
Blockchain-based Model for Social Transactions Processing

Idrissa Sarr1, Hubert Naacke2 and Ibrahima Gueye1

1Université Cheikh Anta Diop, LID, BP. 16432, Dakar-Fann, Sénégal
2UPMC Sorbonne Universités, LIP6, 4, place Jussieu 75005, Paris, France

Keywords: Transaction Processing, Load-aware Query Routing, Data Consistency.

Abstract: The goal of this work in progress is to handle transactions of social applications by using their access classes.
Basically, social users access simultaneously to a small piece of data owned by a user or a few ones. For
instance, a new post of a Facebook user can create the reactions of most of his/her friends, and each of such
reactions is related to the same data. Thus, grouping or chaining transactions that require the same access
classes may reduce significantly the response time since several transactions are executed in one shot while
ensuring consistency as well as minimizing the number of access to the persistent data storage. With this
insight, we propose a middleware-based transaction scheduler that uses various strategies to chain transactions
based on their access classes. The key novelties lie in (1) our distributed transaction scheduling devised on top
of a ring to ensure communication when chaining transactions and (2) our ability to deal with multi-partitions
transactions. The scheduling phase is based on Blockchain principle, which means in our context to record
all transactions requiring the same access class into a master list in order to ensure consistency and to plan
efficiently their processing. We designed and simulated our approach using SimJava and preliminary results
show interesting and promising results.

1 INTRODUCTION

Generally, social applications are read intensive what-
soever the write operations are so important. For
instance, Facebook may face more than 1.6 billion
reads per second and 3 million writes per second dur-
ing peak hours. These read and write operations de-
rive from users interactions. Users interactions are
sequences of transactions and we assume that each
transaction reads and writes data owned by one or
several users. Even though, transactions are usually
short, the volume of required data is extremely low
regarding the size of the whole database. Moreover,
many transactions may attempt to access the same
dataset simultaneously (i.e., at the same time), which
generates temporal load peaks on some hot data. Such
a situation, more known as a net effect, has the draw-
back to slow user interactions.

Furthermore, it is worth noting that among the
multiple requirements of social applications one may
keep three: response time, scalability and availability.
One way to achieve scalability and availability is to
partition data and process independent transactions in
parallel manner. However, partitioning data perfectly
in such a way that each transaction fits only on one
partition/node is quite impossible. Thus, multi-nodes

or multi-partition transactions must be managed effi-
ciently to avoid compromising the positive effect of
splitting and/or replicating data. In a context such as
social environment multi-partitions transactions may
happen due to unbounded and unlimited interactions
user may have with others.

We proposed in STRING (Sarr et al., 2013) a
scheduling solution that uses various strategies to
order (or group) transactions based on their access
classes. The proposed approach for overcoming lim-
its in existing solutions, is guided by the fact that
grouping transactions with similar patterns of data ac-
cess might save a significant amount of work. We
leveraged on the ability to process a group of con-
current transactions that is faster than processing one
transaction at a time and it reduces the number of mes-
sages sent to the database node. More precisely, if
every application directly connects to the database,
then the latter may become a bottleneck and over-
loaded. Rather, application requests can be gath-
ered and grouped at a middleware stage and thereby,
database connection requests are minimized.

The proposed solution works in two steps: a
scheduling step followed by an execution step. The
scheduling step aims at grouping all transactions ac-
cessing the same data into a block regardless where

309Sarr I., Naacke H. and Gueye I..
Blockchain-based Model for Social Transactions Processing.
DOI: 10.5220/0005519503090315
In Proceedings of 4th International Conference on Data Management Technologies and Applications (DATA-2015), pages 309-315
ISBN: 978-989-758-103-8
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

they are issued. Afterwards, each transaction is ex-
ecuted at the nodes storing the required data. How-
ever, the grouping mechanism does not guarantee that
a group of transactions are executed on the execution
layer while respecting the order in which transactions
are received. That is, the order in which transactions
are sent by the scheduler may differ to the one the
execution layer processes them, which has the draw-
back to induce inconsistencies or disorganize the so-
cial interactions. Moreover, we have assumed that
multi-partitions transactions are infrequent and there-
fore had not been taken into account deeply.

This work in progress improves our previous solu-
tion. It aims at handling more efficiently multi parti-
tion transactions. It relies on a smarter description of
the transactions requests, which allows for globally
ordering concurrent transactions while providing ef-
ficient decentralized transaction execution. The main
idea is to avoid imposing any specific ordering rules
(such as processing multi-partition transactions be-
fore single-partition ones, or vice-versa) as it is pro-
posed in previous work. Such ordering would unnec-
essarily delay some transactions. On the opposite, we
aim to order the transaction as close as possible to the
”natural” ordering of the requests that are submitted
to the system. Therefore, considering the local order-
ing of transactions arriving at each node of the sys-
tem, we propose to describe them in a smart way to
obtain a global ordering which is expected to bring a
more efficient execution. Then, each node could fol-
low that ordering to execute transactions efficiently an
consistently.

With this in mind, transactions are ordered during
the scheduling step in such a way that each transac-
tion is followed or preceded by another one as in a
blockchain model. Blockchain is a mechanism to val-
idate the payment processing with Bitcoin currency
(Barber et al., 2012). It states to keep a public transac-
tions log shared by all users in order to record bitcoin
ownership currently as well as in the past. By keeping
a record of all transactions, the Blockchain prevents
double-spending. The key idea of Blockchain is that
each transaction is guaranteed to come after the previ-
ous transaction chronologically because the previous
transaction would otherwise not be known. Once a
transaction is positioned into the chain, it is quite im-
practical to modify its order because every transaction
after would also have to be regenerated. These prop-
erties are what make double-spending of bitcoins very
difficult.

Hence, we rely on Blockchain model for two rea-
sons : i) ensuring consistency between transactions is-
sued from anywhere and ii) being able to chain trans-
actions with an order that cannot be changed whatever

the replica on which the group of transactions will be
executed. More precisely, by using the Blockchain,
approach we are able to guarantee that a transaction
chain will not be scheduled twice nor executed twice
with a different order.

The remainder of this paper is organized as fol-
lows. In Section 2 we review some works connected
to ours. In Section 3 we lay out our architecture of
our solution and the communication model between
the different pieces of it. We also describe how trans-
actons are chained in blocks an routed. In Section
4 the transaction execution model for multi-partitions
transaction. In Section 5 we present the preliminary
results of our experiments while in Section 6 we con-
clude and present our future work.

2 RELATED WORK

Our work is linked to transaction processing for scal-
able data stores. Large scale solutions for managing
data are facing a consistency/latency tradeoff as sur-
veyed in (Abadi, 2012). Today several solutions relax
consistency for better latency (Silberstein et al., 2012;
Lakshman and Malik, 2010; Vogels, 2009) and do not
provide serializable execution of concurrent transac-
tions. Other solutions provide strong consistency but
only allow transactions restricted to a single node (Or-
acle, 2014)1 , (Chang et al., 2006).

In a multi-tenant database context we have Elas-
TraS (Das et al., 2013), which is a system provid-
ing a mechanism to face load peaks and avoid dis-
tributed transactions. In fact, ElasTraS uses a data
migration mechanism couple with some load balanc-
ing schemes to face load peaks on database nodes.
Moreover, ElasTraS uses a static partition mechanism
called Schema Level partitionning, which statically
group data expected to be accessed together in a sin-
gle partition and allows to scale at the granularity of
a partition. However, this partitioning scheme is not
suited to the data we face with social media. Elast-
TraS uses some transaction semantics similar to the
Sinfonia ones. Sinfonia (Aguilera et al., 2007) offers
mini-transaction abstraction that ensures transaction
semantics on only a small group of operations such as
atomic and distributed compare-and-swap (Michael
and Scott, 1995). The idea is to use the two phases
of 2PC to perform simple operations. Operations are
piggy-backed to the messages sent during the first
phase of 2PC. The operations must be such that each
participating site can execute them and respond with
a commit or abort vote. The lightweight nature of a

1http://docs.oracle.com/cd/NOSQL/html/

DATA�2015�-�4th�International�Conference�on�Data�Management�Technologies�and�Applications

310

mini-transaction allows the system to scale. In Sinfo-
nia, no attempt has been made to absorb load peaks.

DORA (Pandis et al., 2010) is a system that de-
composes each transaction to smaller actions and as-
signs actions to threads based on their access classes.
This design is motivated by the need of avoiding the
contention due to centralized lock manager. DORA
promotes local-data access, since each thread to
which is assigned some actions, requires as infre-
quently as possible the centralized lock manager. In
fact, DORA is a locking-based system that partitions
data and locks among cores, eliminating long chains
of lock waiting to a centralized lock manager. The
main problem of this design (partitioning) is that the
performances of DORA can be worsen when we face
transactions that access to many partitions. However,
the authors of DORA propose PLP (Pandis et al.,
2011), a work following DORA and in which they
propose a mechanism to face transactions accessing
to many partitions. In fact, they propose in PLP to or-
ganize the partitions through trees in such a way that
a tree is managed by a single thread. However, even
if this strategy mitigates the impact of transactions ac-
cessing many partitions, it still uses a contention point
due to the necessity of maintaining a centralized rout-
ing table.

Finally, the two steps approach we propose for
processing transactions has been demonstrated to be
efficient for write intensive workloads made of short
transactions (Thomson et al., 2012; Kallman et al.,
2008). However, existing solutions following this ap-
proach assume that the workload is mostly composed
of single node transactions (i.e. they mostly access
independent data). Most of existing solutions are not
designed to face a load peak of concurrent transac-
tions. In such situation, they would suffer from com-
munication overhead and high latency. Our work also
relies on sequencing and scheduling to guaranty con-
sistent processing of multi-node transactions, while
better supporting high peak load.

3 SYSTEM OVERVIEW

The architecture is designed with two layers: the
scheduling layer and the storage one (see Figure 1).
The scheduling layer is made of a set of nodes called
scheduling nodes (SN) while the execution layer con-
tains execution nodes (XN) that rely on a datastore
that we consider as a black-box. The motivation of
doing so is to be able to tie our solution to any data-
store that affords interfaces to manipulate data. As
one can see, transactions may be sent to any point
and afterwards they are gathered based on their ac-

cess classes for execution. For example, transactions
TB, TBC and TAC are grouped on the first SN1 even if
they were received by SN2 and SNk. Moreover, it is
worth-noting that SN nodes are structured over a ring
for easing their collaboration.

Figure 1: The layered architecture.

3.1 The Scheduling Layer

The scheduling layer is responsible to absorb the load
peaks and serves as a front-end that isolates the under-
lying datastore nodes from the input load peak. The
SN nodes that compose the scheduling layer receive
any transaction request from applications or possibly
from other SN nodes. Once transactions are received,
SN nodes build a master list that records all trans-
actions happening within a time window. The mas-
ter list is a graph that contains two kind of informa-
tion, namely, which transaction precedes another one,
and what is the access class of each transaction. Fig-
ure 2(a) represents the master list of transactions de-
scribed in Figure 1. One can see that TA is the genesis
transaction, i.e., it is the first transaction on the list and
it requires the access class A represented by the yel-
low square. Rather, TAB requires two access classes A
and B. In other words, a master list may hold trans-
actions of different access classes. It is worth noting
that each SN node maintains a master list that con-
tains only transactions it receives from either the ap-
plications or its peers. That is, a transaction is exactly
linked to one and only one master list, and when a
SN node sends a transaction to another SN node, it
removes it from its master list.

After the master list is established, the SN node
identifies the different blocks that compose it. Each
block is related to one access class. Figure 2(b) de-
picts the different blocks of the master list of Fig-
ure 2(a). BlockA groups the transactions requiring the
access class A, while BlockB and BlockC are respec-
tively related to access classes B and C. For instance,
BlockA = fTA, TAB, TACg, BlockB = fTAB, TB, TBCg,
and BlockC = fTBC, TACg. Moreover, one can see that

Blockchain-based�Model�for�Social�Transactions�Processing

311

(a) Master List (b) Blocks of the Master List

Figure 2: Master List and Blocks.

the blocks are linked between them, which means that
some transactions are requiring more than an access
class. Hence, we observe that TAB, TBC, TAC require
several access classes in the example described in Fig-
ure 2(b).

Furthermore, the number of queries that a SN re-
ceives must remain bounded. To this end, we effi-
ciently balance the load over all SNs regardless of the
data requested by a transaction. We finally assess the
number of SNs according to the entire workload sub-
mitted to the system, expressed in number of clients,
and according to the number of transaction requests
that a SN is able to handle in a unit of time.

3.2 The Storage Layer

This layer is a set of nodes called execution node
(XN) that access directly to black-boxed datastore.
Each XN node manages the access class that is a par-
tition stored via the datastore. Plus, the XN node exe-
cutes the block of transactions that are linked to them.
Since transactions are ordered in a serial way within
a block, the concurrency is already controlled at the
scheduling layer. Therefore, the XNs guarantee con-
sistent execution of transactions without locking. The
XN node chosen for executing a block is obviously
the one that is responsible of the access class required
by transactions within the block. When blocks con-
tain transactions requiring several access classes, thus
a set of XN nodes are chosen, and Section 3.4 points
out how the executions are done.

Considering a database divided into n partitions
fp0; p1; :::; pn�1g such that pi \ p j = /0, we assign

each pi to at least one XN and each partition con-
stitues a single access class. Each XN may be re-
sponsible of more than one partition, i.e., an XN can
hold many access classes. In this respect, each SN
node may identify the XN that will be responsible of
a transaction execution once the access class is found.

3.3 Communication Model

As in Blockchain model, transactions are grouped (or
chained) and maintained in a decentralized manner.
However, we use a more structured communication
model than in the Bitcoin protocol where transactions
are broadcasted to all nodes on the network using a
flood protocol. In fact, we structure the SN nodes
over a ring in such a way that their communication
is directed and unicast. By doing so, we reduce the
network overhead and it is more easy to locate where
to send an incoming transaction in order to add it to
the Blockchain list.

Basically, SN nodes are organized into a ring.
Each SN node knows its successors and may com-
municate with them through a token that is a data
structure. As stated in STRING (Sarr et al., 2013),
we handle two distinct tokens: processing token and
forwarding token. The processing token is used to se-
rialize data access and the forwarding token is used to
group transactions among SN nodes.

3.4 Building the Blocks of Transactions

Transactions are received by SNs, which handle them
based on their access classes and the system status. To
this end, a SN node needs to know where the data par-
titions are stored and, if such partitions are replicated
on several XN, what is the less overloaded XN. The
expected benefit is to minimize execution time. With
this in mind, after receiving a transaction, T , modify-
ing the partition pi, a SN may process as follows:
� If tpi is under its control, thus the SN reads meta-

data of pi and assess where the T ’s latency will be
the shortest regarding to its execution.

� else, it adds T in the block list till it acquires tpi
as well as it may decide to forward T to another
SN for shortening T ’s latency.

When SN1 decides to forward a transaction T to SN2,
thus SN2 has to add T to the block list corresponding
to the access class of T . SN2 keeps T within a block
until it gets tpi .

Briefly, transactions are grouped when SNs for-
ward transactions to others in order to reduce waiting
time.

The blocks are built by using the grouping algo-
rithms we described in STRING (Sarr et al., 2013).

DATA�2015�-�4th�International�Conference�on�Data�Management�Technologies�and�Applications

312

In that work, we proved that the time-based and ring-
based approches produce groups with bigger size.
Moreover, in a context where it is only matter of re-
ducing the logs or datastore accesses, the time based
is more suited followed by the ring approach. There-
fore, we choose to rely on the ring-based approach
for single partition transactions for low latency and
the time-based for multi-partitions transactions to be
able to handle them rapidly and to free ressources.

4 DEALING WITH
MULTI-PARTITION
TRANSACTIONS

As pointed out early, processing tokens are used to
synchronize concurrent transactions while avoiding
starvation. We describe in the following subsections
how we manage processing tokens to deal particu-
larly multi-partition transactions. When a transac-
tion requires several partitions, all corresponding to-
kens may be already hold elsewhere and thus, must
be managed efficiently to shorten the response time.
To this end, we propose two approaches to face such
situations : an eager approach and a lazy one. The
eager approach tries to handle multi-partition transac-
tions as soon as possible they arrive, while the lazy
approach delay their execution in order to manage ef-
ficiently their requirements in terms of access requests
and to shorten the global latency.

4.1 Eager Approach

The eager approach gives a high priority to multi-
partitions transactions. Therefore, once a multi-
partitions transaction T is detected within SN1’s mas-
ter list, SN1 sends an alert to all other SN nodes to
enter in idle time, i.e., SN nodes have to push rapidly
the corresponding tokens to SN1 by suspending the
execution of any transaction requiring the same parti-
tion as T .

To this end, the forwarding token is used not only
for transferring transactions, but also for notifying SN
nodes to not use any token required for handling T .
Moreover, each SN manages its own forwarding to-
ken and we rely on the time-based grouping algorithm
when forwarding transactions. To detail the steps fol-
lowed when handling a multi-partition transaction, we
consider the Figure 3. Assume that SN4 receives a
multi-partition transaction requiring both pi and p j.
Thus, it identifies the SNs (SN6 and SN2 respec-
tively) holding the processing tokens tpi (green dia-
mond) and tp j (blue diamond). Once this identifica-

Figure 3: Inquiring several processing tokens.

tion done, SN4 sends a specific message, called an
inhibiting message, by using its forwarding token to
SN6 and SN2. An inhibiting message states that all
successors of SN6 and SN2 must not use (or hold)
tpi and tp j even if they have in their pending list some
transactions related to pi and p j. That is, SN4 inhibits
successors of SN6 and SN2 and will be the next one
to hold and allowed to use both tokens tpi and tp j .
The intuition behind such a strategy is to give priority
to multi-partition transactions that are somewhat less
frequent. Moreover, when a successor is inhibited, it
has to forward transactions in its pending list by us-
ing the grouping algorithm. In other words, the in-
hibiting process leads to group transactions and thus,
to shorten their execution time as pointed out earlier.
However, when the number of multi-partition trans-
actions becomes high, single transactions may suffer
from starvation, and the response time is lengthened.
To avoid starvation in case of a subsequent arrival of
multi-partitions we propose a lazy approach that we
describe in next section.

4.2 Lazy Approach

The lazy approach introduces a certain asymmetry in
the SN nodes roles. In fact, one of the SN node is re-
sponsible of gathering and routing all multi-partitions
transactions happening within a time window. It acts
like a leader node regarding to other SN nodes that
have to send to it all multi-partitions transactions they
received. A time window lasts as long as the time
required for a token to complete a round over the
ring. This role of leading the execution of all multi-
partitions transactions is not given statically to a given
SN, but in a round robin fashion to all SN nodes.
That is, a SN node gives the leader role to its suc-
cessor once it finishes to route multi-partitions trans-
actions received within a time period. The main rea-
son of doing so is to balance the overall workload on
all SN nodes and to avoid single point of failure for
a kind of transactions. This approach uses only one
forwarding token as in the ring-based algorithm de-
scribed in (Sarr et al., 2013). The forwarding token

Blockchain-based�Model�for�Social�Transactions�Processing

313

transfers multi-partitions transactions to the SN node
leader. To explain step by step how the work is done,
let us assume that SN0 comes just to be elected as the
leader. That is, the forwarding token is picking up
multi-partitions transactions from SN1, SN2 and so
on. Unless the forwarding token reaches again SN0,
each SN nodes removes every multi-partition transac-
tion from its master list and adds it to the token. At
the end of the time window, i.e., the token is at SN0,
the leader requisitions all tokens required for process-
ing multi-partition transactions. It is worth noting that
a leader may predict the remaining time to get back
the forwarding token. Moreover, it can start gather-
ing the processing tokens related to the transactions
that it has directly received from client application
nodes before the forwarding token brings to it the re-
maining multi-partition transactions. This prediction
is possible thanks to our time-based algorithm and it
eases/accelerates the tokens requisition process.

The drawback of this approach is that the execu-
tion orders may differ from submission orders. Actu-
ally, between the reception of a multi-partition trans-
action and its execution, others single transactions
may arrived and handled by others SN. However,
since the delay between a reception and the process-
ing of a transaction is short, even though with the lazy
approach, it is worth noting that the number of in-
coming concurrent transactions is low. In the realm
of social applications, this approach is suited since
conflictual transactions are infrequent and the order
of some interactions (say comments or Like) is not
important.

5 VALIDATION

In this section we validate our approach through sim-
ulation by using SimJava (Howell and Mcnab, 1998),
which is a toolkit (API Java) for building working
models of complex systems. It is based on discrete
events simulation kernel and includes facilities for
representing simulation objects. We implement each
of entities such as clients, SN nodes and XN nodes.
Each entity is embedded into a thread and exchanges
with others through events. To be as close as possible
to a real system, each client that sends a query has to
wait results before sending another one. To balance
client requests over all SN nodes, clients use a round
robin fashion to send a query to an SN node.

The main objective of our experiments is to assess
the performances of our solution. To this end, experi-
ments were conducted on an Intel duo core with 2 GB
of RAM and 3.2 GHz running under Windows 7.

5.1 Evaluating Multi-partitions
Transaction Latency

The main goal of this experiment is to evaluate and
compare the two mechanisms proposed for facing
multi-partitions transactions. We compare the two ap-
proaches in terms of latency as well as in terms of
overhead. To this end, we set 10 SN nodes, 10 XN
nodes (i.e. 10 partitions) and we vary the number of
clients from 100 to 600. Moreover, we set a concur-
rency rate of 30% and 50% of transactions are multi-
partitions. Figure 4 depicts the average response time
when the workload increases. As one can see, the
response time grows slightly and remains low for a
small workload and it increases more rapidly when
the workload becomes heavy. This is true for both
approaches, either the eager approach or the lazy one.

Figure 4: Response time vs. number of XN (or number of
tokens).

However, the response time of the lazy approach stays
low compared to the response time of the eager ver-
sion. The main reason is that in the eager version, the
SN nodes alternate the execution of the single transac-
tions and the one of multi-partitions transactions. Ba-
sically, the execution of each multi-partitions trans-
action requires to suspend most of the single trans-
actions, thus, when the number of multi-partitions is
important, the waiting time of single transactions in-
creases. The effect of this situation is attenuated in the
lazy version where most of the single transactions are
executed before the multi-partitions transactions are
grouped and handled in a shot. In the lazy strategy, al-
most all tokens are available since single transactions
are already proccessed before the leader starts execut-
ing multi-partitions transactions. Therefore, the over-
all response time is less important than in the eager
version.

DATA�2015�-�4th�International�Conference�on�Data�Management�Technologies�and�Applications

314

5.2 Overhead of the Eager and Lazy
Approaches

Furthermore, we carried out an experiment to mea-
sure the network overhead of our solution, and to
identify which approach costs more in terms of mes-
sages. We use the same configuration as previously,
i.e., we consider 10 SN nodes, 10 XN and a concur-
rency rate of 30%. We report in Figure 5 the results
that unveil the high number of messages used by the
eager approach where the lazy one requires less mes-
sages. This is due to the fact that the eager approach
generates a set of messages for each multi-partitions
transactions while the lazy waits a time window and
aggregates/optimizes the total messages to send for
routing and processing transactions.

Figure 5: Number of messages vs. number of XN (or num-
ber of tokens).

6 CONCLUSION

In this paper, we propose blockchain-based model for
routing social transactions. It is a two steps approach:
a scheduling step followed by an execution step. The
transactions are ordered during the scheduling step in
such a way that each transaction is followed or pre-
ceded by another one within a block and based on
their access class. Afterwards, each block of trans-
actions is executed at the nodes storing the required
data. Once a block is sent for execution, it remains
unchanged and hence, the execution order stays iden-
tical for all the nodes involved. To reach our goal, we
rely on the algorithms proposed in our previous works
(Sarr et al., 2013) to reduce the communication cost.
Moreover, we propose a lightweight concurrency con-
trol by using tokens that serve to synchronize simul-
taneous access to the same data. We focus specially
on the case in which transactions require several ac-

cess classes. We designed and simulated our solu-
tion using SimJava and we ran a set of experiments.
Ongoing works are conducted to evaluate completely
our solution in a cloud platform and to manage group
transactions size for optimal execution.

REFERENCES
Abadi, D. (2012). Consistency tradeoffs in modern dis-

tributed database system design: Cap is only part of
the story. IEEE Computer, 45(2):37–42.

Aguilera, M. K., Merchant, A., Shah, M., Veitch, A., and
Karamanolis, C. (2007). Sinfonia: a new paradigm for
building scalable distributed systems. SIGOPS Oper.
Syst. Rev., 41(6):159–174.

Barber, S., Boyen, X., Shi, E., and Uzun, E. (2012). Bitter
to better — how to make bitcoin a better currency. In
FCDS, volume 7397 of LNCS, pages 399–414.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach,
D. A., Burrows, M., Chandra, T., Fikes, A., and Gru-
ber, R. E. (2006). Bigtable: a distributed storage sys-
tem for structured data. In USENIX OSDI, pages 15–
15.

Das, S., Agrawal, D., and El Abbadi, A. (2013). Elastras:
An elastic, scalable, and self-managing transactional
database for the cloud. ACM TODS, 38(1):5–45.

Howell, F. and Mcnab, R. (1998). simjava: A discrete event
simulation library for java. In ICWMS, pages 51–56.

Kallman, R., Kimura, H., Natkins, J., Pavlo, A., Rasin, A.,
Zdonik, S., Jones, E. P. C., Madden, S., Stonebraker,
M., Zhang, Y., Hugg, J., and Abadi, D. J. (2008). H-
store: a high-performance, distributed main memory
transaction processing system. Proc. VLDB Endow.,
1(2):1496–1499.

Lakshman, A. and Malik, P. (2010). Cassandra: a decen-
tralized structured storage system. Operating Systems
Review, 44(2):35–40.

Michael, M. M. and Scott, M. L. (1995). Implementation of
atomic primitives on distributed shared memory mul-
tiprocessors. In IEEE HPCA, pages 222–231.

Oracle, C. (Retrieved on November 2014). Oracle nosql
database, 11g release 2.

Pandis, I., Johnson, R., Hardavellas, N., and Ailamaki, A.
(2010). Data-oriented transaction execution. Proc.
VLDB Endow., 3(1-2):928–939.

Pandis, I., Tözün, P., Johnson, R., and Ailamaki, A. (2011).
Plp: Page latch-free shared-everything oltp. Proc.
VLDB Endow., 4(10):610–621.

Sarr, I., Naacke, H., and Moctar, A. O. M. (2013). STRING:
social-transaction routing over a ring. In DEXA, pages
319–333.

Silberstein, A., Chen, J., Lomax, D., McMillan, B., Mor-
tazavi, M., Narayan, P. P. S., Ramakrishnan, R., and
Sears, R. (2012). Pnuts in flight: Web-scale data serv-
ing at yahoo. IEEE Internet Computing, 16(1):13–23.

Thomson, A., Diamond, T., Weng, S.-C., Ren, K., Shao, P.,
and Abadi, D. J. (2012). Calvin: fast distributed trans-
actions for partitioned database systems. In SIGMOD,
pages 1–12.

Vogels, W. (2009). Eventually consistent. Commun. ACM,
52(1):40–44.

Blockchain-based�Model�for�Social�Transactions�Processing

315

