 
requirements (number of states in this TNCES). 
Each state consumes one token from the energy and 
memory reserve. So before enabling the 
reconfiguration, tokens are removed from the 
reserve.  Only memory tokens are added to the 
model’s memory at the end of the adaptation 
process. Energy reserve will be removed from the 
battery. Then, the battery will be charged 
periodically.     

3.2.2 Dynamics of GR-TNCES 

The dynamic describes the behavior of this control 
operation. Before moving the token from one place 
to the next state, The structure modification 
instruction S guides the GR-TNCES from TN(•r) to 
TN(r•), including the condition/event signals among 
them. The state processing function X maps the last 
state of •r before the application of r to a feasible 
initial state of r•, from which the reconfigured 
system goes on running. The dynamics of an GR-
TNCES is represented in this section by referring to 
self-modification nets and net rewriting systems. The 
states of an GR-TNCES are defined as follows.  

A state of G is a pair (TN(β), State(β)), where 
TN(β) denotes the net structure of G and State(β) 
denotes a state of G. The evolution of an GR-
TNCES depends on what events, energy and 
memory constraints (reconfiguration functions or 
transitions) take place. Using this GR-TNCES, a 
reconfiguration function r = (Cond, P’, E’, M, S, X) 
is enabled at state (TN(β), State(β)) if the new 
original following conditions are met. 

1) TN(β) = TN(•r), i.e., TN(β) is equal to the net 
structure of •r and if   the firing time 
constraints are fulfilled,  

2) Cond = true: its precondition is fulfilled, 
3) E0 > Cost TNCES (E0’): E0’ (token number) 

is removed from the energy reserve, 
4) M0 > Cost TNCES (M0’), M0’ (token cost) is 

removed from the memory controller. When 
the reconfiguration is over, these memory 
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tokens are added to the memory initial 
reserve.    

After firing a reconfiguration function r at the 
state (TN(β), State(β)), the system evolves into a 
new state (TN(β’), State(β’)), M0’ : the memory 
reserve  is returned to the memory controller  but the 
consumed energy E0’ is removed from the reserve 
E0. This reserve will be charged after a time period.   
For a transition t in an GR-TNCES, the first 
condition of its firing is that it must be in the current 
active TNCES. It should be enabled. On this basis, 
the firing rule of a transition in an GR-TNCES is the 
same as that in a TNCES. Note that, in an GR-
TNCES, a reconfiguration function always has a 
higher priority than a transition.  

4 CASE STUDY 

In this paper, the authors aim just to expose this new 
formalism using a simple case study. Let’s assume a 
formal reconfigurable probabilistic system to be 
composed of two Modules: Module1 labeled as 
GRTN1 and Module2 named as GRTN2 
communicating by an event signal ev0. P1 is the 
initial state. The first module contains Three TNCES 
with different probabilities. The first TNCES TN1 is 
labeled with the probability 0.3. It is composed of 4 
states (p2, p3, p4, p5) and 4 transitions (t2, t3, t4, 
t5). The second TNCES TN2 has 0.1 as a reachable 
probability, contains 3 states (p6, p7, p8). The last 
one is composed of (p10, p11, p12, p13).  

The second module GRTN2 is activated once the 
third TNCES TN3 is selected by module1. It sends   
an event ev0 for the activation of module2. We 

suppose that during this reconfiguration process at 
the transition t1, our system has to run 5 successive 
cycles of the chosen TNCES. Initially, this controller 
contains 12 tokens in its energy reserve and 10 
tokens in its memory reserve as shown in Figure 2. 
Before applying the reconfiguration scenario, the 
controller uses the Struture_changer for the 
selection of the adaptation process. Figure 3 shows 
the Structure_changer of the use case model. It 
contains two state machines that correspond to these 
two modules GRTN1 and GRTN2.  

Rec1, Rec2 and Rec3 are the different 
reconfiguration processes and TN1, TN2 and TN3 
are respectively the 3 TNCES of the probabilistic 
model. For the second module GRTN2, we have 2 
places N1 and N3 to represent the TNCES. Using 
this Structure_changer the memory and energy 
controllers could easily supervise the general model. 
This control is done through the estimation of the 
amount of resources located in the places of this 
TNCES. During the reconfiguration process, the 
system removes the tokens of the chosen TNCES 
from the system reserve (energy and memory). After 
this reconfiguration the memory tokens are added to 
the system’s memory once it is free and not used by 
the system. 

 

Figure 2: Use Case Controller Model. 

 

Figure 3: Running Example Model. 
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This case study is a useful example to present the 
necessity of this new formalism for modeling finite, 
probabilistic and reconfigurable systems. We start 
by the deactivation of the memory and energy 
controllers to test its results on the system behavior. 
Then, we activate the control process. Therefore, we 
explain and discuss its role and how it affects the 
system’s model. A based verification model 
checking technique using Prism is applied to 
validate this new modeling formalism. 

4.1 Verification of GR-TNCES 

We use Prism as a model checker to check the safety 
of each reconfiguration scenario that can be applied 
to the system. The Computation Tree Logic (CTL) 
(Zhang et al., 2013) and the probabilistic 
computation tree logic (PCTL) (Forejt et al., 2012) 
are used to specify the deadlock and the probability 
of properties which will be verified on the system.  
Typical properties which can be verified are 
boundedness of places, liveness of transitions, and 
reachability of states (Dubinin et al., 2006). We 
could detect if there is a deadlock and be sure that 
the model meets user requirements. To evaluate the 
interest of the controllers, we should disable it to 
check its effects on the system. The following CTL 
formula is applied for the deadlock detection:  
 

 E[F  " deadlock "] 
 

This formula is proven to be true by Prism as 
shown in the screenshot in Figure 4. So, there is a 
deadlock (ticked with the green color) at the state 

p16. It is because the controller was inactive. It is 
due to the violation of memory resources at run-time 
process as shown at step 10. There are no memory 
resources. The system does not manage its resources 
in the optimal way. We notice that there is no 
addition of the memory tokens to the memory 
resources at the end of each TNCES cycle. So it is 
quickly exhausted by a false using way.  

When the simulation progresses to establish the 
adaptation process that is composed of 5 successive 
cycles, we have a blocking situation caused by the 
lack of these resources. At the fifth cycle, at state 
p16 the system becomes in deadlock and cannot 
progress during this critical reconfiguration scenario. 
This is our dangerous problem, we consider it as a 
critical situation at run-time adaptation process e.g., 
the system has to fulfill a list of tasks, but it could 
not establish the whole operation due to the violation 
of its memory, or energy resources.  

The former case shows that the system is blocked 
when we disable the energy and memory controllers. 
Now, we reactivate these controllers. Using this new 
configuration, we try to check the system at a new 
unpredictable adaptation scenario using Prism model 
checker. By the activation of the control, we hope to 
run all the reconfiguration processes.   

      We aim that the system finishes this adaptation 
situation successfully without any blocking 
situations. After a successful simulation, we reach 
the end of the adaptation scenario. We verify that the 
model meets users’ requirements. So any adaptation 
process does not lead to a deadlock state as proven 
by the Red Cross. 

 

Figure 4: Prism Deadlock State Detection. 
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Figure 5: Simulation with Control. 

We see also that the reconfiguration process is 
finished and the amount of memory resources 
increases at the end of each TNCES as mentioned in 
the logic of this controller. The following CTL 
formula is checked and proven to be false. 

 
E[F  " deadlock "] 

 
We use now the probabilistic logic PCTL for 

probabilistic quantification of described properties 
(Forejt et al., 2012). We have proven that there is no 
chance for the system to reach the end of the 
TNCES without memory or energy resources. Prism 
certifies that the probability to reach this state is 
zero. The following PCTL formula is an example of 
the checked properties: 

 
Pmin=? [ st=13 U Mem=0 ] 

 
This formula is evaluated and proven by Prism 

with zero probability that the system reaches state 
13which is the last state of the reconfiguration 
process with no resources in reserves.  

 
Figure 6: Prism Screenshot for Memory Verification. 

4.2 Discussion: Comparison to Other 
Works 

As shown in this Figure 5 and Figure 6, all user 
requirements are satisfied: we have done all the 
reconfiguration processes without any deadlock (the 
five successive cycles). The controllers run well, 
they manage the memory and energy resources as 
predicted before. Thanks to this new formalism GR-
TNCES, we could model and control all 
unpredictable reconfigurable systems running under 
memory and energy constraints. R-TNCES or its 
previous extension could not deal with this kind of 
systems. R-TNCES just deals with finite 
reconfigurable systems; it could not model 
probabilistic systems under resource constraints. It 
cannot control system’s resources during a running 
process or an adaptation scenario. High level Petri 
Nets could also not deal with this kind of systems. 
They could not express the probabilistic aspects and 
the unpredictable behaviors during the running 
processes.   

5 CONCLUSIONS 

This paper has proposed GR-TNCES, a new 
formalism for modeling and verification of adaptive 
probabilistic discrete event control systems running 
under memory, energy and real-time constraints. 
Compared to the previous studies on formal 
methods, the functional and temporal specifications 

No 
Deadlock
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are optimized; new modeling formalism to cover this 
systems with resources control is developed. 
Therefore an GR-TNCES is a new extension of the 
formalism R-TNCES. It focuses on probabilistic, 
adaptive, distributed event control systems running 
under some constraints. Formalization and the 
dynamics of GR-TNCES are proposed. A formal 
case study is taken as a whole running example. 
Prism as a probabilistic model checker was used to 
show that GR-TNCES is a convenient formalism for 
modeling and analyzing APDECS thanks to the 
formal case study. A visual environment named 
ZiZo is now under building to concretize these 
contributions for the modeling and control of infinite 
adaptive probabilistic systems running under various 
constraints. In our future works, we will apply this 
formalism to model the protocol IPV4 Zeroconf that 
is an adaptive probabilistic system. 
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