A Flexible Architecture for Industrial Control System Honeypots

Alexandru Vlad Serbanescu® , Sebastian Obermeier? and Der-Yeuan Yu®
LKPMG AG, Zurich, Switzerland
2ABB Corporate Research, Baden, Switzerland
3Department of Computer Science, ETH, Zurich, Switzerland

Keywords:

Abstract:

Industrial Control System Security, Honeypots, SCADA Security.

While frequent reports on targeted attacks for Industrial Control Systems hit the news, the amount of un-

targeted attacks using standardized industrial protocols is still unclear, especially if devices are mistakenly
or even knowingly connected to the Internet. To lay the foundation for a deeper insight into the interest of
potential attackers, a large scale honeynet system that captures all interactions using industrial protocols is
proposed. Special for the honeynet system architecture is the automated deployment on a cloud infrastruc-
ture and its modularisation of the industrial protocols. The centralized-but-redundant data collection allows
correlating attacks that happen on multiple devices. A real-world experiment confirms the feasibility of the
approach, and results of the observed interactions with the honeynet are presented.

1 INTRODUCTION

A large subset of critical infrastructures, from en-
ergy production and distribution (e.g. nuclear power
plants, gas pipes, the electrical grid) over utilities (e.g.
water and wastewater treatment and transportation)
to the transport and manufacturing industries, relies
on industrial control systems (ICS) for controlling
and monitoring the underlying processes and physi-
cal functions in real-time. A SCADA system (super-
visory control and data acquisition) is a special type
of industrial control system, mainly targeted to wide
area industrial systems and focused on data acquisi-
tion and collection aspects.

Initially air-gapped and often using proprietary
protocols, ICS/SCADA systems had their security
ensured by means of physical isolation and obscu-
rity, which are currently considered unsafe prac-
tices (NIST, 2008). ICS/SCADA systems have since
evolved into being integrated into corporate networks
(e.g. with resource planning solutions) and widely-
deployed, complex systems such as smart grids or ad-
vanced metering infrastructures.

As tools are openly available for identifying and
compromising ICS/SCADA components accessible

All related research activities were performed entirely under si-
multaneous affiliation with ABB Corporate Research and the De-
partment of Computer Science of ETH Zurich. KPMG AG repre-
sents the current affiliation only.

16 Vlad Serbanescu A., Obermeier S. and Yu D..
A Flexible Architecture for Industrial Control System Honeypots.
DOI: 10.5220/0005522500160026

on the public Internet, the level of skill and resources
required to find and perform attacks against them is
reduced (ICS - CERT, 2013). Hence, attacks on criti-
cal infrastructures are occurring, with the threat land-
scape having been recently explored in greater detail
(Robinson, 2013) (Morris and Gao, 2013).

However, there is little publicly-available infor-
mation on the adversarial behaviour and on the
amount of interactions between attackers and their
targets. Moreover, the efforts made so far have been
focused on investigating how classical IT attacks ap-
ply to ICS/SCADA systems, with a notable lack of in-
formation on attacks carried out using ICS/SCADA-
specific protocols. In addition, the influence of having
ICS/SCADA components indexed by search engines
on the presumably-malicious activities performed us-
ing industrial protocols represents almost uncharted
territory. Finally, even though some existing tools
could be combined and partially used to investigate
these matters at a small scale, there is no single solu-
tion for achieving this goal, let alone at a larger (i.e.
Internet-wide) scale.

1.1 Contributions

The most important contributions can be summarised
as follows:

Presentation of a novel ICS/SCADA honeypot ar-
chitecture that can be globally deployed in an

In Proceedings of the 12th International Conference on Security and Cryptography (SECRYPT-2015), pages 16-26

ISBN: 978-989-758-117-5

Copyright ¢ 2015 SCITEPRESS (Science and Technology Publications, Lda.)

automated manner on heterogeneous deployment
platforms, thereby forming a large-scale hon-
eynet. Furthermore, the mimicking functionality
together with the security components integrated
are modularly-structured and can thus be easily
extended.

Proof-of-concept ICS/SCADA honeynet imple-
mentation, including means of automatically de-
ploying it to various on-premises networks or
cloud platforms.

Experimental results revealing information on the
adversarial behaviour targeting critical infrastruc-
tures, thus advancing the knowledge of the related
threat landscape.

2 ASSUMPTIONS AND
RESEARCH QUESTIONS

We developed our analysis on the following assump-
tions for - investigating the 1CS/SCADA-protocols-
based adversarial behaviour pertaining to critical in-
frastructures:

1. Attempts to identify ICS/SCADA systems that be-
long to critical infrastructures are happening more
and more frequently. One of the main techniques
to achieve this goal is port scanning. This is a con-
sequence of systems that are part of critical infras-
tructures attracting the attention of malicious en-
tities, ranging from script kiddies and individual
hackers to hacktivist groups and nation states, as
listed in (Asgarkhani and Sitnikova, 2014, p.27).

2. Publicly-available tools (e.g. nmap) and infor-
mation repositories (e.g. the SHODAN search
engine?) facilitate the aforementioned reconnais-
sance activities. The latter is used for what is
referred to as “indirect intelligence gathering” in
(Byres, 2013). The work in (Wilhoit, 2013a,
p. 21) shows that many of the attacks “started
out with SHODAN queries, but it cannot be ac-
curately said if these were accidental or targeted
in nature”.

3. If an ICS/SCADA system is identified on the pub-
lic Internet (e.g. by identifying its gateway de-
vice), the classic IT components are most likely
the first target for an alleged attacker, not the
ICS/SCADA components. Thus, classic and well-
documented attack techniques are usually em-
ployed, such as brute forcing credentials or ex-
ploiting SQL injection vulnerabilities of a web-
based GUI. Moreover, attacks tailored to lower

2SHODAN Computer Search Engine. http://www.shodanhg.com/

A Flexible Architecture for Industrial Control System Honeypots

level ICS/SCADA equipment are unlikely to be
currently seen on the public Internet. This hy-
pothesis is in line with the experimental results
in (Buza et al., 2014, p. 191), in which the hon-
eypot collected many general PC targeting at-
tacks, but neither of them was specific to pro-
grammable logic controllers (PLCs), which are
typically used for the actual control of the in-
dustrial processes. However, the rare attacks that
do exploit the ICS/SCADA layer are targeted and
sophisticated, as shown in (Wilhoit, 2013b) and
(Wilhoit, 2013a).

Based on these assumptions, the goal of our ex-
periments was to answer the following questions:

1. Although attacks at the ICS/SCADA level seem
unlikely over the public Internet, can we ob-
serve attempts to identify using industrial proto-
cols (e.g. Modbus, IEC-104) ICS/SCADA equip-
ment that is directly (and hence wrongly) accessi-
ble from the public Internet?

2. Do ICS/SCADA components that are directly
connected to the Internet draw attention, and are
there attempts to interact with them in a short
amount of time (on the order of days or possibly
even hours, as observed for example in (Wilhoit,
2013b))?

3. How fast do information repositories (e.g.,
SHODAN) interact with and list newly-connected
devices?

4. If an ICS/SCADA-specific device is identified,
how is it typically interacted with (e.g., port scan,
connection attempts, exchange of protocol-level
data)?

In addition, exploring the feasibility of utilising
a single framework for monitoring the ICS/SCADA-
related threat landscape at a large scale has been es-
tablished as a goal as well.

3 RELATED WORK

One of the first attempts of translating honeypots to
the ICS/SCADA application domain is represented
by the SCADA HoneyNet Project, whose authors
tried in 2004 to evaluate the “feasibility of build-
ing a software-based framework to simulate a vari-
ety of industrial networks such as SCADA, DCS [dis-
tributed control system, another specific type of ICS],
and PLC architectures”®. Their aim was to simu-

3v. Pothamsetty and M. Franz. SCADA HoneyNet

Project: Building Honeypots for Industrial Networks.
http://scadahoneynet.sourceforge.net/

17

Honeypot —
Software L
Snort /
iptables

SECRYPT 2015 - International Conference on Security and Cryptography

Amazon EC2

Cloud

@l

0s (Linux) | | |

Honeypot Node(s)
on personal PCs

Snort /
iptables

0S (Linux)
M

HONEY

@®- 1

Honeypot <
"l Software 1

LN

Honeypot |«

=
]

Software -
° Snort /
iptables

(#0e) | G5 o

VM L

YP
Software

° Snort /
iptables
HOVEY) | 758 (Tinux)
VM

=

>
<4

Honeypot
Software |«

=
===

Honeypot Node(s)
(e.g. in Europe)

Honeypot Node(s)
(e.g. in Asia)

Honeypot Node(s)
(e.g. in USA)

Snort /
iptables

L]
HONEY
)

Honeypot Node(s)
on insitutional/
corporate PCs

4 Honeynet
. Database
§

0 (Linux)
M

i vV
one il I Honeynet Analysis | ¢
b Collector Software Engine Management SW.
=SS

Honeynet Storage, Analysis & Managemgm

Data Capture

|
|
I Data Collection
|
|

Figure 1: Cloud-based industrial honeynet architecture.

late a PLC using Honeyd* (a popular low-interaction
honeypot) to mimic a set of protocols and services
specific to industrial networks in order to address
the lack of (publicly-available) information about
SCADA vulnerabilities and attacks and of publicly
available SCADA security tools . The main contri-
butions include scripts that simulate protocols such as
FTP, Modbus TCP and Telnet, and a web server com-
ponent. The work on this project was discontinued in
2005. The simulation achieved is limited with respect
to the functions and operations implemented, e.g. by
comparing the Modbus synchronous simulation script
to the interactive, full Modbus functionality, and not
designed for automated deployment on cloud infras-
tructures.

Building on the HoneyNet Project, Digital Bond,
Inc. (a control system security consulting and re-
search company) has developed its own version of
a SCADA Honeynet®, which uses two virtual ma-
chines as its foundation instead of the Honeyd hon-
eypot. The simulation of a popular PLC and of its
exposed services (FTP, Telnet, Modbus TCP, HTTP,
SNMP) is carried out by one virtual machine, while

4N. Provos. Honeyd Virtual Honeypot. http://www.honeyd.org/
5Digital Bond Inc. SCADA Honeynet. http://www.digitalbond.
com/tools/scada-honeynet/

18

6The Honeynet Project.

the other one concentrates on monitoring all network
activity and statistics® and includes tools for this pur-
pose. The approach contains in-house-developed IDS
signatures for detecting malicious activity targeting
the simulated PLC. The latest version of this project
dates back to 2011. A recent example of simulating
a control system using this SCADA Honeynet version
can be found in (Wade, 2011). The SCADA Honeynet
developed by Digital Bond, Inc. also supports the use
of a real, hardware PLC instead of a simulated one.
The overall architecture proposed, although reflecting
substantial improvement over the SCADA HoneyNet
Project, is unsuitable for wide-scale deployment and
operation (for example because of the lack of manage-
ment, operation and per-node individualization facil-
ities), and makes functionality and protocol-coverage
extensions difficult. Therefore, the approach devel-
oped in this paper also focuses on modularization of
the protocol simulation functionality.

The most recent implementation of a SCADA
honeypot (and also in active development) is Con-
pot, a “low interactive server side [...] honeypot de-
signed to be easy to deploy, modify and extend”®.
In its default configuration, it simulates a Siemens

CONPOT ICS/SCADA Honeypot.
http://www.conpot.org

SIMATIC PLC exposing HTTP, Modbus TCP and
SNMP protocols, and also supports the use of pro-
duction equipment instead of the mimicked compo-
nents (e.g. human-machine interface, PLC). A design
and implementation case-study for a honeypot based
on Conpot can be found in (Scott, 2014). According
to (Buza et al., 2014, p. 183), Conpot is easy to in-
stall and use, but requires a lot of customization effort.
The customization and configuration effort represents
a common disadvantage of most, if not all publicly-
available ICS/SCADA honeypots surveyed in this pa-
per.

In contrast to the approach chosen in this pa-
per, none of the aforementioned ICS/SCADA hon-
eypot/honeynet seamlessly integrates a port scanning
detection mechanism — not only from a functional
point of view, but also from a collected data aggre-
gation and analysis perspective.

Concerning the use of publicly-available re-
sources for identifying ICS/SCADA systems — in the
case of SHODAN, a search engine crawling the Inter-
net and indexing devices according to the service ban-
ners returned — recent research efforts such as (Boden-
heim et al., 2014) and (Patton et al., 2014) highlight
their considerable potential as indirect reconnaissance
tools. Specifically, in (Bodenheim et al., 2014) it is
argued that SHODAN represents a ”powerful recon-
naissance tool for targeting (ICS systems)”, indexing
four newly-connected, Internet-facing PLCs in ap-
proximately 19 days, whereas in (Patton et al., 2014)
roughly 1400 SCADA devices from a SHODAN
database subset are found to be using default login
credentials. Itis also reported in (Wilhoit, 2013a) that,
while using a proprietary ICS honeypot, many of the
attacks observed started out with SHODAN queries.
However, (Wilhoit, 2013a) cannot accurately assert if
these were accidental or targeted in nature.

Therefore, being indexed in public information
repositories appears to increase the exposure of
ICS/SCADA systems to Internet-originating attacks
and, hence, the associated risks. However, there is
currently no information available on the influence of
such listings on the adversarial behaviour using ICS-
specific protocols itself.

4 APPROACH

The selected approach for investigating the adversar-
ial behaviour pertaining to critical infrastructures is
an ICS/SCADA honeynet, which exposes multiple in-
dustrial protocols to the Internet. It is deployed on a
global scale using the Amazon EC2 cloud environ-
ment.

A Flexible Architecture for Industrial Control System Honeypots

A honeynet-based approach has been chosen
because it enables a software-only simulation of
ICS/SCADA devices from various manufacturers in
large numbers and adaptable configurations. Thus, no
deployment or operational constraints other than the
software-related ones are faced.

In order to answer the questions concerning the at-
tack landscape, only the presence of ICS/SCADA de-
vices that support various specific protocols has been
simulated. It was not necessary to precisely mimic
the devices individually since the research objectives
currently established are not restricted to a particular
device class/type; they are concerned with the over-
all associated threat landscape. Moreover, with only
minimal information available on the particular adver-
sarial behaviour considered, a less-detailed-but-broad
initial investigation has been considered more valu-
able than a deep-but-narrow one, as it provides a good
overview of the threat landscape and, hence, support
for directing and optimising subsequent research ef-
forts.

As capturing port scanning activities is crucial
for relating the amount of targeted interactions to
the overall number of connections, we have designed
each honeypot to seamlessly integrate Snort, an open-
source network intrusion detection system (Beale
etal., 2007). Snort is not only specialized on port scan
detection; it can also detect attempts to fingerprint the
operating system or probes/attacks using various pro-
tocols.

4.1 Simulated ICS/SCADA Protocols

We have simulated protocols that are utilised for re-
mote SCADA/ICS communication as these protocols
could be routed over the Internet and can thus attract
malicious interest.

Modbus is a de facto standard for industrial com-
munication, ubiquitously used in equipment ranging
from small network-enabled sensors over automation
controllers to SCADA system components (Wilam-
owski and Irwin, 2011).

IEC 60870-5-104 is frequently used in the electri-
cal generation and distribution industry, especially in
Europe (where it is the most commonly-used proto-
col), but also internationally (where it competes with
DNP3 in English-speaking countries).

5 ARCHITECTURE

The honeynet system primarily consists of multiple
honeypot nodes deployed in a scattered manner on the
public Internet and which communicate with one or

19

SECRYPT 2015 - International Conference on Security and Cryptography

Honeypot main SW 5]

Q

control_Honeypot

- /O< i

Database component

Modbus : DB Buffer

|IEC-104 : DE Buffer

loglEC104Event

Portscan : DB Buffer ‘
& - - -1
logPScanEvent ,
Partscan detection =]
Snort & (""" I
data_PScan

Snort logfile monitor 5 |

control_PScan

e

data_IEC

RPC Senice 2 |

initialise, start, stop, setiD, ...

Modbus =l

Listen : NFQueue binding

Process | Scapy callbacks

o
o
[
[
Lo
o
[
[
I
o
control_MB 1 |
L
Lo
Simulate : Senice oo
Lo
! 1
[
! 1
|
IEC-104 g] v
I
I
Listen : NFQueue binding : :
e P
control_IEC lu
Process : Scapy callbacks :
I
!
I
|

Figure 2: Internal honeypot architecture.

more data storage, analysis and management (SAM)
nodes.

The purpose of each honeypot node is to mimic
the presence of an ICS/SCADA system component
and to monitor for, carry out and record interac-
tions using communication protocols specific to the
ICS/ISCADA application domain. The nodes can si-
multaneously simulate different services, according
to their individual configuration, thus being able to
interact with the environment using different combi-
nations of ICS/SCADA protocols. If a node is inter-
acted with (e.g. port scanned) using a protocol that
is not being simulated at that moment, the attempt is
also logged. In addition, the honeypot nodes apply
local processing to the gathered data before sending it
to the SAM node(s) in order to minimise the load on
the latter one(s). The information to be captured and
stored consists of data at OSI Layer 3 and above, both
sent and received.

The internal architecture of the honeynet system
used to gather the data analysed in the next section
is depicted in Figure 1, with Amazon EC2 as the
deployment platform. The modular architecture al-
lows for scalability, easy addition of functionalities
and straightforward expansion of the protocols simu-
lated. From a high level perspective, the functionality

20

of the honeynet is organised into data capture, data
collection, data analysis and honeynet management,
hence its structure follows the same logic.

Data capture defines the recording of all interac-
tions that occur with the surrounding environment in
order to have a raw source of data that can be there-
after analysed and transformed into actionable infor-
mation/knowledge. Hence, the honeynet processes all
interactions, regardless of their characteristics (e.g.
completeness, conformance with the corresponding
standards) and captures and stores all data situated at
OSI Layer 3 and above. This functionality is accom-
plished locally on each honeypot node at both net-
work and application level.

Data collection satisfies the essential need of hav-
ing all information captured available at one/multiple
locations in order to enable a real-time, complete and
system-wide image of the honeynet and to be thus
able to detect events and discover correlations. Ac-
cording to (Deng and Shukla, 2013), SCADA systems
require real-time threat monitoring and early warn-
ing systems to identify cyber attacks, whereas effec-
tive intrusion detection requires correlation of mul-
tiple events that are temporally and/or spatially sep-
arated. Therefore, a central data collector has been

A Flexible Architecture for Industrial Control System Honeypots

GUI/ congsole | etc.
N

Honeypot level operations

]

I
1
: DB interaction
1

%

Console interface

g]

A

Deployment platform-specific operations
\

\

DB interaction

1
1
1
|
|
1
|
|
1
|
|
1
|

/

Database component

5] é,—’-"_'_

DBintf. " -

i
i

'

1

1

1

1

a

Supported operations
| Deployment
Amazon EC2 operations 5 environment
interaction and
logic
A‘\ abstraction
Call platform specifie mech. Event triggers
I
! \
S/

Exposed mechanisms Request data | signal events

’ Deployment

T —

DB interaction

ShodanHQ component

Amazon EC2 mechanisms 8 | environment
logic

implementation

Shodan intf.

A

Get Shodan data Control underlying platfrom

LA

Interact with platform Operating
| system

Platform independent 2] interaction

abstraction

Figure 3: Structure of the honeypot management component.

implemented to allow such correlations between mul-
tiple events.

Data analysis embodies the key functionality of
the honeynet, namely to extract information and to
draw conclusions from the data collected. It is per-
formed only on the SAM nodes in order to reduce the
computational load on the honeypot nodes. Data anal-
ysis is carried out using third-party tools (i.e. Matlab)
and custom Python scripts.

Honeynet management provides mechanisms for
easy configuration, monitoring and deployment (e.g.
automated deployment in the Amazon EC2 cloud)
and covers all aspects of the honeypot life cycle,
from honeypot node bootstrapping over secure remote
management and honeynet-wide configuration/code
updates to honeypot node shutdown. There are two
associated data flows depicted in Figure 1 because
the honeynet SAM nodes need not only to control the
honeypot software itself, but to also programmatically
manage the hosting environment(s) employed using
the API(s) exposed (e.g. provisioning a virtual ma-
chine on the Amazon EC2 cloud).

The structure of the honeypot software itself is

shown in Figure 2, using the same color coding as in
Figure 1 for the data capture, data collection and hon-

eypot management functionalities. One of the main
goals pursued with this modular structuring has been
to enable simple functional extensions, therefore hav-
ing a minimal number of component interdependen-
cies with uniform underlying logic has been assigned
a high priority.

Honeypot main SW represents the entry point,
which starts in a virtual terminal environment so
that its functioning is not dependent on the state of
the SSH session and to also allow operator inspec-
tion/intervention at any time. The state of all other
components (except for the RPC service) is controlled
from here, with global commands subsequently call-
ing the required methods in the corresponding compo-
nents. For example, the command for initialising the
honeypot starts with initialising the database compo-
nent, followed by all protocol simulation services and
finishing with the portscan detection module.

The RPC service is automatically started in a sep-
arate thread for receiving commands and responding
to queries from the honeynet controller, which are all
tunnelled through an SSH tunnel. The most impor-
tant control commands to be received using the RPC
service are for initialising, starting and stopping the

21

SECRYPT 2015 - International Conference on Security and Cryptography

honeypot software, respectively for setting its unique
identifier and for querying its state.

The key activity performed by the honeypot nodes
— simulating services and capturing interactions — is
realised with individual components for every ser-
vice/protocol simulated. Each such component gath-
ers data using network- and application-level mecha-
nisms and can respond to the messages received, pro-
vided that a reply generation function is also imple-
mented. After processing each incoming message, the
information thus extracted is sent to the database com-
ponent.

The portscan detection component employs Snort
for the actual detection. Hence, the honeypot could
also be extended with IPS-specific tasks done by
Snort. All events detected are handed over to the
database component.

The database component handles the data to be
sent to the honeynet central database(s). Every simu-
lated protocol has a specific buffer associated for stor-
ing the data gathered, which is in turn flushed when
full-or at regular intervals (whichever-occurs first).
The port scanning activity detected is also handled by
such a buffer.

5.1 Data Capture

The capture of data is realised by the sensing points
of the honeynet, namely the honeypot nodes, at two
different levels on the OSI stack.

Network level: For each protocol simulated, ipt-
ables entries for both incoming and outgoing traffic
on the associated ports are automatically added in or-
der to redirect the raw traffic using netfilter queues
to the honeypot software residing at the application
level. Here, each packet received is processed by a
callback function that either stores it in a temporary
buffer if the packet is still needed by other methods or
sends it to the associated buffer in the database com-
ponent directly. In the case of the former, after all
methods have finished utilising the captured packet
the last one sends the data to the buffer in the database
component. This approach has been chosen as it en-
ables using the raw capture and examination of the
entire packet (using a packet manipulation tool such
as Scapy). In addition, persistently storing the packet
dump in the honeynet database becomes also possible
— this allows a subsequent detailed inspection of the
captured packets using packet analysers.

Application level: If there are services imple-
mented for a protocol (e.g. a Modbus server for the
Modbus component), each simulated service can in-
tegrate the raw data received through the aforemen-
tioned netfilter queue redirection and use it internally.

22

For example, the Modbus component makes use of an
open-source implementation for simulating a server
and by adding hooks at appropriate places specific
events can be logged.

An advantage of this data capture mechanism is
that tasks such as handling TCP connections can be
offloaded from the honeypot software onto the oper-
ating system through the use of standard techniques
(e.g. creating a TCP socket for listening on a port),
thus improving performance.

With regard to the detection of port scans, the out-
put of the port scan detection module is redirected to a
file, which is continuously monitored by the honeypot
software for file system events. In this way, any port
scanning occurrence detected by Snort is immediately
processed by the honeynet.

5.2 Data Collection

After the data has been captured and processed by the
protocol-specific or portscan detection components, it
is sent to the associated buffer in the database com-
ponent. These buffers inherit a base buffer that im-
plements the logic for flushing their content to the
database(s) on the SAM nodes and they specialise
the structure of the data buffered, the SQL commands
employed and the logging APl exposed to the data-
capture-responsible components. Thus, under normal
operation all databases hold identical data. To assure
this property under non-ideal conditions, database
synchronization mechanisms can be easily added on
the SAM nodes with no modification to the honey-
pot software itself. The logical topology of the hon-
eynet with regard to data collection is hub(s) and
spoke, with the SAM node(s) being the hub(s). Multi-
threaded connection pools are created for each desti-
nation database.

5.3 Honeynet Management

The management of the honeypot nodes is performed
using a honeynet controller component, which is en-
tirely separated form the honeypot software. This
structure of the honeynet management software is de-
picted in Figure 3.

Starting from the top, the honeypot level opera-
tions component exposes an interface for controlling
the honeynet from a high-level, system-wide perspec-
tive, i.e. for executing commands such as “launch
honeypot node on deployment environment X”. It
fulfils the role of the gateway redirecting user com-
mands to the underlying component that can execute
them according to the deployment environment they
are destined for. In addition, it handles queries that

request honeypot-level information, such as learning
the state of the honeypot nodes or inspecting captured
packets.

The next layer (blue) contains one component for
each deployment environment used by the honeynet
in order to handle the commands distributed by the
previously mentioned gateway. High-level commands
such as “add honeypot node” are broken down into the
sequence of main steps to be carried out using the cor-
responding deployment-environment-specific mecha-
nisms, which are implemented in the green layer be-
low, and/or of queries to be send to the honeynet
database(s). In other words, the components belong-
ing to this level incorporate the logic behind all oper-
ations that the honeynet management software sup-
ports. In addition, they also expose interfaces for
carrying out actions at the request of the underlying
mechanisms targeting the same deployment environ-
ment: for example, the illustrated Amazon EC2 oper-
ations component will add data to the database when
the underlying component has finished updating and
restarting a honeypot node running on the Amazon
EC2 cloud platform.

Amazon EC2 mechanisms, together with all other
components from the same layer (green), expand the
steps exposed to the layer above into the actual op-
erations that have to be executed on the target de-
ployment environment, including possible interac-
tions with the API provided by the latter or with other
resources (e.g. the ShodanHQ component). For ex-
ample, the “launchHoneypot” method will: use the
Amazon EC2 API to launch a new instance, request
a unique identifier from the overlying component,
check whether the services to be simulated by the
new honeypot node are already listed on SHODAN
(and take appropriate actions if they are), provision
the new instance, initialise and start the honeypot soft-
ware. All these steps have to be translated to actual
commands issued for the operating system used on
the instance obtained from the deployment environ-
ment — this is done in the lowest layer of the honeypot
management software, as subsequently introduced.

The (deployment) platform-independent compo-
nent implements the entire set of operations to be car-
ried out on the actual hosting environment, i.e. the
underlying operating system. This includes, among
others, installing the required software, deploying or
updating the honeypot software, pushing the speci-
fied configuration files, controlling the honeypot soft-
ware, and retrieving the log files. The role of this
component is to hide the operating-system specific
implementation details and provide a unified set of
commands to all other components that depend on

A Flexible Architecture for Industrial Control System Honeypots

it. The platform-independent component has been im-
plemented for Ubuntu Linux.

Table 1: Deployment scheme on Amazon EC2.

Amazon EC2 Region Honeypots | DBs
Asia Pacific (Tokyo) 2 -
Asia Pacific (Singapore)
Asia Pacific (Sydney)
EU (Ireland)
South America (Sao Paulo)
US East (N. Virginia)
US West (N. California) -
US West (Oregon) 1
Total 18 2

W N W W NN

Using this deployment scheme, all Amazon EC2
regions available at the start of the experiment were
covered and all their underlying availability zones
contained one honeypot instance, with the exception
of South America (Sao Paulo) and US East (N. Vir-
ginia).

The functionality of the honeynet as a whole is
augmented by including access to external sources
of information. SHODAN has been chosen for this
proof-of-concept implementation. A corresponding
component is present — the ShodanHQ component in
this case — in order to hide the external APl and to
implement more advanced functionalities (compared
to the API-provided ones) in cooperation with other
components. In addition, a database component is
also present, which enables the interaction of the other
components with the honeynet database(s).

This approach of structuring the honeynet man-
agement software offers the following advantages:

GUIs or other user interfaces can interact with the
management system in a technically-transparent
manner. In addition, deployment environments
can be added without being forced to change the
existing user interfaces or the honeynet manage-
ment software itself — they only have to add sup-
port for the new ones.

Newly-added deployment environments can
utilise already implemented components, mecha-
nisms and/or sources of information. Conversely,
existing components can be rapidly and easily
integrated and benefit from new information
sources and/or new auxiliary modules.

The logic is separated from its actual realisation,
thus keeping change requirements from propa-
gating back and forth between them. Moreover,
schema alterations in the honeynet database(s)
only affect the former, whereas updates of the ex-
ternal components (e.g. ShodanHQ component)
influence only the latter.

23

SECRYPT 2015 - International Conference on Security and Cryptography

Number of new connections and requests VS time (1h resolution, source IPs '108.163.245.114', '95.19.182.113' filtered out)

e e e e e S A B T T T T T T T T T T T T |
[|-XTCP connections| :

111--e Modbus requests ' |
o[- 1]
9l E

w 8F K X X b4 X x x 4

§ s " :

§ 7 7

5 |

3 6 X X .

o ;]

5 5- 1 B

s i " : 0 i i i i i

= A XX X OMORO O XK x nx 1 S SO i x XXX K P S ¢ -
3 x X Xi -
2 XXX X xe x
1L >l<‘1w o

- g -l

FH R I B P S |

I S I I

i

i
[Lol I

oL L i
0 24 48

1 T P L " F L i M
72 96 120 144 168 192 216 240 264 288 312 336 360 384 408 432 456 480 504 528 552 576 600 624 648 672

Time (1h resolution)
Figure 4: Series of Modbus connections and requests.

The components that define the operations to
be carried out on each operating system can
be reused for multiple environments offering
the same operating system to the user. More-
over, honeynet management software modifica-
tions due to changes in the operating system are
restricted to a single component, without affect-
ing the upstream components.

54 Implementation

Both honeypot node and honeynet management soft-
ware are implemented in Python, with the Twisted
framework being used for asynchronous operations,
network interactions and protocol simulation. The
honeynet databases run on PostgreSQL DBMS, with
which the honeypot nodes communicate through psy-
copg2. The virtual terminal environment employed
for running the honeypot software is provided by
screen.

Scapy offers the required support for packet in-
spection and manipulation tasks and also plays a role
in the enumerated protocol simulation, with nfqueue-
bindings alongside iptables being responsible for
redirecting raw traffic to/from it. The Modbus server
is simulated using PyModbus, whereas Snort handles
the detection of port scanning attempts. In addition,
information about the interaction peers is gathered us-
ing dnspython for reverse DNS lookups and GeolP for
their geographical origin.

Fabric is used for running commands remotely on
the honeypot nodes, while RPyC and Plumbum enable

24

the secure use of remote procedure calls. GitHub has
been used for code storage, while code deployment
is achieved using the git tool. The interaction with
the Amazon EC2 and SHODAN APIs is carried out
through the boto and shodan python libraries, respec-
tively.

6 EXPERIMENTAL EVALUATION

We have evaluated the framework and implementa-
tion through experiments carried out using the Ama-
zon EC2 cloud environment. The protocols exposed
are Modbus and IEC 60870-5-104 (IEC 104), and the
duration of the experiment was 28 days. During this
time, no changes were made to the running honey-
pots. The deployment scheme for the honeypot nodes
is depicted in Table 1.

In order to avoid loss of experimental data, two
nodes were used for hosting a database each and for
controlling the honeynet, as described in Section 5.2.
This also shows the feature of the honeynet to simul-
taneously log to multiple databases.

As a general note, the interactions are categorized
using their type (new connection, request), the pro-
tocol employed and their relation to SHODAN (peer
belonging to the scanning infrastructure of SHODAN
or not). The latter characteristic is determined by per-
forming a reverse DNS lookup of the peer’s IP address
and checking whether the associated PTR record is a
subdomain belonging to SHODAN or not. The infor-
mation obtained using this method in the case of non-

A Flexible Architecture for Industrial Control System Honeypots

Table 2: Summary of data collected on Amazon EC2.

Peer IP addr. | CC DNS PTR Modbus IEC-104 Pscans.
Conns. | Regs. | Conns. | Regs.
66.240.192.138 | US census8.shodan.io. 48 46 13 13 1
66.240.236.119 | US census6.shodan.io. 45 43 8 8 2
71.6.135.131 us census7.shodan.io. 49 41 6 6 5
71.6.165.200 us censusl2.shodan.io. 44 44 7 7 1
82.221.105.6 IS census10.shodan.io. 8 8 - - 2
82.221.105.7 IS censusll.shodan.io. 3 3 - - -
85.25.43.94 DE rim.census.shodan.io. 14 12 7 7 3
85.25.103.50 DE | pacific.census.shodan.io. 10 8 - - 1
93.120.27.62 RO m247.ro.shodan.io. 4 4 1 1 1
95.19.182.113 ES [...].dynamic.jazztel.es. 5 58 - - -
104.54.177.50 | US | [...].rcsntx.sbcglobal.net. 6 - - - -
108.163.245.114 | US server.albrari.com. 813 738 - - 7
118.192.48.6 CN - 4 3 - - -
198.20.69.98 DE census2.shodan.io. 2 - 3 3 4
198.20.70.114 us census3.shodan.io. 16 16 6 6 -
188.138.9.50 US | atlantic.census.shodan.io. 8 8 2 2 3
202.108.211.62 | CN - 13 8 - - 4
Totals (SHODAN): 251 233 53 53 23
Totals (non-SHODAN): 841 807 0 0 11

SHODAN peers can reveal useful details, such as ties
to different organizations, presumed owner’s identity
or the ISP used.

6.1 Results

A summary of the experimental data collected is
shown in Table 2. The IP address, associated GeolP
source country information (if available) and corre-
sponding DNS PTR record (if any) for each peer
that has interacted with the honeynet are listed in the
first three columns. The next four columns provide
a breakdown of the interaction by protocol and/or
type, while the last column contains the number of
portscans detected by the Snort module from the cur-
rent peer, i.e., it must not be used to assess the place-
ment attractiveness of the honeypots/honeynet.

The experiments show that SHODAN frequently
scans large parts of the Amazon EC2 cloud infras-
tructure and also lists our honeypot nodes that it dis-
COovers.

Figure 4 illustrates the number of new Mod-
bus connections and Modbus TCP requests observed
throughout the experiments. For a better visualisa-
tion, we have filtered out two source IP addresses
that established excessive amounts of new connec-
tions (813 occurrences for the first one alone) and
issued a disproportionately-large number of requests

(738 and 58 for the first and second addresses, respec-
tively).

This experiment reveals that the interactions are
happening frequently and regularly. Moreover, it con-
firms that the deployed honeypots are of interest and
have hence attracted determined/interested peers.

The experiments have also shown the feasibility
of our approach and have validated the automated de-
ployment concept. In the future, we plan to run more
experiments to get a deeper insight into the industrial
protocol landscape.

7 SUMMARY AND
CONCLUSIONS

We have presented an architecture for a honeypot
that enables building a large-scale honeynet. This
honeynet can be automatically deployed on a cloud
infrastructure, and allows for a centralized and re-
dundant collection of data. Particular attention has
been given to the modular character of the industrial
protocol implementation, which enables a straight-
forward expansion of the industrial protocols that a
honeypot can expose. A special feature is also the
seamless integration of Snort, an open source intru-
sion detection system, which is used to detect port
scans and operating system fingerprinting in a sophis-

25

SECRYPT 2015 - International Conference on Security and Cryptography

ticated way. The real-world experiments conducted
on a cloud infrastructure show the feasibility of the
approach proposed. The honeynet not only was regu-
larly probed and indexed by SHODAN (a search en-
gine that searches for specific types of devices), but
it has also attracted multiple seemingly-independent
peers to interact with it.

The results of the experiments conducted moti-
vate the fundamental need of having proper security
mechanisms in place within industrial control systems
that are connected to the Internet, as these systems
will be swiftly listed in relevant information reposito-
ries, thus possibly becoming further exposed to both
classical IT and ICS-specific attacks. Moreover, they
indicate that potentially malicious activities targeting
industrial control systems and using ICS-specific pro-
tocols may be currently conducted on the public In-
ternet.

As future work, we plan to extend the number of
protocols simulated and also to evaluate the influence
of search engine listings on the adversarial behaviour
observed. To summarize, we consider the proposed
architecture for an ICS honeynet system an important
foundation for obtaining a deeper insight into the in-
terest of potential attackers for industrial devices.

REFERENCES

Asgarkhani, M. and Sitnikova, E. (2014). A strategic ap-
proach to managing security in SCADA systems. In
Proceedings of the 13th European Conference on Cy-
ber warefare and Security, pages 23-32. Academic
Conferences and Publishing International Limited.

Beale, J., Baker, A., Esler, J., Kohlenberg, T., and Northcultt,
S. (2007). Snort: IDS and IPS Toolkit. Jay Beale’s
open source security series. Syngress.

Bodenheim, R., Butts, J., Dunlap, S., and Mullins, B.
(2014). Evaluation of the ability of the Shodan search
engine to identify internet-facing industrial control de-
vices. International Journal of Critical Infrastructure
Protection, 7(2):114-123.

Buza, D. I, Juhasz, F., Miru, G., Félegyhazi, M., and Hol-
czer, T. (2014). CryPLH: Protecting smart energy sys-
tems from targeted attacks with a PLC honeypot. In
Smart Grid Security, Lecture Notes in Computer Sci-
ence, pages 181-192. Springer International Publish-
ing. http://dx.doi.org/10.1007/978-3-319-10329-7_12.

Byres, E. (2013). Project SHINE: 1,000,000 Internet-
Connected SCADA and ICS Systems and Counting.
Web page.

Deng, Y. and Shukla, S. (2013). A distributed real-time
event correlation architecture for SCADA security. In
Critical Infrastructure Protection VII, volume 417 of
IFIP Advances in Information and Communication
Technology, pages 81-93. Springer Berlin Heidelberg.
http://dx.doi.org/10.1007/978-3-642-45330-4 6.

26

ICS - CERT (2013). Increasing threat to industrial
control systems (update A). https://ics-cert.us-
cert.gov/alerts/ICS-ALERT-12-046-01A.

Morris, T. H. and Gao, W. (2013). Industrial
control system cyber attacks. In Proceed-
ings of the 1st International Symposium for
ICS & SCADA Cyber Security Research.
http://ewic.bcs.org/content/ConWebDoc/51165.

NIST (2008). Guide to General Server Secu-
rity — Recommendations of the National
Institute ~ of Standards and Technology.
http://csrc.nist.gov/publications/nistpubs/800-
123/SP800-123.pdf.

Patton, M., Gross, E., Chinn, R., Forbis, S., Walker, L., and
Chen, H. (2014). Uninvited Connections: A Study of
Vulnerable Devices on the Internet of Things (loT).
In Intelligence and Security Informatics Conference
(JISIC), 2014 IEEE Joint, pages 232-235.

Robinson, M. (2013). The SCADA threat landscape.
In Proceedings of the 1st International Sympo-
sium for ICS & SCADA Cyber Security Research.
http://ewic.bcs.org/content/ConWebDoc/51166.

Scott, C. (2014). Designing and implementing a honeypot
for a SCADA network. Technical report, The SANS
Institute.

Wade, S. M. (2011). SCADA honeynets: The attractiveness
of honeypots as critical infrastructure security tools
for the detection and analysis of advanced threats.
Master’s thesis, lowa State University, Ames, lowa.
http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=
3130&context=etd.

Wilamowski, B. M. and Irwin, J. D. (2011). The Indus-
trial Electronics Handbook — Industrial Communica-
tions Systems, volume 2 of The Industrial Electronics
Handbook. CRC Press, Taylor & Francis Group, 2
edition.

Wilhoit, K. (2013a). The SCADA that didnt cry wolf —
whos really attacking your ICS equipment? - part
deux! Black Hat US 2013.

Wilhoit, K. (2013b). Whos really attacking your ICS equip-
ment? Black Hat Europe 2013.

