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Abstract: Periodic randomization of a computer program’s binary code is an attractive technique for defending against 
several classes of advanced threats. In this paper we describe a model of attacker-defender interaction in 
which the defender employs such a technique against an attacker who is actively constructing an exploit 
using Return Oriented Programming (ROP). In order to successfully build a working exploit, the attacker 
must guess the locations of several small chunks of program code (i.e., gadgets) in the defended program’s 
memory space. As the attacker continually guesses, the defender periodically rotates to a newly randomized 
variant of the program, effectively negating any gains the attacker made since the last rotation. Although 
randomization makes the attacker’s task more difficult, it also incurs a cost to the defender. As such, the 
defender’s goal is to find an acceptable balance between utility degradation (cost) and security (benefit). 
One way to measure these two competing factors is the total task latency introduced by both the attacker 
and any defensive measures taken to thwart him. We simulated a number of diversity strategies under 
various threat scenarios and present the measured impact on the defender’s task.  

1 INTRODUCTION 

Over the last several years, organizations across the 
globe have shown a great deal of interest in finding 
better ways to make their computer systems more 
secure. This interest is the direct result of several 
high profile security incidents involving major 
corporations (Target, 2014; Home Depot, 2014), 
governments (Greenwald et al., 2014; Bumiller, 
2014), and even the infrastructure of the web itself 
(MITRE, 2014). In response, researchers and 
developers have developed defensive technologies 
and techniques to mitigate advanced classes of 
threats (Microsoft, 2014; Abadi et al., 2014). 

An interesting class of advanced defense 
techniques involves the randomization of system 
components in an effort to confuse the adversary. 
Strategies that conform to this paradigm are often 
referred to as “Moving Target (MT)” strategies 
(Okhravi, 2014; Cox, 2006; Franz, 2010). Moving 
Target strategies are attractive because they make it 
harder for an adversary to analyse and exploit targets 
due to the fact that the system under defense is 
constantly changing.  

Despite the obvious benefits of MT strategies, 
they are not zero-cost solutions: as one might 
imagine, randomizing a computer system in a way 
that doesn’t noticeably reduce the system’s 

performance is a difficult problem. Moving target 
engineers must ensure that their solutions maintain 
adequate speed, functionality, performance, and 
compatibility. All of these conditions are necessary 
in order for a moving target technology to have a 
chance at acceptance. Often, achieving these goals 
involves calibration to a specific operational 
environment because what is acceptable to one user 
may not be acceptable to another. 

One particularly interesting MT technology, 
developed by researchers at the University of 
California at Irvine (UCI), is known as the multi-
compiler (Franz, 2010). The multi-compiler 
generates variants of computer programs that are 
functionally identical but physically distinct. One 
technique the multi-compiler uses to accomplish this 
objective is to probabilistically distribute null-
operations (NOPs) throughout the program binary 
code. NOP insertion is meant to defend against an 
attack technique known as Return Oriented 
Programming (ROP). In a ROP attack, the adversary 
repurposes existing chunks of code in the defended 
program’s memory space – known colloquially as 
“gadgets” – to build complex attacks. The diversity 
created by the multi-compiler makes it much more 
difficult for an attacker to write reliable gadget 
based exploits by both relocating and breaking up 
gadgets across variants. By making ROP attacks less 
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reliable, the multi-compiler is very attractive as a 
defensive technology. 

The multi-compiler is a powerful tool that can 
provide varying notions of security depending on 
how it is used. One threat the multi-compiler is 
particularly well suited to address is that of the 
“write once, compromise everywhere” attacker. In 
this threat scenario, an attacker writes a single 
exploit and can then re-use it to compromise a large 
number of hosts. The multi-compiler solves this 
problem by generating a unique variant of the 
software under defense for each defended machine. 
Using the multi-compiler this way strips the attacker 
of the ability to write reusable exploits which creates 
a sort of herd immunity in which individual actors 
can be compromised but the population as a whole 
experiences a dramatic reduction in risk. Our study 
focuses on an enhanced rotation-based usage in 
which each defender periodically rotates to new 
variants of the program, rather than using the same 
variant for a long period of time. Under this strategy, 
diversification provides defensive advantages at both 
the individual and aggregate scales.  

The goal of our work is to use a computer 
simulation to evaluate the effectiveness of a rotation- 
based multi-compiler defense strategy under a 
number of different threat scenarios. If the defender 
is overly aggressive with his diversity/rotation 
strategy, he incurs costs related to system utility: if a 
program is spending all of its time defending itself, 
it’s not spending any of its time doing anything 
productive. Conversely, if he is not aggressive 
enough, he risks system compromise and then must 
pay the costs related to recovery (if recovery is an 
option).  

The contributions of this work are as follows: 
1. We present a case study in the use of software-

based simulation to evaluate deployment 
strategies of the multi-compiler. 

2. We provide non-intuitive guidance for the setting 
of a key security parameter of the multi-compiler 
(NOP insertion rate). The multi-compiler has a 
number of additional security parameters that we 
hope to study in future work. 

3. We introduce the notion of “impact landscapes” 
which are useful tools for visualizing and 
reasoning about task impact due to cyber security 
threats 

4. We utilize observed impact landscapes to 
generate practical insights for a diversity based 
cyber defense strategy 

5. We present the results of a study that suggest 
certain parameter settings for the multi-compiler 

may be robust across a wide array of 
performance cost scenarios 

2 RELATED WORK 

In related work at Lincoln Laboratory, we studied a 
code diversification strategy that is dependent on the 
results of an output scanner (Priest, 2015). This 
strategy’s Achilles’ heel is the output scanner, as it 
is well known that Intrusion Detection Systems are 
imperfect (Denning, 1987). In the current work we 
consider a strategy in which the defender simply 
assumes that he is under constant attack and 
proactively rotates. 

In a recent paper, it is suggested that BBN 
Technology’s A3 platform could be used to manage 
a proactive code diversification strategy (Pal et al., 
2014) similar to the one we outline in this paper. We 
believe the work laid out in our study bolsters the 
case for this defensive mechanism by highlighting 
how it performs under a number of scenarios. 

Our approach resembles some aspects of the 
Data Farming methodology described in (Alfred, 
1998, Horne, 2004, Barry, 2004). Specifically, our 
approach shares with Data Farming an emphasis on 
simple agent-based models, extensive parameter 
space exploration, visualizing outputs as landscapes, 
and decision support. Data Farming goes on to 
emphasize high-performance computing and the 
discovery of outliers in the simulation results, two 
aspects that are not emphasized in the present work, 
though these topics are of interest for future work. 

3 ATTACK MODEL 

In order to carry out our strategy evaluation, we 
have implemented a model-based simulation of an 
attacker and defender interaction. Through the use of 
computer simulation, we are able to study a wide 
array of attacker-defender scenarios and outcomes.  

3.1 Defender Model 

In the model there are two actors: a defender and an 
attacker. The defender is responsible for protecting a 
running computer program, ܣ, from being exploited 
by the attacker. It is assumed that A is a program 
that continuously performs processing in support of 
a notional task. To evade compromise, the defender 
is allowed to periodically rotate the variant of A that 
processes user requests, A*, to a new variant of ܣ. 
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Each rotation resets the attacker’s cumulative effort 
to zero, thus delaying system compromise.  

In our model, the task takes a fixed amount of 
work to complete which is specified by the 
parameter ݓ௠, measured in work units. The baseline 
defender (no attacker, no multi-compiler) completes 
a single work unit during a single time unit. Once 
the defender completes ݓ௠ work units, the 
simulation ends and the total time expended to 
complete the task, ݐ௠, is recorded. In the baseline 
case, it would take ݓ௠ time units to complete ݓ௠ 
work units so ݐ௠ ൌ  ௠ but in the presence of anݓ	
attacker and the accompanying defense strategies, 
that relationship no longer holds. The difference 
between these two numbers is what we refer to as 
task delay, or ݀௠: 

݀௠ ൌ 	 ௠ݐ െ  ௠ (1)ݓ

The task delay is important because it allows us to 
objectively compare defense strategies and, indeed, 
this is the primary metric we use in our evaluation. 

There are two costs associated with rotation and 
compromise that directly affect how quickly the 
defender accomplishes his task. The cost of a 
compromise to the defender, ߚ஼ெ௉, is an increase in 
݀௠. The cost of rotation, ߚோை், is also an increase in 
݀௠. 

3.2 Threat Model 

Much of the ground truth in our model is built into 
the threat model. Our attacker is a remote actor who 
we assume has the ability to query the memory 
space of A*, in an effort to guess the location of 
each of the ݊ீ gadgets required to build a working 
ROP exploit. Once the attacker is able to correctly 
guess the location of all required gadgets he 
launches an exploit against A*. It is also assumed 
that the attacker has access to the multi-compiler, 
can compile versions of the target binary, and has a 
priori knowledge of the fixed NOP insertion rate 
used by the defender’s instance of the multi-
compiler. The attacker uses these tools to build 
probability distributions over the locations of the 
desired gadgets. These distributions allow the 
attacker to make guesses in order of decreasing 
likelihood, thus minimizing the average number of 
guesses that need to be made to find a particular 
gadget. The attacker is also allowed to set the guess 
rate, ீݎ , so the amount of time it would typically 
take an attacker to find a single gadget is ீݎ  
multiplied by the average number of guesses 
required for that gadget. 

 

Figure 1: Distributions over the number of guesses 
required to locate a gadget. These distributions were 
calculated using Bonneau’s alpha-guesswork metric using 
an alpha value of 0.1. 

 
Figure 2: Gadgets are displaced as the multi-compiler adds 
NOP instructions to the program code. 

The way we simulated this was to build 
distributions over the number of guesses required to 
locate a specific gadget, as shown in Figure 1. These 
were generated from an empirical analysis of the 
multi-compiler’s effects on the popular gzip 
program. This analysis involved the generation of a 
control binary as well as 10,000 multi-compiled 
variants for all NOP insertion rates between 0 and 
100% that are multiples of 5. For each variant, it was 
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necessary to take inventory of all the surviving 
gadgets by aligning them with the control binary. 
This was required because the multi-compiler can 
break up previously existing gadgets as a useful side 
effect. For each surviving gadget in each variant, we 
calculated the displacement from the corresponding 
gadget in the control binary and used those 
displacements to build probability distributions over 
the displacements. From the displacement 
distributions, we constructed our guessing 
distributions using a password guessing metric 
known as ߙ-guesswork as proposed by Bonneau 
with an ߙ value of 0.1 (Bonneau, 2012). This metric 
captures the expected number of guesses required to 
guess a gadget’s location in at least ߙ percent of the 
variants. Figure 2 illustrates how gadget 
displacements were measured for the ith variant of 
the program. 

3.3 Multi-compiler Model 

Another key component of our model is the multi-
compiler itself. As described in the introduction, the 
multi-compiler generates unique variants of a 
computer program by probabilistically inserting 
NOP instructions into the program’s binary code. 
The probability that the multi-compiler will insert a 
NOP instruction before any given instruction is 
specified by the model parameter, ݌ேை௉. Modifying 
 ேை௉ directly affects the shape of the attacker’s݌
guess distributions, which makes it a critical security 
parameter. Although one’s intuition might be to 
crank ݌ேை௉ up to 100% for optimal security, this 
actually leads to an entirely deterministic strategy, 
which is obviously undesirable. The optimal setting 
for ݌ேை௉ is 50% when performance costs are not 
accounted for.  

One drawback of the multi-compiler, however, is 
that it inflates the number of instructions in the 
program’s binary code. A multi-compiled program 
will take longer to run than the control program due 
to the large number of extraneous NOP instructions 
that must be executed by the CPU. The UCI team is 
well aware of this problem and conducted a study 
into how NOPs might be more strategically placed 
(Homescu, 2013). In that paper, data was provided 
describing the measured slowdown due to ݌ேை௉. We 
modelled the average slowdown as a function, s, of 
  .ேை௉ with scaling parameter b݌

ேை௉ሻ݌௕ሺݏ ൌ 	ܾ ∗  ேை௉ (2)݌

By performing linear regression on the UCI data 
we found that b=.165 in their experiments. We use 
this value for b in our experiments. Note that this 

value describes the slowdown due to a Naïve NOP 
placement strategy. In (Homescu, 2013) data is 
provided for both a Naïve NOP placement strategy 
as well as a profile-guided strategy. We decided to 
model the naïve strategy. We made this choice 
because we think it has the highest potential for wide 
scale use due to its ease of configuration. In contrast, 
profile guided NOP insertion requires runtime 
performance profiling which we feel makes it more 
likely to be adopted by “power users” who are 
extremely concerned with performance degradation. 

One final metric of interest in this model is the 
amount of task progress that the defender has made 
at time T: 

݉ሺܶሻ ൌ෍ቀ൫1 െ ேை௉ሻ൯݌௕ሺݏ െ	ߚோை்
௧ െ	ߚ஼ெ௉

௧ ቁ

்

௧ୀ଴

(3)

Where ߚோை்
௧ ൌ  ோை் if the defender rotates at time tߚ

and is 0 at all other times. Similarly, ߚ஼ெ௉
௧ ൌ  ஼ெ௉ ifߚ

the defender becomes compromised at time t and is 
0 at all other times. 

This metric is useful because it is only once it 
reaches ݓ௠ that the simulation ends. Note that ߚ஼ெ௉

௧  
is the only stochastic element of this function. 

3.4 Strategy Evaluation 

We define a defense strategy, S, given an 
operational environment, Θ, as the tuple: 

ܵఏ ൌ ,ேை௉݌〉  ோை்〉 (4)ݎ

Where Θ is the set of model parameters that define 
the operational environment: 

ߠ ൌ {݊ீ, ݎீ , ,ோை்ߚ ,௠ݓ,஼ெ௉ߚ  ௕} (5)ݏ

The effectiveness of a given ܵఏ is evaluated based 
on the average observed value of ݀௠. The average is 
calculated over several scenario replicates using 
Monte Carlo methods. We define a scenario as a 
fixed set of model parameters and a replicate as a 
single simulation run of a scenario. 

The baseline from which we measured relative 
performance was the scenario in which there was no 
task delay. This corresponds to a scenario in which 
attackers and multi-compilers are both disabled. 
Alternatively, we could have used a scenario in 
which the attacker is still turned on but ݎோை் ൌ 	∞ 
which would allow us to evaluate the marginal 
benefit of the rotation strategy. 

However, since this is a probabilistic baseline, 
we feel that the first alternative is more 
straightforward.  
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Table 1: Table of Symbols. 

Symbol Description 

	The software under defense ܣ

 The current variant of A ∗ܣ

 ேை௉ The NOP insertion probability݌

݊ீ  
The number of gadgets required to build an 
exploit 

 ோை் The defender rotation rateݎ

ݎீ  The attacker guess rate 

 ோை் The time penalty of rotationߚ

 ஼ெ௉ The penalty due to compromiseߚ

 ௠ݓ
The amount of work required to complete a 
task 

݀௠ The total task delay 

 ேை௉ሻ The multi-compilation slowdown݌௕ሺݏ

 ௠ units of workݓ ௠ The time to completeݐ

݉ሺܶሻ The cumulative task progress up until time T 

4 EXPERIMENTS AND 
ANALYSIS 

4.1 Setup 

Although our model has many parameters, several of 
them are fixed across both scenarios and replicates. 
We set ݊ீ to 10, motivated by the observation that 
attackers tend to prefer to use a small number of 
ROP gadgets as a compact first stage of a full 
exploit. For example, many of the ROP chains 
published on the Corelan ROP database (Corelan, 
2014) simply disable various virtual memory 
protection mechanisms to set the stage for more 
efficient/reliable techniques to finish the rest of the 
attack. The amount of work required to complete a 
task, ݓ௠, was kept fixed at 103 for all experiments. 
This choice allows for reasonable simulation 
execution efficiency while allowing enough time for 
the important dynamics in the model to manifest. 
The cost of rotation, ߚோை், was set to 25 because it is 
small compared to the values we used for ߚ஼ெ௉. The 
reason for this decision was because it seemed 
reasonable to assume that nobody would deploy a 
rotation strategy if they didn’t have an efficient 
mechanism for doing the actual rotations. We also 
had a maximum tick count of 10,000 in place to 
prevent the model from running for too long. If the 
model runs for over 10,000 ticks, it simply halts and 
reports the maximum task delay of 9,000. 

Our strategy for varying the remaining 
parameters was to define nine distinct task scenarios 
using different values for ߚ஼ெ௉ and ீݎ  and then for 
each scenario, perform a parameter sweep on both 
 ோை். This allows us to analyze the taskݎ ேை௉ and݌
delay landscape (henceforth, referred to as the 
“impact landscape”) for a wide range of strategies 
under a number of task scenarios. We ran 100 
replicates for each scenario and measured ݀௠ for 
each.  

Nine task scenarios were defined corresponding 
to various combinations of attacker efficiency and 
defender costs due to compromise. In three of our 
scenarios, the attacker guesses once every time unit. 
This is the strongest possible attacker under our 
model. In another three scenarios the attacker 
guesses once every other time unit and in the 
remaining three he guesses once every fourth time 
unit. For each of the three attacker strength levels, 
we set three different levels of ߚ஼ெ௉. The levels we 
use are 125, 250, and 2500. These three values 
correspond to five, ten, and one hundred times ߚோை். 

4.2 Results and Analysis 

In order to visualize how the various parameters 
impacted our model task, we created “impact 
landscapes” for each of our scenarios. Each impact 
landscape is a surface plot of the average response in 
݀௠ (averaged over the 100 replicates) as a function 
of ݎோை் and ݌ேை௉.  

In Figure 3, the various landscapes are laid out 
with the attacker getting more aggressive from left 
to right and the impact due to compromise getting 
more severe from top to bottom. Within each 
landscape, the rotation rate increases from left to 
right and the NOP insertion probability increases 
from bottom to top. Each landscape provides a clear 
picture of how the two factors in our experiments 
affected the total task delay. The dark blue regions 
correspond to scenarios with small amounts of task 
delay while the darker red regions correspond to 
scenarios in which the defender took much longer to 
complete the task. The landscapes in Figure 3 
provide some practical strategic insights. Visual 
inspection makes it immediately obvious that failure 
to rotate at all will always lead to a compromise. It 
also clear that being overly zealous with rotations 
has a negative impact on the task on average. 

Perhaps surprisingly, we see that a low value for 
 ேை௉ does not always lead to a high impact݌
situation. This is due to the fact that the cost of the 
additional instructions is accrued during every step 
of the simulation. 
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Figure 3: These impact landscapes demonstrate the affects of the rotation rate and NOP insertion rate on overall task 
impact. Dark blue indicates low task impact (most desirable) and dark red indicates high impact. 

These landscapes also highlight the fact that the 
attacker’s aggressiveness has a strong effect on the 
defender’s ability to maneuver in the parameter 
space. In the leftmost scenarios the defender has a 
wide array of parameter settings that can be used to 
achieve acceptable task delay. In the rightmost 
scenarios, however, the defender must restrict his 
setting of the rotation rate to a narrow band or risk 
being “pinned down” by the attacker. 

 

Table 2: Ideal Operating Points For All Threat Scenarios. 
The baseline delay (no attacker, no rotations) is 0. 

ࢀࡻࡾ࢘ ࡼࡹ࡯ࢼ ࡳ࢘
∗ ࡼࡻࡺ࢖ 

∗  ࢓ࢊ 
.25 125 550 0.1 54 
.25 250 550 (and 5 others) 0.2 59 
.25 2500 550 (and 6 others) 0.2 59 
.5 125 375 0.3 104 
.5 250 375 0.3 104 
.5 2500 300 0.2 111 
1 125 175 0.3 221 
1 250 175 0.3 209 
1 2500 175 0.3 209 

 

We also used the impact landscape data to 
determine optimal parameter settings for each of the 
nine attacker scenarios. For each scenario, we found 
the values of ݎோை் and ݌ேை௉ corresponding to the 
lowest task delay. We labeled these optimal 
parameter settings ࢀࡻࡾ࢘

∗  and ࡼࡻࡺ࢖
∗  respectively and 

refer to them jointly as an Ideal Operating Point 

(IOP). Table 2 provides the IOPs for each scenario 
and the corresponding task delay.  

The first thing to notice in this data is that the 
value for ࡼࡻࡺ࢖

∗  never rises above 0.3. The reason for 
this phenomenon is not intuitive. It is important to 
know that the randomness added to a set of 
application binaries by the multi-compiler peaks 
when ݌ேை௉ ൌ 0.5. To understand this, consider the 
case in which ݌ேை௉ ൌ 1: the adversary would be 
able to reconstruct any multi-compiled application 
by simply taking the control binary and adding a 
NOP after every instruction. The inverse parabolic 
shape of the distribution means in Figure 1 captures 
this phenomenon more clearly. It is important to 
note, however, that although setting the NOP 
insertion rate to 50% provides the highest benefit 
with respect to system security, it also imposes a 
performance cost due to a NOP being executed after 
every other instruction. It is due to this security-
performance tradeoff dynamic that the ideal NOP 
insertion rate hovers around 0.3.  

Because the ideal value for ݌ேை௉	(ࡼࡻࡺ࢖
∗ ) is the 

result of a tradeoff between security and 
performance, it is interesting to study the sensitivity 
of ࡼࡻࡺ࢖

∗  to different performance penalty models. To 
study this, we ran an experiment in which we fixed 
the rotation rate at 375 and varied the effect of 
multi-compilation (the b parameter in the slowdown 
function, ݏ௕ሺ݌ேை௉ሻ ) from no penalty (b=0) up to a 
moderate penalty (b=0.4) in increments of .05 and 
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studied the resultant value for ࡼࡻࡺ࢖
∗ . Surprisingly, 

although changes in b did cause shifts in the overall 
impact landscape, the ideal NOP insertion rate 
remained fixed at .3 for all ten penalty settings. This 
was surprising to us and seems to indicate that the 
NOP insertion rate can be set in a way that leads to 
robustness across various security and performance 
trade-off scenarios. 

Another interesting result is the presence of 
multiple points at which ࢓ࢊ takes on its minimal 
value in the scenarios where the attacker is weakest 
ࡳ࢘) ൌ	. ૛૞ሻ. This might lead one to question whether 
any of these points should be preferred over the 
others. One option would be to choose the point with 
the smallest variance. In our simulations, the data 
seemed to indicate that points closer to the IOP 
experienced smaller amounts of variance. In fact, 
nearly all the optimal delay values in table 2 had 
zero variance. This seems to indicate that using 
variance as a selection criterion would not be 
unreasonable. In future work, we plan to use various 
risk metrics to explore alternative answers to this 
question. 

5 CONCLUSIONS 

In this paper we presented a simulation-centric 
evaluation of a cyber defense strategy based on 
proactively rotating binary variants generated by a 
multi-compiler. The strategy in question is one that 
has been considered in previous work but as far as 
we know has not been the subject of a serious 
investigation.  

We used the delay to a notional task as an 
evaluation metric to help us understand the impact 
of this code diversification strategy. We generated a 
number of comprehensive impact landscapes to help 
us understand how different deployment 
configurations and adversarial assumptions affect 
the overall task impact. Our analysis of these 
landscapes showed that this strategy facilitates safe 
and efficient execution even in the presence of a 
highly motivated adversary.  

Our study also suggested the existence of 
parameter settings for the multi-compiler that are 
highly resilient across a broad spectrum of scenarios. 
In our simulations, setting the multi-compiler’s NOP 
insertion rate to 30% resulted in minimal task impact 
in a large number of experiments including when the 
performance cost of NOP insertion was nearly zero.  

This work was intended to shed light on various 
strengths and weaknesses of the strategy and would 
likely be of greatest interest to those hoping to 

deploy such a strategy in a production environment. 

6 FUTURE WORK 

In this study we have carried out extensive sweeps 
through the parameter space of an abstract model of 
a rotation-based multi-compiler defense, resulting in 
global visualizations of the task delay landscape 
caused by multi-compiler related latencies and 
attacker success. The methodology of performing 
extensive parameter sweeps is only feasible when 
the underlying model is highly abstract and 
simplified. In a future study we plan to enhance our 
rotation-based multi-compiler model with additional 
operational details and explore the applicability of 
metaheuristic search techniques, such as genetic 
algorithms (Mitchell, 1996) and simulated annealing 
(Kirkpatrick et al., 1983) to efficiently navigate 
complex output landscapes to discover optimal 
operation points for a multi-compiler defense. 

As part of this work we noticed that there are 
situations in which it is not clear which of several 
operating points are “ideal” (e.g. they all have the 
same task delay). Future work will involve the use 
of various risk metrics to attempt to find operating 
points that are truly ideal.  
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